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Summary 

In a global perspective, the agricultural sector is right now facing its biggest challenge ever. The 

world population is rapidly increasing, and food production has to grow at the same, or higher, 

speed to be able to feed everyone. At the same time, the effect on environmental and natural 

resources must be limited. Over-fertilization must be stopped to secure aquatic environments 

and to reduce greenhouse gas emissions, caused by production and use of inorganic fertilizers. 

For production of P fertilizer, furthermore a non-renewable natural resource is used, which is 

expected to be exhausted within 50-100 years if the present pattern of consumption is 

continued. Optimizing fertilizer addition in plant production is therefore necessary to obtain a 

higher production along with a reduced environmental impact. To succeed with this, it is, 

however, necessary to enable plant producers to diagnose the nutritional status of crops during 

the growing season, and at a stage sufficiently early not to threaten harvest yields. The purpose 

of this project has therefore been to develop new methods for early diagnosis of nutrient 

deficiencies in plants. 

In Paper I, a review, the most frequently used techniques for soil and plant analysis are 

described and the usability of each technique is discussed. Focus is put particularly on the 

newest methods for plant analysis based on fast spectroscopy, such as visual and near-infrared 

(Vis-NIR) reflectance and chlorophyll a fluorescence. These methods enable easy, fast and cheap 

determination of the nutritional status of plants concerning one or more nutrients. Thereby the 

addition of fertilizer can be managed precisely during the growing season. Insufficient validation 

or erroneous use, however, often results in doubtful outcomes or, in practical application, a 

poor use of the added fertilizer. This is presented along with a discussion of the perspectives in 

the new approach to plant analysis, which is possible using fast spectroscopy. 

Paper II demonstrates that Cu deficient plants can be separated from healthy plants by 

measuring NIR reflectance directly on fresh barley leaves. The method is specific for Cu, and the 

condition can be diagnosed so early that it is reversible. Paper III describes a method to diagnose 

P deficiency in barley plants and quantify P concentration in deficient plants. It was found that 

the I-step in the OJIP transient, which is the outcome of measuring chlorophyll a fluorescence, 

gradually straightens and disappears as P deficiency is induced, and this is used in the method. A 

similar change was found in tomato plants, indicating that this could be a general effect on 

photosynthesis. There are further indications that also deficiencies of Mg, Cu, S and Fe may have 

so far unknown, specific effects on the OJIP transient.  A patent application has been filed on the 

method, enclosed as Paper IV. 

The obtained results can relatively simply be further developed into actual instruments, as both 

NIR and chlorophyll a fluorescence are already widely used methods. Such instruments can help 

plant producers by optimizing nutrient addition of Cu and P, and there are clear indications that 

similar methods for further nutrients can be identified, to the benefit of agriculture as well as 

environment. 
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Sammendrag 

Set i et globalt perspektiv står landbrugssektoren netop nu over for sin største udfordring 

nogensinde. Verdens befolkning vokser hastigt, og fødevareproduktionen må vokse i samme, 

eller højere, takt for at kunne brødføde alle. Samtidig skal belastningen af miljø- og 

naturressourcer begrænses. Overgødskning må stoppes for at sikre vandmiljøet og for at 

nedbringe udslip af drivhusgasser forårsaget af produktion og anvendelse af uorganisk gødning. 

Til produktion af P gødning bruges ydermere en ikke-fornybar naturressource, der forventes 

udtømt i løbet af 50-100 år, hvis det nuværende forbrugsmønster fortsættes. Optimering af 

næringstilførslen i planteproduktionen er derfor nødvendig for at opnå en højere produktion 

samtidig med en reduceret miljøpåvirkning. For at lykkes med dette er det imidlertid nødvendigt 

at gøre planteproducenter i stand til at diagnosticere afgrøders næringstilstand i løbet af 

vækstsæsonen, og på så tidligt et stadie at det ikke truer høstudbyttet. Formålet med dette 

projekt har derfor været at udvikle nye metoder til tidlig diagnosticering af næringsmangel i 

planter. 

I Artikel I, et review, beskrives de mest anvendte teknikker til jord- og planteanalyse og 

anvendeligheden diskuteres for hver enkelt teknik. Der er særligt fokus på de nyeste metoder til 

planteanalyse baseret på hurtig spektroskopi, såsom visuel og nær-infrarød (Vis-NIR) reflektans 

og klorofyl a fluorescens. Disse metoder giver mulighed for nem, hurtig og billig bestemmelse af 

planters næringsstatus i forhold til et eller flere næringsstoffer. Dermed kan næringstilførslen 

styres præcist i løbet af vækstsæsonen. Mangelfuld validering eller forkert anvendelse resulterer 

imidlertid ofte i tvivlsomme resultater eller, ved praktisk anvendelse, en ringe udnyttelse af den 

tilførte gødning. Dette belyses sammen med en diskussion af perspektiverne i den nye tilgang til 

planteanalyse, der er mulig ved brug af hurtig spektroskopi. 

Artikel II demonstrerer, at Cu-manglende planter kan adskilles fra sunde planter ved at måle NIR 

reflektans direkte på friske bygblade. Metoden er specifik for Cu, og tilstanden kan 

diagnosticeres på så tidligt et stadie, at den er reversibel. Artikel III beskriver en metode til 

diagnosticering af P-mangel i bygplanter samt kvantificering af P-koncentration i planter med 

mangel. Det blev fundet, at I-plateauet i OJIP-kurven, der fremkommer ved måling af tidsopløst 

klorofyl a fluorescens, gradvist retter sig ud og forsvinder i takt med at P-mangel induceres, og 

dette udnyttes i metoden. En tilsvarende ændring findes i tomatplanter, hvilket indikerer at der 

kan være tale om en generel effekt på fotosyntesen. Der er ydermere indikationer af, at også 

mangel på Mg, Cu, S og Fe kan have hidtil ukendte, specifikke aftryk på OJIP-kurven. Der er 

indsendt patentansøgning på metoden, vedlagt som Artikel IV. 

De fremkomne resultater kan relativt enkelt videreudvikles til praktisk anvendelige 

instrumenter, da såvel NIR som klorofyl a fluorescens allerede er vidt udbredte målemetoder. 

Sådanne instrumenter kan hjælpe planteavlere med at optimere næringstilførslen af Cu og P, og 

der er klare indikationer af, at lignende metoder for yderligere næringsstoffer kan identificeres, 

til stor gavn for såvel landbrug som miljø. 
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Chapter 1 

Introduction 

Background 

During the last 10,000 years, the environment of our planet has been in an unusually stable 

period, where environmental conditions, including temperatures, have stayed within a narrow 

range. This stability has enabled the development of agriculture and of human civilization as 

such. However, a thorough investigation of the status of our planet states that the climate 

change, changes in N and P cycles and biodiversity loss are already so serious that we are 

endangering the stability of our environment. This is due to our heavy reliance on fossil fuels 

along with the industrialization of agriculture (Rockström et al., 2009). Production of N fertilizer 

is the single most energy consuming process in agriculture, using 1.4-1.8 liters diesel fuel per kg 

N (McLaughlin et al., 2000), and it is thereby a major contributor to the increased atmospheric 

concentration of greenhouse gases. Production of P fertilizer is less energy demanding, however, 

raw phosphate rock, the raw material for P fertilizer, is a non-renewable resource that is rapidly 

dwindling. In as little as 50-100 years, no clean reserves of phosphate rock may be left, and 

agricultural production cannot continue in its present form (Gilbert, 2009). Over-fertilization of 

both N and P, provided as organic or inorganic fertilizer, has devastating effects on land and 

water resources, affecting eco-systems as well as human access to clean water (Gao et al., 

2006;Chen et al., 2008;Wang et al., 2011). Finally, the inclusion of more and more land for 

agriculture has a negative impact on biodiversity and thereby on fragile ecosystems (Rockström 

et al., 2009). It is therefore evident that present agricultural practices must be changed to bring 

fertilizer and energy consumption significantly down. 

At the same time, the world population is increasing rapidly. Estimates of rises in food demand 

go as high as 100% from 2005 to 2050 (Parry and Hawkesford, 2010;Tilman et al., 2011), and to 

meet this demand, enormous agricultural yield increases must be obtained. What we demand 

from agriculture is, thus, a spectacular increase in efficiency. Outputs must be increased 

extensively, using significantly less input. This is a challenge that can only be met by making 

major efforts in both scientific and political fields, but one part of major importance is providing 

the tools that enable plant producers to optimize nutrient management.  

Reaching the optimal point of fertilization, where every grain of fertilizer pays off in increased 

yields takes attentive monitoring of plant development throughout the growing season to 

provide crops with the right fertilizer at the right time and in the right amount. Timing is 

important in terms of fertilizing before a given deficiency causes permanent damage, and for 

environmental reasons to ensure timely uptake of especially N to avoid leaching and 
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eutrophication. Soil analysis is commonly used to predict crop fertilizer needs, but these 

methods are not applicable for monitoring during the growing season and cannot be used to test 

for acute nutrient deficiencies. Furthermore, there is often a poor relation between analytical 

results and actual plant available nutrients (Mason et al., 2010). Traditional plant analysis in a 

laboratory is costly, and sampling, handling and analysis time before a result is given are all time 

consuming steps. Furthermore, interpreting the results and deciding on the required action is 

not always straightforward. 

It is evident from the above that a different approach is needed. There is a need for methods 

that deliver instant assessments of plant nutritional status and which can determine plant needs 

with all the variation that occurs, throughout fields and growing seasons. Such methods are not 

a dream scenario found in a far-away future. They can be obtained using fast spectroscopy in 

agriculture, and to some extent, this is already done. Several tractor-mounted instruments for 

on-the-go assessment of N nutritional status in crops using Visual-Near Infrared Reflectance (Vis-

NIR) spectroscopy are used in practical agriculture (e.g. NTech, 2013;Yara, 2013), and 

corresponding hand-held instruments determine similar indices of N status. Also Mn status can 

be determined spectroscopically, using chlorophyll a fluorescence (NutriNostica, 2013), as well 

as chlorophyll and anthocyanin concentrations, to decide the optimal harvest time of grapes, 

using Ultra-Violet (UV) - Vis reflectance and fluorescence (Force-A, 2013), to mention a few. 

These instruments deliver instant results, which are translated into plant status. For the tractor-

mounted N-sensors, a direct link to fertilizer applying equipment on the same tractor enables 

immediate action. 

Fast, spectroscopic methods have a number of advantages in addition to the speed of analysis. 

They are generally cheap once the equipment has been acquired, environmentally friendly, as no 

toxic reagents are needed, easy to use and able to deliver consistent results if used and 

interpreted appropriately (Samborski et al., 2009;Schmidt et al., 2013). These are all reasons for 

their extensive use in other fields such as pharmaceutical and food industries. Though solutions 

for analysis of plant nutrition exist, the range of targeted nutrients is still very limited. 

Furthermore, specificity of the methods is a major issue, which may lead to misinterpretations of 

results, as it has been demonstrated for N-sensors (Zillmann et al., 2006;Samborski et al., 2009). 

The idea behind this PhD study was to identify and describe new methods for diagnosing latent 

nutrient deficiencies in plants using fast, spectroscopic techniques. Measuring directly on fresh 

leaf samples was prioritized to minimize time consumption in the final methods. Combinations 

of a number of relevant plant nutrient deficiencies and an array of spectroscopic techniques 

were screened to investigate possible correlations. 
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Objectives 

The main objective of this thesis was to investigate and develop new methods to diagnose 

nutrient deficiencies in plants using fast spectroscopic techniques applied directly on fresh 

leaves. Focus was put on essential plant nutrients, micro- or macro-nutrients, of which 

deficiencies are common, on a global or local scale. The tested spectroscopic methods included 

near infrared reflectance (NIR) and time-resolved chlorophyll a fluorescence. Barley (Hordeum 

vulgare, L.) was chosen as a model plant. 

Each diagnostic method must eventually fulfill the following criteria: 

 Deficiency can be diagnosed already at a latent stage, meaning before any visual 

deficiency symptoms occur. 

 Deficiency must be reversible at the earliest time of diagnosis, thereby indicating that no 

permanent damage to plant metabolism has occurred. 

 The method must be specific for a given nutrient, i.e. deficiency of another nutrient may 

not disturb the results. 

Elements are not spectroscopically active in themselves. Given the complexity of plant stress 

reactions, and the number of metabolites that are affected, an empirical approach was 

therefore chosen to reveal specific correlations between spectroscopically active components 

reflecting the nutritional status of plants. 

Thesis Outline 

This thesis consists of an introductory part (Chapters 1-5), of which Chapter 2 is a review paper 

(Paper I), followed by another two scientific papers (Papers II and III) and a patent application 

(Paper IV).  

Paper I is a review concerning plant analysis. It contains an overview of the history of plant 

analysis and the major challenges in the field of plant nutrition today. The differences in the 

approaches of plant and soil analysis are evaluated. Emphasis in the review is on analytical 

methods for assessment of plant nutritional status, which are described with a main focus on 

fast, spectroscopic methods, of which future perspectives are also discussed. 

Near Infrared spectroscopy, chlorophyll a fluorescence and the applied methods for data 

analysis are described (Chapter 3), and the contributions to data variability are investigated and 

discussed (Chapter 4). Finally, conclusions and perspectives of this PhD study are summarized 

(Chapter 5). 

Paper II describes the finding of a specific correlation between NIR spectra and Cu deficiency in 

barley. 

Paper III describes the finding of a specific change in chlorophyll a fluorescence during P 

deficiency in barley. The method is indicated to relate to plants in general. 

Paper IV is a patent application based on the findings described in Paper III.  
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Chapter 2 

Plant Analysis in Agriculture, A 
Historical Review with Emphasis 

on the Newest, Analytical 
Developments (Paper I) 

van Maarschalkerweerd, M. & Husted, S. 

Manuscript in preparation 
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Plant Analysis in Agriculture 

A Historical Review, with Emphasis on the Newest, Analytical Developments  

Marie van Maarschalkerweerd1, 2 and Søren Husted1* 

1Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 

40, Frederiksberg C, Denmark 

2Foss Analytical A/S, Foss Allé 1, Hillerød, Denmark 

*Corresponding author: Søren Husted, Tel: +45 3533 3498, e-mail: shu@life.ku.dk 

Abstract 

Yield optimization and thereby plant nutrition has been a main focus for plant producers since 

the beginning of farming, and long before the concept was even described. Today, a rapidly 

growing world population and thereby a vastly increasing food demand requires significant 

agricultural yield increases worldwide. At the same time, sub-optimal or excess use of fertilizers 

lead to severe environmental damage in areas of intensive agricultural production. Optimal 

management of fertilizer input is therefore more relevant than ever, and for this, plant analysis 

plays an essential role.  

Here, the approaches of soil and plant analysis are compared and discussed, with emphasis on 

analytical techniques for plant analysis. State of the art methods for total analysis of elemental  

concentrations in plants, Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) 

and – Mass Spectrometry (–MS) and Atomic Absorption Spectroscopy (AAS), are described along 

with brief accounts on historical methods. The main focus of this review is on new techniques 

using fast spectroscopy that offer cheap, rapid and easy-to-use analysis of plant nutritional 

status. The majority of existing methods uses vibrational spectroscopy, such as Visual-Near 

Infrared (Vis-NIR) and to a lesser extent Ultraviolet (UV) and Mid-Infrared (MIR) spectroscopy. 

Advantages of and problems with application of these techniques are thoroughly discussed. 

Spectroscopic techniques considered having large potential, such as X-ray fluorescence (XRF) 

and Laser-Induced Breakdown Spectroscopy (LIBS) are also briefly described.   
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1 Introduction 
Plants are photoautotrophic organisms, meaning that they acquire energy from sunlight for 

carbon fixation. By using water, CO2 and 14 essential mineral nutrients, they are able to 

synthesize all chemical components needed to complete a full life cycle, from the germination of 

a seed to the production of new, mature seeds. The essential mineral nutrients are divided into 

two groups, macro- and micronutrients, according to the amount generally required by plants. 

The six macronutrients, N, P, K, S, Ca and Mg, are present in g/kg of plant dry matter. The eight 

micronutrients, Fe, Mn, B, Zn, Cu, Ni, Mo and Cl, only in mg/kg dry matter. In spite of the great 

concentration differences, all 14 nutrients are irreplaceable in all plant species, as each fulfills 

one or more specific tasks within plant metabolism (Kirkby, 2012). In addition to the essential 

mineral nutrients, a number of elements are designated as beneficial, of which the most 

thoroughly investigated are Al, Co, Na, Se and Si. The beneficial elements are not required for all 

plants but may promote growth in specific taxa, in some cases even be essential for certain 

species (Pilon-Smits et al., 2009). 
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1.1 Plant Nutrition in Ancient Times 

Nutrient management has been a main concern in plant production all over the world since the 

beginning of farming. The concept of plant nutrition was unknown for millennia, but still 

management practices were developed in ways that optimized the nutrient availability for crops. 

One of the earliest cropping systems known is slash-and-burn, a system of shifting cultivation. 

Woodland is cleared and smaller bushes are burnt, leaving a nutrient rich layer of ashes in the 

top soil. The land now gives higher yields for a few years, after which new land has to be cleared 

(Fussell, 1971). The system was developed independently in several parts of the world and was 

for instance used by Native Americans (Anderson, 2005) as well as in Europe already in the stone 

age, i.e. before year 2000 BC. It is efficient and as such sustainable, if only the land is left fallow 

for sufficiently long time after cultivation. Thus, when population density increases above a 

certain threshold, slash-and-burn will lead to exhaustion of soils, as it is seen e.g. in the Brazilian 

Amazon and North East India, where the technique is still used today (Comte et al., 

2012;Goswami et al., 2012). 

Probably the first mention of manuring of soil occurs in “Oeconomicus”, written by Xenophon in 

classical Greece around 362 BC. The practice of burning stubbles is described together with the 

positive effects of weeding and turning in young weeds (Fussell, 1971). According to the 

publication, an evaluation of the natural vegetation on a given soil could give the farmer an idea 

of which crops would be best fitted for growing on that location, and the Roman poet Virgil (70-

19 BC) even developed a number of simple soil tests leading to recommendations of crop 

selection. Guidance concerning agricultural practices occurs in many publications from ancient 

Greece and Rome, but common for all advice and theories from these times is that no actual 

reasons for the benefits are explained as they were at the time unknown. The unusual fact that a 

poet gave advice on agriculture emphasizes that actual scientific approaches in agriculture had 

not yet been introduced. 

The Roman writer, farmer and politician Cato (234-149 BC), was the first to write a book 

specifically on farming in Latin, “De Agricultura”. He explained the making and using of a dung 

heap and thoroughly described the use and positive influence of legumes (Dalby, 1998). It should 

be kept in mind that though theories and knowledge were written down and instructions were 

given in print, the actual users, the farmers, were illiterate. Furthermore, there was the matter 

of distribution; as printing had not yet been invented, the number of books was very limited. 

Therefore, ancient writings on farming should be regarded merely as descriptions of best 

management practices used at the time. For two thousand years, from the Ancient Greeks to the 

invention of printing, plant science was more or less static. Not only because of the lack of basic 

knowledge on which plant science could be developed, but also because medicine was favored 

in science. At one point, the knowledge of Greek language diminished, almost disappeared, due 

to the Roman dominance and thereby the introduction of Latin. In spite of Catos work, much 

experience, assumptions and ideas concerning plant cultivation was hereby lost (Fussell, 1971). 

1.2 Emergence of Agricultural Science 
Until the beginning of the nineteenth century, real quantum leaps in the science of plant 

nutrition are not found. Then came the German agronomist Albrecht Thaer (1752-1820), who is 

regarded the founder of agricultural science. He introduced the use of experimental methods as 

pot and field experiments and thereby facilitated a change from agricultural knowledge based 
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on a collection of empirical experiences to an actual science, testing hypotheses experimentally 

in a systematic fashion. He was also one of the main persons developing and describing the so-

called “humus theory”, which was widely accepted at the time. The main assumptions of this 

theory were that the majority of plant dry matter, known to be C, was derived from so-called 

“nutritive juices” in the humus layer of the soil. Secondly, it was recognized that the nutrient 

demand of a plant depended on plant species (Feller et al., 2003;Manlay et al., 2007). With some 

exceptions, using the extended principles of the humus theory resulted in agricultural advice of 

high quality. The major problem was that the concept of mineral nutrition had not yet been 

discovered, and the humus theory was based on the false assumption that C was derived from 

the soil. This was soon to be corrected by a student of Thaer’s, Carl Sprengel (van der Ploeg and 

Kirkham, 1999;Feller et al., 2003). 

Carl Sprengel (1787-1859) continued Thaer’s investigations of humus extracts and the humus 

theory. However, he concluded that the enhanced plant productivity, which is observed when 

increasing the humus content of the soil, is not a result of the humus itself but of the mineral 

nutrients contained in it. Thereby, in 1828 he introduced the theory of mineral nutrition of 

plants. As a consequence of this, he also suggested the Law of the Minimum: “When a plant 

requires twelve [all essential plant nutrients had not been discovered, and some were 

erroneously considered essential] substances for its development, it will never grow if only one of 

this number is missing, and continually grow miserably when it is not present in a quantity the 

plant requires”. The mineral theory and the Law of the Minimum are usually attributed to Justus 

von Liebig (1803-1873), another German chemist, who presented the two in 1840 and 1855, 

respectively, as his own discoveries, despite being well acquainted with the work of Sprengel. 

Liebig was an outstanding communicator and a pioneer in agricultural science, and he spent a 

considerable part of his career fighting for the acceptance of the ideas of mineral nutrition. The 

agricultural community, including research stations, was not eager to accept the entrance of 

chemistry into the agricultural field, but as history shows, they were eventually convinced. This 

intensive effort is probably the reason why Liebig, and not Sprengel, is the person remembered 

for the discoveries. (Finlay, 1991;van der Ploeg and Kirkham, 1999;Jungk, 2009). 

 

Figure 1. Carl Sprengel (1787-1859) (left) and Justus von Liebig (1803-1873) (right). From van der 
Ploeg and Kirkham (1999). 
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1.3 Productivity Leaps in the 20th Century 

Around year 1900, nearly no fertilizer input was provided for agricultural fields, causing a 

notorious shortage of N. Nitrogen input came almost exclusively from N-fixing crops, crop 

residues and human or animal wastes, and a diminutive amount of guano, N rich bird droppings 

imported from Chile, used as a fertilizer. Then, in 1909, Fritz Haber invented a method for 

synthesizing ammonia from atmospheric nitrogen. This was rapidly developed into an industrial 

production of synthetic N fertilizer by the engineer Carl Bosch, why the process was named the 

Haber-Bosch process. Already in 1913, large scale production was possible, and the use of 

synthetic fertilizer in agriculture started. However, it did not accelerate until the 1950’s. World 

War I and economic setbacks in the 1930’s first limited the application. Then, during World War 

II, much ammonia was used as explosives instead of as fertilizer, and a large number of 

production plants were destroyed, primarily in Europe and Japan. Hence, though US production 

increased solidly, the global production of ammonia in 1945 was lower than by 1920. However, 

steep increases in production and consumption of ammonia after the war lead the way for 

harvest yield increases, and it ended food rationing in Europe (Smil, 1991;Smil, 2004). 

Rough calculations on fertilizer input and yields in year 1900 compared to present show that 

around 40% of today’s world population is alive, thanks to the Haber-Bosch process and the 

increased yields it facilitates. In the western world, the use of N today could easily be limited by 

reducing the excessive protein consumption from meat-based diets in favor of a higher 

consumption of plant products. But in low-income, densely populated countries, many found in 

Asia, N fertilizer is often what keeps the populations away from hunger (Smil, 2002). It is, thus, 

evident that synthetic N fertilizers are indispensable for maintaining the lives of the world 

population today, and the Haber-Bosch process was one of the main factors enabling the success 

of the Green Revolution. 

1.3.1 The Green Revolution 

In spite of the higher yields obtained through the increased use of N fertilizers, more than one 

third of the world population suffered from malnutrition in the late 1950’s. In Asian, African and 

Latin American countries, famine threatened millions. This caused farmers, scientists and policy 

makers to join forces to create a tremendous yield increase in major food crops such as rice, 

maize and wheat obtained over roughly 25 years; this was coined “the Green Revolution”. New 

varieties were bred, featuring much higher yields due to a number of factors including short 

growth duration, resistance to biotic and abiotic stresses, and superior grain quality. The most 

important breeding achievement is considered to be the introduction of the so-called dwarfing 

genes. Supplying high rates of N fertilizer to cereal varieties from before the Green Revolution 

resulted in excessive vegetative growth, and the elongated stems were not strong enough to 

support the weight of the panicles. This caused lodging and ultimately lower yields than when 

poorer nutrition was provided. Introducing the dwarfing genes resulted in shorter and stiffer 

cereal straws as well as increased tillering. By optimizing nutrition to these varieties, nutrients 

were directed mainly to grain production, and the increased panicle weight could be carried by 

the straws without lodging. The introduction of dwarfing genes alone was able to increase the 

harvest index, i.e. the ratio of grain dry weight to total dry matter, by 60% in rice and wheat 

varieties (Khush, 2001). Combining these new varieties with improvements in fertilization and 

other management practices such as irrigation released an enormous yield potential, leading to 

a doubling of agricultural yields in Asia from 1965-1990 (Khush, 2001;Hazell, 2009). 



6 
 

Unfortunately, public investments in agricultural research and development decreased 

significantly, globally seen, after the Green Revolution, causing yield growth to slow down 

towards the end of the millennium. As an example, the average global yield growth in wheat was 

2.1% annually during the 1970’s, whereas in the 1990’s the number was reduced to only 0.4% 

per year (Gruhn et al., 2000). Importantly, and unfortunately, the decline in yield growth is most 

pronounced in the poorest countries (Hafner, 2003). 

1.4 Major Challenges of Today 

In spite of the achievements of the Green Revolution, tremendous challenges are still faced by 

the agricultural community today - and by the world. The world population increases rapidly and 

is expected to continue to do so for another forty years, putting further pressure on food 

production. By 2050 the world population is forecasted to reach 9 billion people, and estimates 

of increases in food demand from 2005 to 2050 are as high as 100% (Parry and Hawkesford, 

2010;Tilman et al., 2011). At the same time, climate changes alter local temperature and 

precipitation conditions. In most locations this will challenge yields and management practices, 

and farmers will have to learn how to adapt to these changes, hopefully assisted by renewed 

plant breeding efforts (Nelson, 2010). Nutrient management is a major concern for future 

agriculture. At present, over-fertilization causes severe environmental damage, mainly in North 

America, China and Europe, while in other parts of the world, nutrient deficiencies limit yields 

severely (Gruhn et al., 2000;Chen et al., 2008). Especially in the poorest regions of the world, 

including sub-Saharan Africa, critical nutrient depletion of soils is common. Wind and water 

erosion remove the most fertile layers of the soil in many areas, and the amount of nutrient 

input to the land is generally far from what is removed, causing soil degradation and even 

desertification. In combination with increasing populations, this has made it necessary many 

places to include marginal and fragile soils in the farmed area (Gruhn et al., 2000). In spite of 

these inclusions, the worldwide area of cultivated land per person gradually decreased in the 

period 1961 – 2009 from a world average of 0.37 to 0.20ha, a 44% decrease, substantially larger 

in the poorest countries, which further stresses the need for increasing productivity (WorldBank, 

2012). 

1.4.1 Fertilizer Challenges 

The increased use of inorganic fertilizers comes at a price, as the production of especially N 

fertilizer is highly energy consuming. For one kg of N, 1.4-1.8 liters of oil is used, or about ten 

times the energy used for P and K fertilizer production (Kongshaug, 1998;McLaughlin et al., 

2000). Investigating fertilizer prices over the last 30 years therefore shows a close correlation 

with the price of crude oil and accordingly an expectation of continued price increases in the 

future (Figure 2). 
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Figure 2 Fertilizer prices ($/metric tonne, normalized to 2005$) and crude oil price ($/barrel) from 
1980-2011, with 1998=100. Compiled from WorldBank (2012) and BP (2012). 

Along with the financial price of fertilizer consumption come the environmental costs, including 

the negative effects on climate due to vast greenhouse gas emissions. Quantifications of 

greenhouse gas emissions are available but vary widely depending on how much of the total life 

cycle is included – transportation and distribution of fertilizer may or may not be included, as 

well as the number of gases investigated may differ. It is, however, agreed upon that by 

substituting older production plants for new technologies, both energy consumption and 

greenhouse gas emissions can be significantly reduced. European averages of CO2 equivalents 

emitted per kg N produced are around 7kg. For modern technologies alone, the average is 

around 3kg, a substantial improvement (Kongshaug, 1998;Wood and Cowie, 2004). 

In addition to the vast energy consumption and greenhouse gas emissions, productions of P and 

K fertilizers exploit finite natural resources. For P this is a major problem in near future with the 

most pessimistic forecasts saying that global resources of clean phosphate rock will be gone 

within 50 years (Gilbert, 2009). The largest part of the world’s total remaining phosphate rock, 

75%, is found in Morocco and Western Sahara. China possesses around 6%, and South Africa, 

Russia, USA, Algeria, Jordan and Syria each have 2-3% (USGS, 2013). This geographic 

concentration of the scarce resource may further increase a global shortage, causing even higher 

prices or being used in political disagreements. One solution to this problem is to find alternative 

sources of fertilizer. An example of this is the use of MgNH4PO4
.6H2O, or struvite, a phosphate 

mineral that can be precipitated from waste water and preprocessed into fertilizer (Linderholm 

et al., 2012). Another promising approach is to focus on nutrient use efficiency (NUE) in plant 

breeding, improving the NUE of specific genotypes. However, also intercropping has proven very 

efficient. Some plant species acidify the rhizosphere and thereby increase the solubility of P, and 

especially legumes produce root exudates which enhance P solubility by chelating metals that 

bind P in soil. It has been demonstrated that species with low P efficiency, e.g. cereals, may 

benefit greatly from intercropping with legumes (Li et al., 2007). 
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1.4.2 Challenges for Breeding 

A plant with improved NUE is defined as one producing more yield per unit nutrient, applied or 

absorbed, than other plants under similar growth conditions (Fageria et al., 2008). This includes 

plants that are better at absorbing nutrients from the soil as well as those better at utilizing what 

they have absorbed. Thus, improving the NUE of plants with respect to one or more essential 

plant nutrients will increase yields without increasing input level, and especially concerning the 

problem of dwindling P resources this will be a sustainable solution. 

Intensive work is carried out in the hunt for new crop varieties. During the Green Revolution, 

focus was mainly on enabling plants to make use of improved management practices, especially 

increased inputs. Today, the aims for new varieties may vary more broadly, as improved cultivars 

are needed both for sustainable crop production on marginal lands as well as for increasing 

yields even more on the most fertile soils. Molecular plant breeding is being used as a tool to 

control specific processes in the plant by targeted genetic manipulation (Parry and Hawkesford, 

2010). In soybean, the NUE for P has been improved by expression of AtPAP15, an Arabidopsis 

(Arabidopsis thaliana) purple acid phosphatase (APase) gene, which increases the activity of 

APase and phytase in roots, thereby enhancing the mobilization of inorganic phosphate from 

organic P sources in the soil. The expression of the gene caused plant P concentrations to 

increase with between 18 and 90%, and dry weights increased by between 57 and 118% as 

compared to control plants (Wang et al., 2009). Investigations of the genome of traditional rice 

varieties originating from regions with soils poor in P have recently lead to the identification of a 

protein kinase gene named PSTOL1, for phosphorus starvation tolerance. Overexpression of 

PSTOL1 increases early root growth and thereby enhances the plant’s ability to mine soil P 

reserves. Grain yield increases of more than 60% were found in modern, P-starvation intolerant 

varieties, where the gene was overexpressed, when cultivated in P deficient soils (Gamuyao et 

al., 2012). These new findings could potentially lead to significantly higher yields for plants 

cultivated under P limiting conditions. 

More than two billion people suffer from Fe deficiency worldwide, leading to massive health 

problems as well as decreased learning abilities for children and reduced work productivity 

levels. Iron levels in the grains of cereals such as rice are generally very low, even in well-

supplied plants. However, it has been demonstrated that by upregulating the synthesis of 

nicotianamine (NA) in rice plants, the Fe level in the plant was increased. Specifically in the grain, 

the concentration of bioavailable Fe was shown to be at a significantly higher level than in 

control plants. This finding could potentially benefit millions of people globally, who eat rice as 

their stable, and main, food (Lee et al., 2009). 

In spite of large numbers of encouraging results, commercializing transgenic cultivars is still 

extremely difficult. Genetic engineering is not always robust and easily reproducible, legal issues 

can be complicated and in addition to this, the public opinion is generally opposed to these 

varieties.  

1.4.3 Optimization of Nutrient Management 

Whether focusing on development of improved crop cultivars or new sources for fertilizers, 

optimization of nutrient management is more than ever a pivotal point in farming. Maintenance, 

and improvement, of soil fertility is crucial to obtain the highest yields that are needed to feed 

the growing world population, and whilst marginal soils are increasingly included as agricultural 
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lands, the world cannot afford deterioration of fertile lands with poor management. To optimize 

fertilization practices, it is therefore essential for plant producers to know the fertility 

characteristics of their soil as well as to monitor the development of plants throughout the 

growing season. This way it is possible to act in accordance to plant needs instead of acting in 

accordance to tradition or interpretations of analyses, which may be invalid. In order to pursue 

this purpose, cheaper and more easily accessible methods for plant and soil analyses are crucial. 

Today, soil analysis is by far the most commonly used, as a “predictor” of crop fertilizer needs in 

the coming growing season. Plant analysis is more difficult to use, as sample handling is more 

demanding, and analyzing and using the results correctly in fertilizer management is still 

challenging. 

This paper compares soil and plant analysis and reviews the development of methods for plant 

elemental analysis from the first, gravimetric methods and up to today’s state of the art 

methods including emerging, spectroscopic methods to be used directly in the field. 

2  Plant and Soil Elemental Analysis 
Producing a high yield of the best possible quality has always been a goal for plant producers. In 

modern agricultural practice, nutrient management practices as fertilization and crop rotations 

are essential tools to obtain this. Crops need to be provided the right nutrients in adequate 

amounts while at the same time avoiding over-fertilization, both for economic and 

environmental reasons. Plant and soil analyses are indispensable tools to assist the plant 

producer in this. 

Presently, and historically, soil chemical testing has been widely used. For assessing fertility of 

soils as well as soil contamination, no technique has been applied as much as soil testing 

(Rayment, 1993). However, it is not without dispute, since the methodologies carry serious 

problems regarding both practical performance of the tests as well as interpretation and use of 

the results. Knowledge about physical characteristics of the soil can assist the plant producer in 

fertilization management, as these affect the nutrient availability for crops. But they are far from 

the only factors of importance, why additional analysis is essential for optimal yields. 

Traditionally, soil chemical testing has been the method of choice, but plant analysis is 

increasingly gaining ground as these methods are rapidly improving in speed, precision and cost, 

and the weaknesses of traditional soil testing become more widely acknowledged. 

The main difference between soil and plant analysis is plainly the scope of the methods. Where 

soil analysis is aimed at obtaining predictions for fertilizer needs in coming growing seasons, 

plant analysis provides information about the current nutritional status and enables diagnosis of 

acute disorders during the season. Both approaches are reviewed in this chapter, with focus on 

advantages and disadvantages, limitations and possibilities of each technique. In many cases, it 

is not necessarily a question of choosing one approach or the other. If using state of the art 

methods, combining soil and plant analysis may be the best way to obtain optimal nutrient 

management of a crop. 

  



10 
 

2.1 Soil Elemental Analysis 

Agricultural soils are analyzed with the purpose of assessing the potential nutrient release of the 

soil for crops in the coming growing seasons and thereby allowing the plant producer to 

estimate fertilizer needs in advance. Both physical and chemical characteristics are analyzed for, 

as they are, to some extent, correlated. Soil contents of sand, silt, clay and organic matter are 

determined as well as Cation Exchance Capacity (CEC), pH and nutrient concentrations. 

Combining these results, fertilizer recommendations are developed. Soil testing has been widely 

accepted and used for this purpose since the 1940’s (Westerman, 1990), and today, agricultural 

fields are routinely analyzed, commonly every 3 to 5 years. Thus, modern plant producers often 

have a long historical record of their fields (Pedersen, 2012). Recommendations are given based 

on the assumption that the determined nutrient concentrations correlate with, or represent, the 

plant available portion from which the needed fertilizer addition for a given crop can be 

calculated. However, as will be discussed, this is rarely the case. 

A number of advantages have lead to the wide use of soil analysis in agriculture. Sampling is, 

conveniently, carried out during the less busy seasons when there are no crops in the field, i.e. 

after harvest or before sowing. The possibility of planning fertilization ahead is practical for the 

plant producer, and finally there has been a lack of accessible alternatives. The obvious 

alternative is plant analysis, which will be discussed in detail later, but it has for long not been 

able to compete with soil analysis in terms of price, ease of use and perceived benefits, why soil 

analysis has remained the dominating tool for fertilizer management in practical agriculture. To 

demonstrate the proportions, 1,011 plant analyses were collected and analyzed in agricultural 

fields in Denmark in the growing season 2011. During the same period, 75,252 soil samples were 

analyzed (Pedersen, 2011). However, major disadvantages of soil analysis are the wide array of 

methods employed and the time consumption per sample, leading to excessive workloads in 

laboratories as well as difficulties in comparing values across countries or regions (Rayment, 

1993). Even more importantly, larger investigations of soil analytical methods have revealed a 

poor or complete lack of correlation between results and early stage dry matter yields or plant 

nutrient concentrations. This will be elaborated below. 

A soil analysis for a given nutrient is basically carried out by agitating the dried, ground soil 

sample with an extractant for a certain period of time, filtering and finally analyzing the filtrate 

for concentration of the nutrient or derived compounds. Key considerations during soil analysis 

are not only the extractant but also sampling, soil preparation (typically drying and grinding), 

extraction method, analysis, quality assurance and control (Rayment, 1993). Ideally, the results 

of a soil analysis should be independent from who carried out the sampling, and which 

laboratory performed the analysis. Ensuring this needs careful standardization of all procedures, 

as artifacts may arise from all types of handling and storage. 

2.1.1 Sampling 

Due to the heterogeneity of fields, sampling is extremely important for soil analysis. If carried 

out in an inappropriate way, the final results of the analysis can be useless. Soil samples are 

collected during the period after harvest or before a new crop is established. No fertilization, 

liming or similar can be carried out before sampling. Fertilizer requirements may vary 

enormously over a field or even within small areas of the field, however, for practical reasons 

every square meter cannot be measured. Unless a field is known not to vary in texture, yield or 
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cultivation history, GPS marked sampling is a useful tool to ensure meaningful sampling. In 

Denmark, between 50 and 75% of the total number of soil samples collected are GPS marked, 

enabling the plant producer to vary application rates over a field. This practice assists in 

obtaining more uniform yields and better NUE (Pedersen, 2011; 2012). Based on maps showing 

yield variations, cultivation history (i.e. historic boundaries of fields), topography and results 

from previous soil analyses, fields are divided into subfields of relative uniformity. In each 

subfield, at least one sample is taken, consisting of 16 subsamples collected following a specific 

pattern, typically a diagonal across the subfield, as shown in Figure 3 (Anonymous, 2003). 

Figure 3. One field divided into nine subfields. From each subfield, 16 soil samples are collected 

(marked by stars) according to the pattern marked by the red lines. The subsamples from each 

subfield are combined into one sample for analysis. Figure from Anonymous (2003). 

An alternative method to the subfields is to make a quadratic grid in the field, with sides of 75m 

(2 samples per ha) or 100m (1 sample per ha) and sample diagonally across the squares. The GPS 

positions of samples are marked at the middle of the sampling routes, enabling the plant 

producer to adjust management practices according to these results (Hansen, 2002). 

Sampling depth depends on the desired nutrient analyses as well as tillage systems and crops. 

Sampling exclusively the plough layer, 0 - 15cm, may be adequate for analysis of less soil mobile 

nutrients as e.g. P or K. If no-tillage systems have been applied for long, deeper sampling down 

to e.g. 30cm is advisable even for such nutrients, as they may become stratified. Water-soluble, 

highly soil mobile nutrients such as NO3-N and S on the other hand require sampling down to 

60cm. To determine the stratification of such nutrients, sampling is commonly split into two, 

from 0-15cm and from 15-60cm. The quality of some crops, as e.g. sugar beet, is very sensitive 

to the level of NO3-N, why sampling below 60cm in some cases may be required to adjust 

fertilization precisely (Franzen and Cihacek, 1998;Pennock et al., 2008). 
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For some specific cultivations, soil analysis is impractical. The root zone of deep-rooting species 

as fruit and forest trees is difficult to assess, and in addition often very deep. This makes it 

practically impossible to collect proper samples to give a picture of the nutrients available to 

trees (Römheld, 2012). In such cultivations, plant analysis is more commonly used to obtain 

information about fertilizer needs. 

2.1.2 Sample Handling 

Drying of samples must be carried out in clean drying equipment at uniform temperatures, and 

subsequent grinding should be to a standardized size, which will commonly mean passing 

through a 2mm sieve (Rayment, 1993;Plantedirektoratet, 1994). However, particle sizes may 

differ between methods, as the optimal sizes vary. Particle size has been shown to affect 

analytical results significantly, why variation should be avoided if comparable results are wanted 

(Rayment, 1993). 

Storage time and temperature are of little or no significance in most cases, but measured S 

concentrations have been shown to change over time, as well as measured P concentrations 

may increase with as much as 50% in the same soil when stored at 36°C as compared to storage 

at 4°C (Rayment, 1993). Hence, standardizations are required also for storage conditions, if 

comparable results are to be obtained in different laboratories. 

2.1.3 Extraction and Analysis 

Innumerous extractants in many different concentrations and at various pH levels are used in 

soil analysis, with each laboratory typically providing one or a selected few for each nutrient 

analysis. Extractants can be divided into categories, each dissolving different fractions of 

nutrients in the soil. Water alone extracts only already dissolved ions, whereas dilute salt 

solutions as KCl and CaCl2, very dilute acids and aqueous organic solvents extract soluble salts as 

well as adsorbed ions and salts, which are readily available for plants. Chelates, i.e. buffered 

EDTA and DTPA solutions, can be used for extracting adsorbed and complexed nutrients. Finally 

there are the more aggressive extractants as strong acids, including aqua regia, a mixture of 

HNO3 and HCl used for determination of “total concentrations”, i.e. the sum of the natural 

background concentration of the soil and fertilizer applications in the past. Using different 

extractants, results for the same soil sample can vary as much as from 4.2mg P/kg (CaCl2) up to 

478.4 mg P/kg (aqua regia), the latter of which is of very little practical use, as most of it will be 

inaccessible for plants (Rayment, 1993;Gassner et al., 2002). 

The results of many extraction methods co-vary to a high degree, as the differences, chemically 

seen, can be very small. The same extractant may be used in different concentrations, or soil to 

extractant ratios, extraction times and extraction temperatures may vary. Extractants belonging 

to the same category will commonly yield highly related results (Houba et al., 1996;Mason et al., 

2010). There is no uniformity, globally nor locally, concerning extractants and extraction 

methods used in soil analysis. In 1863 a commission of agricultural chemists was appointed in 

Germany to settle on uniform methods for soil analyses. They did not succeed, mildly put, as 

now, 150 years later, the analytical processes employed still vary widely between countries and 

even regions. As an example, to test for plant available P in soil, Fixen and Grove (1990) list 12 

different extractants, which are all commonly used in soil test laboratories. There are a number 

of reasons for this. During 1930 – 1970, a large number of analytical methods were developed by 

individual research workers, with little or no co-ordination (Houba et al., 1996). Chemical and 
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physical characteristics and problems of soils may have wide spatial variation, and test methods 

were generally optimized for local soil conditions of the developing research worker. 

Laboratories tend to prefer quick and cheap tests in order to be able to compete on prices, and 

finally there is an ongoing quest to improve analytical methods, which is in many ways very 

positive. It does, however, all in all result in a huge variation in methods employed, which makes 

meaningful exchange of information and experiences across national or regional borders very 

difficult (Rayment and Lyons, 2012). 

Using one single extractant for analysis of all or most relevant nutrients would save much time in 

the individual laboratories, and uniformity of methods both locally and globally would ensure a 

broad base of experience on which to base advice concerning fertilization needs for various 

crops on various soil types. The results from using such an extractant should have well 

established relations to the plant available portion of nutrients, i.e. to the crop response, to be 

of any practical use for plant producers. Extractants should be cheap, safe to use and easy to 

dispose of, and using as few extractants as possible for a complete assessments of relevant 

nutrient concentrations is desirable. Finally, a good soil extractant must be suitable for a wide 

range of soil properties, concerning texture, pH, organic content etc.  (Houba et al., 1996;Jones 

Jr, 1998). As simple procedures as shaking samples with extractants may influence results, and 

standardization of such, presumed, minor issues would be important for comparability between 

laboratories. Even between laboratories using identical extractants and standardized methods, 

assessments of soil pH in the exact same samples have been found to deviate strongly, 

emphasizing further needs for standardization of protocols (Rayment, 1993).  

Like extraction, also analysis of soil extracts may be done using numerous methods and 

techniques. Titration and colorimetric procedures have been much used historically, but since 

the 1990’s, use of automated methods has increased rapidly, especially favoring the multi-

elemental analysis methods Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-

OES), also known as ICP-Atomic Emission Spectroscopy (ICP-AES), and – Mass Spectrometry (–

MS). Atomic Absorption Spectroscopy (AAS) has also been used for a long time, and with newer 

instrumentation this method is effectively close to being multi-elemental as well. These methods 

will be reviewed more closely in section 3.4. Also automated colorimetric techniques, using 

either Segmented Flow Analysis (SFA) or Flow Injection Analysis (FIA), are commonly used and 

yield results rapidly, free from most soil matrix interferences and with a high sensitivity 

(Hettiarachchi and Gupta, 2008;Maynard et al., 2008;Ziadi and Sen Tran, 2008). 

With the introduction of multi-elemental analytical techniques, the suggestion to replace the 

many different extractants with one single to analyze for all, or most, essential plant nutrients 

seems obvious. CaCl2 has been proposed for determination of soil fertility as well as plant 

available concentrations of heavy metals (Houba et al., 1996). The Mehlich-3 extract, a mixture 

of acetic acid, ammonium nitrate, ammonium fluoride, nitric acid and EDTA, was developed also 

to extract essential plant nutrients, and good correlations to commonly used methods for soil 

analysis e.g. in Australian sugarcane production have been demonstrated (Ostatek-Boczynski 

and Lee-Steere, 2012). As a curiosity, Coca Cola® has been shown to work very well as an 

extractant for micronutrients (Fe, Cu, Zn and Mn) in soil. Specific advantages of Coca Cola® as 

compared to other extractants are the low price, the ubiquitous accessibility, even in the 

remotest parts of the world, high safety during handling and ease of disposal (Schnug et al., 

1996). 



14 
 

Though new methods enable much more rapid analyses, in a few cases there are worries 

concerning the outcome. Colorimetric methods especially for P have been found to correlate 

poorly to ICP results, and no clear explanation for this has been found yet. It is speculated that 

colorimetric methods primarily measure ortho-phosphate, whereas the ICP measures both 

inorganic and organic P (Ziadi and Sen Tran, 2008).  

An additional advantage of using a single extractant for all nutrients is that an overall picture of 

the soil fertility in a field is more likely to be obtained, as analyzing for a larger number of plant 

nutrients would only increase costs marginally. Plant nutrient antagonisms, meaning 

competition in uptake mechanisms in the rhizosphere or within the plant metabolism, can be 

discovered in a multi-elemental analysis. Antagonisms may lead to secondary nutrient 

deficiencies in plants, as e.g. severe Mg deficiency in tomato and kiwi caused by providing 

excessive levels of K in the growth medium. Reversely, too high levels of Mg can lead to severe K 

deficiency. In pastures, the Mg - K antagonism may cause grass tetany in cattle, a potentially 

lethal, acute Mg deficiency (Romheld and Kirkby, 2010). Also Mn uptake has been shown to 

interact with Mg uptake. Effects of high levels of K and Mn, however, are non-additive, 

indicating that all three ions do not compete for the same site (Heenan and Campbell, 1981). 

The form of N supply may affect uptake of other nutrients. The cations K, Ca, Mg and Na are 

taken up in higher amounts when NO3-N is provided, an effect which is ascribed to NO3
- acting as 

a counterion. For P, in the form of the anion PO4
3-, the opposite effect occurs, as concentrations 

are lower when plants are provided NO3-N compared to NH4-N (Kurvits and Kirkby, 1980). It is, 

thus, evident that knowledge concerning levels and interactions of a number of nutrients is a 

prerequisite for efficient nutrient management. 

2.1.4 Correlation to Plant Nutritional Status 

The most severe drawback of the traditional soil analyses is the lack of correlation between 

extracted concentrations of nutrients using commonly applied methods and the actual plant 

available portion. As mentioned, many methods are developed specifically for use under certain 

soil conditions, why combining various soil types in an investigation may lead to a complete loss 

of relation between extracted nutrient concentrations and concentrations in the crop. This was 

demonstrated in a meta-study of trace elements, where the correlation between metal 

concentrations in plant leaves of various species and extracted concentrations in soil was poor 

or even non-existing (Menzies et al., 2007). For P, a lack of correlation is exemplified in Figure 4 

by plotting early dry matter yield against Colwell P, the most common P extraction method in 

Australia. This method uses, like Olsen-P, 0.5M NaHCO3 as the extractant (Mason et al., 2010). 
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Figure 4. Dry matter yield of wheat at early stage, relative to a calculated maximum, plotted 
against Colwell P extraction results. From Mason et al. (2010). 

No correlation was found at all between extracted P and early dry matter yield when collating 

data from different soils, as the amount of extracted P is highly dependent on soil characteristics 

as pH and soil contents of organic matter, clay and sand. This complicates the use of the results 

for general testing purposes (Bell et al., 2005;Debnath et al., 2010). In other words, the exact soil 

fertility is very often not assessed through traditional soil testing methods. 

Despite the awareness of the challenges related to common soil analysis, a radical change has 

yet to come. Deciding on a single extractant is not delayed by lack of candidate extractants, 

rather because traditions play a major role, and one single extractant has not been able to outdo 

other. Standardization of traditional methods of soil analysis might not happen, as a new 

method using a completely different approach shows promising results regarding correlation to 

the plant accessible fraction of several nutrients.  

2.1.5 Newest Developments in Soil Analysis 

A very promising new method for soil analysis is the Diffusive Gradients in Thin films (DGT). It is 

still not used routinely in practical agriculture, but it is widely used in research areas such as 

geochemistry, water quality monitoring and assessment of plant available nutrients in water and 

soil (Davison and Zhang, 2012). The DGT consists of an ion-exchange resin gel covered by an ion-

permeable, diffusive, gel membrane and a protective filter, which separates the resin from the 

bulk solution, e.g. soil. The DGT is sketched in Figure 5. As long as the resin is not saturated, it 

functions in principle as an infinite sink, and the concentration at the resin gel surface is 

maintained around zero. This leads to the formation of a concentration gradient through the 

diffusive layer, CDGT, and of a depletion zone mimicking that of the rhizosphere. The DGT, hence, 

mimics plant uptake of nutrients limited by diffusional supply, such as P, Cu and Zn (Tandy et al., 

2011). 
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Figure 5. Overview of the components in the DGT. CDGT is the concentration gradient of a given 
nutrient from the soil solution into the DGT. From Mundus et al. (2011). 

After a given deployment time, the ions in the resin gel are eluted, and the nutrient 

concentration is determined. Deployment time may vary from 1 hour and up to as much as 3 

months in aqueous solutions. In soil, deployment times from hours and up to a few days are 

most common (Zhang and Davison, 1995;Nowack et al., 2004;Tandy et al., 2012). In pot trials, 

nutrient concentrations determined by DGT have been shown to estimate plant available 

concentrations of Cu, Zn, P and the contaminant Pb very well (Tandy et al., 2011;Agbenin and 

Welp, 2012). Arsenic availability was successfully determined in another greenhouse 

experiment, showing strong potential for assessment of the risk of cultivating polluted soils 

(Cattani et al., 2009). Promising results have also been obtained for measuring plant available K 

concentrations, though further improvement of this method is still needed (Tandy et al., 2012). 

An extensive field study in Australia documented the DGT accuracy in assessment of plant 

available P for wheat cultivated in a wide variety of soils (Mason et al., 2010). Thus, DGT has 

proven effective for assessment of plant available concentrations of a number of nutrients in 

soil, and testing and refining of the methodology takes place at a high pace just now, judging 

from the number of peer-reviewed papers from the last 2-3 years. However, problems still 

reside with certain nutrients, as e.g. Mn where plant availability depends on redox state. Only in 

anaerobic conditions, where Mn is in the plant available form of Mn(II), an acceptable 

correlation was obtained between DGT measurements and plant tissue concentrations. What 

would be really useful is a method able to handle both aerobic and anaerobic conditions 

(Mundus et al., 2012). 

Visual, Near Infrared and Mid Infrared spectroscopy (Vis, NIR and MIR) have been introduced 

successfully for determination of several soil characteristics. Visual light is defined as light of 

wavelengths between 400 and 700nm, NIR is light of wavelengths between 700 and 2500nm, 

and MIR light has wavelengths between 2500 and 50,000nm. The reflectance or transmittance 

of Vis, NIR and MIR light contains information about the molecular composition and particle size 
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distribution of a sample, as molecular movements interact with the light. There is no direct 

information about atomic concentrations in the light spectra, why parameters that have been 

predicted successfully using these methods are mainly physical, not chemical. Vis-NIR has 

resulted in predictions with high accuracy of CEC, sand, silt, clay and total C and N, which are 

correlated to other soil constituents, with success, whereas predictions of specific nutrient 

concentrations were largely unsuccessful (Chang et al., 2001;Sorensen and Dalsgaard, 2005). 

Comparisons of prediction performance of Vis-NIR and MIR have concluded that MIR is superior 

for pH, CEC, clay, sand, silt and organic C. This may be explained by the higher intensity and 

specificity of the signal in the MIR area as compared to NIR (Pirie et al., 2005;Rossel et al., 2006). 

The major advantages of spectroscopic soil analysis are the potential use in situ and the fact that 

several properties can be determined from one measurement, i.e. one spectrum. Compared to 

laboratory analysis, there is a significant reduction in costs once the equipment has been 

acquired. No extractants are needed, and handling is completely safe (Du and Zhou, 

2008;Nduwamungu et al., 2009;Du and Zhou, 2011). 

2.2 Plant Elemental Analysis 

Plant elemental analysis traditionally provides knowledge about the nutrient concentration of a 

plant. The concentration of nutrients in a given plant part may provide a measure of the plant 

nutritional status up front, and the question of plant availability of nutrients in the soil is 

circumvented (Parks et al., 2012). In other words, “the patient” is examined rather than the 

environment of it. Acute disorders as well as, in some cases, latent disorders may be revealed by 

gauging plant material, whereas this is not possible using soil analysis. If a specific disorder is 

suspected, plant analysis may, hence, bring about the “proof”. 

In Denmark, the use of plant analysis in horticultural production is much more common than in 

agriculture (M. Bojesen, personal communication, 2013). As mentioned in section 0, soil analysis 

will often be useless for woody and perennial species, but another reason for the more 

widespread use of plant analysis in horticulture may be that secondary deficiencies are more 

prevalent here. Secondary deficiencies are caused by inadequate translocation of nutrients to 

plant organs, rather than actual nutrient shortages in the growth medium. Examples are blossom 

end rot in tomato and bell pepper, tipburn in Chinese cabbage and bitter pit in apple. Analyzing 

for nutrient concentrations in specific plant parts can be of assistance to avoid these disorders. 

The concentrations of nutrients in plant material in pasture and other forage crops are also 

commonly analyzed, as these are of major importance to animal nutrition (Römheld, 2012). One 

barrier to the increased use of plant analysis is the price versus the perceived value by farmers 

(L. Knudsen, personal communication, 2012). From the laboratories, much has been done to 

increase the value of plant analysis, and it is now possible to obtain results from a plant analysis 

in some cases already the same day as the laboratory receives the plant sample. Previously a 

processing time of up to two weeks could be found, potentially causing major yield losses if any 

action should have been taken. Prices are still relatively high compared to soil analysis but have 

declined significantly during later years. This has caused the use of plant analysis to increase 

slightly in recent years. Plant elemental analysis covers a range of methods analyzing the 

nutrient status of specific parts of crops. In practical agriculture, ICP-OES is widely used, and also 

AAS is common. The more sensitive ICP-MS is predominantly used in science, as the increased 

sensitivity is superfluous for most agricultural applications, it is more complicated to operate and 
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both acquisition and running costs are significantly higher. Section 3 describes and discusses the 

various analytical techniques in more detail. 

The relation between plant availability of a given nutrient and yield or biomass production of the 

plant is generally described by the Mitscherlich curve (Figure 6). 

 

 

Figure 6. Mitscherlich curve showing relative, potential yield as a function of plant availability of 
a given nutrient. The dark grey rectangle indicates severe deficiency of the nutrient, resulting in 
visual leaf symptoms. The medium grey square indicates the area of hidden or latent disorder, 
where yield is reduced, but no visual leaf symptoms occur. The light grey rectangle indicates 
ample and excessive supply, ultimately resulting in reduced yields due to toxicity. 

At very low levels of plant availability of an essential nutrient, the plant will develop visual leaf 

symptoms, enabling diagnosis of the disorder by simple inspection, indicated by the dark grey 

rectangle in Figure 6. The light grey area shows excessive fertilization, ultimately resulting in 

toxicity. Providing nutrients in an amount resulting in the highest possible yield without over-

fertilizing is extremely difficult. Often a slight over-fertilization or hidden nutrient deficiency 

(medium grey square in Figure 6) occurs even in well-managed farmlands; situations that the 

plant producer is in effect unable to discover without the assistance of advanced, analytical 

methods. 

Slight variations in the shape of the Mitscherlich curve may occur when analyzing specific plant 

parts or focusing on specialized situations (Reuter et al., 1997). One of the most notable of these 

is the Piper-Steenbjerg effect, depicted in Figure 7. 
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Figure 7. Mitscherlich curve including a Piper-Steenbjerg effect at the lowest yields, indicated by 
the grey rectangle. After Smith (1962). 

At very low nutrient concentrations in plant tissue, a transient, negative correlation between 

plant yield and plant nutrient concentration, called the Piper-Steenbjerg, effect may arise. It is 

caused by an incongruity between biomass production and uptake rate, leading to a net drop in 

tissue concentration (Wikstrom, 1994). 

2.2.1 Critical Concentration Thresholds 

Plant elemental analysis is traditionally carried out as an analysis of the concentration of one or 

several nutrients in a specific plant part. This value is compared to a table of critical 

concentration thresholds or, more commonly, sufficiency ranges to determine whether the crop 

is adequately supplied or fertilization is necessary. The critical concentration threshold is defined 

as the lowest concentration of a nutrient required for optimal growth and maturation (Ulrich, 

1952), and the sufficiency range is simply the concentration range at which plants are 

adequately supplied. Much effort has been put into defining critical concentration thresholds or 

sufficiency ranges of essential nutrients for all the different cultivated crops, and the results can 

be found in large tables as for instance in Reuter et al. (1997). Values are consistently re-

evaluated, and assisting parameters for improved correlation to plant nutritional health are 

developed. 

Especially for macronutrients, good correlations are found between plant concentrations and 

plant nutritional status, typically measured by yield or biomass. One example of this is provided 

in a series of experiments concerning S concentrations in corn and sugar beet and their relation 

to final yields. Though crops were cultivated on a large variety of soils, S concentrations 

correlated very well to yields, along a Mitscherlich curve (Figure 8). It was furthermore possible 

to determine a common critical concentration threshold for each species (Hoffmann et al., 

2004;Pagani and Echeverria, 2011). Combining total S concentrations with the N:S ratio has been 

suggested to increase the power for assessing nutritional status, and thereby fertilizer needs, 

during vegetative growth of wheat (Reussi et al., 2011), however, no improved results were 

obtained by including this ratio in an analysis of corn (Hoffmann et al., 2004). 
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Figure 8. Relative total dry matter per sugar beet plant at harvest versus S concentration in 
young leaf blades. From Hoffmann et al. (2004). 

Factors such as species, genotype, plant age and plant part influence critical concentration 

thresholds, very often to significant degrees (Lewis et al., 1993;Nabi et al., 2006). General 

differences in nutrient requirements may be found between groups of plants. For example, 

dicotyledonous species need significantly higher Ca concentrations than monocots to obtain 

maximal growth rates. This is illustrated in Figure 9, using tomato and ryegrass as 

representatives for the two classes. 

 

Figure 9. Relative growth rate plotted against plant Ca concentration. Data derive from 
Loneragan et al. (1968) and Loneragan and Snowball (1969). 

Due to these clear variations in nutrient needs, threshold values or sufficiency ranges are 

specified for each plant species. It is also commonly indicated to which plant part the values 
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apply. In wheat, Zn concentration thresholds have been shown to vary by more than 300% 

between plant parts, from 10.5mg/kg dry weight (DW) in the stem up to 34.1mg/kg DW in the 

ear, making such specifications absolutely essential (Dang et al., 1993). The differences between 

concentrations in various plant parts are relatively consistent at adequate Zn levels, as shown in 

Figure 10. 

 

Figure 10. Relative whole top biomass yield plotted against Zn concentrations in different plant 
tissues of wheat. Calculated critical Zn concentrations are indicated by vertical lines. Data from 
Dang et al. (1993) 

The physiological age of a plant or plant part affects nutrient concentrations to a considerable 

degree; after nutrient supply this is the single factor affecting nutrient concentrations the most 

(Römheld, 2012). As plants approach maturity, the nutrient demand for new growth declines, 

why critical deficiency thresholds on a whole-plant level decrease for most nutrients, with Ca, B 

and Mn as the exceptions (Hill et al., 1979;Römheld, 2012). A simple dilution effect can also 

occur due to the increased total biomass. The relation between age and critical deficiency 

thresholds has been demonstrated by Reuter et al. (1981) (Figure 11). 



22 
 

 

Figure 11. Critical Cu concentrations (µg/g) in subterranean clover as a function of plant age. 
Data derived from Reuter et al. (1981). 

It is clearly seen in the figure, that where the critical Cu concentration declines rapidly as the 

plant ages, the youngest, fully developed leaf (YFDL) has an almost stable value throughout the 

growing period. For nutrients of low phloem mobility, selecting the YFDL for analysis is therefore 

an obvious choice. Concentrations of nutrients with high phloem mobility may show less 

variability in the YFDL due to remobilization. However, concentrations in older leaves will also be 

affected by the remobilization, and with increasing leaf age also comes an increasing risk of leaf 

damage caused by biotic or abiotic stresses. Therefore, the YFDL is the common, and general, 

choice of plant part for analysis. 

Not only factors within the plant affect critical concentration thresholds; also soil characteristics 

and climatic conditions may be of importance. During sampling of plant material, even air and 

soil temperatures, plant turgidity and time of the day may influence the results. In perennial 

crops also seasonal fluctuations occur, though these may be handled by proper sampling 

procedures. For micronutrients, concentrations are often so low that using concentration 

thresholds can be very difficult. Minor measuring errors or effects from e.g. genotype or climate 

that have not been accounted for may lead to false conclusions. In a study in wheat and cotton, 

no significant differences between Cu concentrations in leaves of Cu deficient and Cu sufficient 

plants could be found (Rao and Ownby, 1993). Supplementing total nutrient analyses with other 

diagnostic methods when possible can therefore be a great advantage, especially for 

micronutrients. Manganese deficiency is easily diagnosed by measuring the Fv/Fm value of 

chlorophyll fluorescence. Relating Fv/Fm values to total Mn concentrations in youngest, fully 

developed leaves however is not strictly linear, supporting the use of a method based on 

physiological functionality rather than on simple concentrations (Schmidt et al., 2013). Such 

alternative methods are unfortunately not available for all micronutrients at present. 

In practice, plant analysis today is used to confirm, or disprove, suspicion of nutrient disorders, 

and in case of poor growth, it will typically be part of an investigation of possible reasons. 

Routine plant analysis used as a guidance tool for fertilization is less common, but as costs 
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decrease and awareness of the advantages increases, the use of plant analysis in practical 

agriculture is likely to intensify. 

2.2.2 The Diagnosis and Recommendation Integrated System 

The Diagnosis and Recommendation Integrated System (DRIS) has a different approach to 

assessing fertilizer needs than using critical concentration thresholds or sufficiency ranges alone. 

DRIS is based on ratios between nutrient concentrations, in its most advanced form even 

including interactions with and between soil composition, farming practices and any other yield 

influencing variables about which information can be obtained. The calculated indices are 

related to yield, thereby developing a complicated system to assess whether crops are well 

balanced with respect to nutrients and possibly also other factors (Sumner and Beaufils, 1975). 

Due to the use of ratios, the DRIS to some extent avoids the problem of critical concentration 

thresholds being interdependent. The indices have been shown to be generally applicable for a 

given plant species, irrespective of age or time of sampling. No differentiation of indices in 

relation to cultivars was necessary in cotton (Singh et al., 2012), but ratios including P 

concentrations were found to differ highly between wheat genotypes (Yaseen and Malhi, 2009). 

Also the region of cultivation has been found to influence DRIS (Römheld, 2012). 

The disadvantage of DRIS is first of all the vast data collection necessary; both during 

development of the system and when using it. This makes it relevant mainly for high value crops, 

such as tree fruits, or other perennial cropping systems, e.g. sugar cane, where a crop is 

cultivated for several years in the same field (Sumner and Beaufils, 1975;Raghupathi et al., 

2004;Raj and Rao, 2006;Srivastava and Singh, 2008). 

2.2.3 Plant Ionomics 

As advances in analytical chemistry have made plant analysis much faster and more exact, new 

perceptions on how to use the results arise. The traditional view based on the “Law of the 

Minimum”, where one nutrient is considered at a time, has been challenged repeatedly since 

the late 1980’s (Ingestad, 1987;Parent and Dafir, 1992;Parent et al., 2013), and where DRIS is an 

attempt to include elemental interactions in a diagnosis system, awareness that this might not 

be a satisfactory approach is rising (Parent et al., 2013). 

The ionome of a plant or plant part consists of all the elements contained in it, including 

essential, beneficial and, in some definitions, even toxic elements (Salt et al., 2008;Baxter, 2009). 

The elemental homeostasis of the plant ionome is controlled by a huge network of interactions 

between the different elements, a subset of which is presented graphically in Figure 12 (Baxter, 

2009). Experiments that focus exclusively on one or a selected few elements will not be able to 

reveal any of these interactions, why diagnostic systems derived from these results will be 

sensitive to alterations in the factors previously discussed. Predicting elemental interactions in 

this giant network based on theoretical assumptions will in most cases not be possible based on 

the knowledge we have today, as the majority of the genes involved in ionome regulation are 

still unknown. The exception is elements that are chemically alike and therefore able to compete 

for uptake and transportation mechanisms (Baxter, 2009;Singh et al., 2013). Instead the 

elemental interactions must be determined experimentally; an approach which is becoming 

more feasible with the developments in multi-elemental analytical methods as well as easily 

accessible programs for multivariate data analysis. 
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Figure 12. Genetic, physiological and chemical interactions between elements; essential, 
beneficial and toxic elements are included. Only a subset of known elemental interactions is 
presented in this figure, and unknown interactions are likely to exist as well. From Baxter (2009). 

Recently it has been speculated that including concentrations of a large number of nutrients may 

not even be enough to obtain the best overview of plant nutritional status. The raw 

concentration data are biased, as they heavily depend on scale and on the denominator for 

nutrient concentrations, i.e. for instance fresh or dry matter. If any of these change, the 

conclusions of an ionomic analysis may do the same. By mathematical transformation of the raw 

data or correlations between them, scale-independent data material results, and more stable 

conclusions can be drawn (Parent et al., 2013). It is further suggested that the figure of a barrel 

filled with water, commonly related to the Law of the Minimum, be changed into a mobile, as 

shown in Figure 13.  
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Figure 13. A Mobile at mass equilibration point illustrates four hierarchically nested balances that 
represent a subspace of nutrients in the ionome. From Parent et al. (2013). 

According to this proposition, inter-dependent nutrients as e.g. K and Ca should be somehow 

connected, meaning that they are placed on either side of a balance point. The mobile concept 

captures nutrient interactions and adjusts nutrient balances according to changes in single 

nutrients, thereby providing an overview of the whole plant ionome. Imbalances will be 

apparent, as the mobile will be unbalanced at higher or lower levels (Parent et al., 2013). 

An overview of the plant ionome will enable diagnosis of physiological and biochemical changes 

within the plant, and using ionomics, biomarkers for nutrient imbalances as well as other biotic 

and abiotic stresses may be found. In addition, it may serve as a cheaper and faster method for 

phenotyping mutants compared to genome sequencing. With the rapid developments in multi-

elemental analytical equipment, this is a research area that attracts growing attention (Salt et 

al., 2008). 

3 Methods of Plant Elemental Analysis 
Since the concepts of plant nutrition were founded, much effort has been put into developing 

methods for diagnosing nutritional disorders. As discussed, this is usually done by determining 

the nutrient concentrations in plants or plant parts, but alternative methods based on secondary 

indices are increasingly gaining foothold. At present, methods for fast, spectroscopic analysis are 

being developed to provide rapid (from a few minutes down to immediate), cost-efficient (in 

some cases effectively no cost per sample after acquiring the equipment) and accurate analyses 

at early stages of nutrient deficiencies. The following is a brief review of methods used 

historically in science and agriculture followed by state-of-the-art techniques for determination 

of total nutrient concentrations in plants. Finally a thorough introduction to the newest methods 

for fast, spectroscopic analysis is given. 
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3.1 Visual Inspection 

A pronounced deficiency of any essential plant nutrient causes specific, visual symptoms, which 

are recognizable by a trained person. The identification of these symptoms is a very basic and 

straight-forward competence for any plant producer or plant scientist. It can be done directly in 

the field, without using any equipment, completely independent from laboratories and hence, at 

no cost. 

The appearance of visible symptoms of a nutrient deficiency is associated with the physiological 

function of the nutrient. All nutrients have several functions in plant metabolism, but the 

dominating function typically expresses the strongest phenotype during deficiency, and leads to 

the first, visual symptoms. An example of pronounced Cu deficiency, “white tip disease”, is 

shown in Figure 14. Copper is essential for the lignin biosynthesis, why a pronounced deficiency 

in the vegetative phase leads to wilting of leaf tips in cereals, as cell walls collapse (van 

Maarschalkerweerd et al., 2013). 

 

Figure 14. Pronounced Cu deficiency in barley leaf (bottom), compared to healthy control plant 
(top).From van Maarschalkerweerd et al. (2013). 

Stratification of the symptoms relates to phloem mobility. Nutrients with high phloem mobility 

are re-translocated from the oldest leaves to the youngest in case of a deficiency, resulting in 

visible leaf symptoms appearing first in the older leaves. Deficiency symptoms of nutrients with 

low phloem mobility generally occur first in the newest growth, which in this way characterizes 

the “present” nutrient availability situation. An overview of phloem mobility of the essential 

nutrients is found in Table 1.  Generally, the macronutrients, with the exception of Ca and S, are 

highly mobile in the phloem. A concentration of only a few µM Ca in phloem sap would cause 

clogging of the sieve plates due to increased callose formation and subsequent swelling, why the 

concentration must be kept low (White, 2012). This phloem immobility of Ca is what makes it a 

major trigger of secondary deficiencies, as transportation into non-transpiring tissues with the 

xylem stream is low. Visual S deficiency symptoms occur first in new growth, indicating phloem 

immobility, but it has been demonstrated that during development of new leaves at adequate S 

supply, soluble S is extensively remobilized from mature leaves (Anderson, 1996). Sulphur is 

therefore classified as an intermediately phloem mobile nutrient. Micronutrients are considered 

at the least intermediately phloem mobile, with the exceptions of Mn and B. Boron is usually 

phloem immobile, but in sorbitol-producing species of Pyrus, Malus and Prunus genera, B has 

been shown to have high phloem mobility. This has been suggested to be due to the formation 

and transportation of stable B-sorbitol complexes in planta (Brown and Hu, 1996). Boron is 

therefore placed in two categories in Table 1. In some cases, Ni has also been found to be highly 

phloem mobile. The exact mechanisms causing these differences between mobility of 

micronutrients have not yet been described (Page and Feller, 2005;Riesen and Feller, 2005). 
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Table 1. Phloem mobility of essential elements. From (Anderson, 1996;Brown and Hu, 1996;Page 
and Feller, 2005;Riesen and Feller, 2005;White, 2012). 

Phloem Mobility 

High Intermediate Low 

N (amino-N) S Ca 
P Fe Mn 
K Cu B 

Mg Mo  
Cl Zn  
[B] Ni  

 

A number of situations may blur an otherwise straightforward, visual diagnosis of nutrient 

deficiencies. If multiple deficiencies occur simultaneously, one symptom may dominate over 

another, leaving the latter undetected, or a mixture of symptoms occurs. In other situations, 

nutrients may be interdependent. For example, Mo is a constituent of both nitrate reductase, 

required for assimilation of soil nitrate, and nitrogenase, which is essential for symbiotic N 

fixation. Thus, Mo deficiency will result in visual symptoms of N deficiency, though sufficient 

amounts of N may be available to the plant (Skarpa et al., 2013). Finally, visual symptoms of 

deficiency will often be influenced by, and sometimes confused with, varying degrees of other 

biotic and abiotic stresses such as drought, flooding, insect attacks or diseases (Grundon et al., 

1997). 

As a basic method for low-income smallholders, visual detection is the main tool to assist in 

management of the often sparse input resources available. However, the late appearance of 

distinct, visible symptoms may cause substantial yield losses, as it will often be too late to 

correct the problem within the same growing season. Thus, visual diagnosis is insufficient for 

supporting nutrient management in intensive, modern agriculture. 

3.2 Gravimetric and Colorimetric Analysis 
Gravimetric and colorimetric analyses were among the first methods to be developed for 

determination of nutrient concentrations in plant tissue. Both types are single-element methods, 

determining one element at a time. In gravimetric analysis, the mass of an analyte or a 

derivative of the analyte is determined. An example is the conversion of sulphur into sulphate 

through combustion, followed by precipitation of the sulphate as barium-sulphate. The 

precipitate is dried and weighed, and the sulphur concentration in the original material is 

calculated on the basis of this. The gravimetric methods are rarely used today, as already some 

80 years ago, the methods were known to be inconvenient and very often imprecise, even in 

experienced hands (Piper, 1944).  

In colorimetric analysis, a chemical reaction is carried out between the analyte and a reactant, 

yielding a colored substance, a chromophore, either directly or by one or more subsequent 

reactions. The resulting color is compared to standard solutions or determined using a 

spectrophotometer and plotted on a dilution curve (Bromfield, 1987;Anjos et al., 2009). A 

commonly used colorimetric method is the determination of nitrate by reduction to nitrite 

followed by conversion to nitrous acid, which triggers reactions leading to the synthetization of a 

red-violet azo dye (Alves et al., 2000). Colorimetric methodologies are implemented in simple 



28 
 

test strips developed for a large number of plant nutrients including N, S, K, Mg, Cu and Fe, each 

in one or more molecular organizations (Millipore, 2013). These strips are for use in water or 

solutions, limiting the use in plant analysis, but they do offer a fast, in-situ and low cost method 

for semi-quantitative assessment of nutrient concentrations in turgid crops. In potato and leafy 

vegetable crops, K+ and NO3
- are commonly analyzed for using test strips in plant sap. This is 

collected by pressing petioles manually or using simple equipment directly after sampling, or 

alternatively by homogenizing and filtering petioles and in some cases whole or part of leaves 

(Errebhi et al., 1998;He et al., 1998;Bantan et al., 1999;Hartz, 2007;Parks et al., 2012).  

For both gravimetric and colorimetric methods, it is crucial to be aware of the specificity of the 

methods, and whether the complete amount of analyte takes part in the chemical reactions, as 

residuals are unlikely to be detected. For colorimetric methods, the sensitivity may not always 

suffice, especially considering nutrients in low concentrations (Chapman et al., 1996). 

3.3 Enzyme Assays 

A number of correlations have been found between nutrient deficiencies and activities of 

specific enzymes, and test kits to use in the field or on the farm have been developed (Barakiva 

and Lavon, 1968; 1969;Barakiva et al., 1969). The enzymatic tests are carried out by infiltrating a 

leaf disc or a processed leaf solution with a solution containing the nutrient in question and 

monitoring the change in enzyme activity afterwards. A deficient plant sample will show 

increased activity, as the missing nutrient is provided. Though apparently a simple technique, 

the procedure described by Barakiva and Lavon (1969) includes maceration, filtration and 

several turns of centrifuging with addition of various substrates in between each, which 

decreases the convenience of the method substantially. Delhaize et al. (1982) developed a field 

test for detecting Cu deficiency in subterranean clover, but this method also suffers from being 

time consuming as well as complicated to operate. Supporting this conclusion, the bulk of 

literature on enzyme assays derives from the late 1960’s to the beginning of the 1980’s, and no 

enzymatic test kits are, to the knowledge of the authors, commonly used for diagnosing plant 

nutritional disorders today. 

3.4 Atomic Spectroscopy 

The most frequently used methods for plant analysis are at present based on atomic 

spectroscopic analysis. A vast number of methods are found in this field, with numerous 

variations and combinations. Here, an overview of the most commonly used methods, Flame 

ionization – AAS (F-AAS), Graphite Furnace – AAS (GF-AAS), ICP-MS and ICP-OES, is given. 

Atomic spectroscopy aims at detecting the exact, atomic concentrations in a sample. The actual 

analysis is swift, and multi-elemental measurements may be obtained by ICP-OES and –MS. 

Atomic absorption spectroscopy is single-elemental, but newer instruments provide rapid shifts 

between detected elements, meaning that multi-elemental performance is approached. In 

general terms, the techniques consist of three steps: Digestion, ionization and detection. During 

sample digestion, dry, ground sample material is broken down into inorganic, soluble ions. This 

can be tedious and introduce error into the measurements, why mastering this step is just as 

important as the analysis itself. Digestion is followed by a complete ionization, which allows 

sample introduction into the analytical instrument. Finally, elements are detected based on 

either light absorption (AAS), light emission (-OES) or mass to charge ratios (-MS).  
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There are major differences between the atomic spectroscopic techniques in accuracies, 

detection limits, costs and required skills for operation. A brief comparison of the methods is 

given in Table 2. For a plant producer, they are all methods that require the assistance of a 

laboratory. This means relatively high costs per analyzed sample, and in case of an acute 

nutrient disorder, precious time may be lost during transport, handling and analysis of samples. 

Nevertheless, as discussed in section 2.2, plant analysis using these techniques is employed and 

promoted in modern agriculture for fertilizer optimization purposes, due to the high accuracy of 

the results, which relate to present nutrient status of the crop. 

Table 2. Schematic, generalized comparison of F-AAS, GF-AAS, ICP-OES and ICP-MS (Mermet and 
Poussel, 1995;Thermo, 2013). Detection limits are displayed for Ni+, the least abundant essential 
element in plants. Huge variation in these figures can be found in literature, why these are 
merely indications of magnitude. 

 F-AAS GF-AAS ICP-OES ICP-MS 

Multi-/single element Single Single Multi Multi 
Acquisition costs 1x 2x 3x 5-10x 
Running costs Low Medium High Highest 
Sample input Digested liquid Solid, slurry or liquid Digested liquid Digested liquid 
Dynamic range 10

3
 10

2
 10

6
 10

8
 

Detection limit (Ni
+
, ppb) 100 0.1 5 0.001 

 

3.4.1 Sample Digestion 

To prepare samples for introduction into atomic spectrometers, they have to be digested. The 

digestion process degrades organic material, which can block the sample introduction system, 

and results in a sample containing only inorganic, soluble ions. Any residual organic C may cause 

analytical problems such as plasma instability (in ICP instruments) and polyatomic interferences, 

why an efficient digestion process is of utmost importance (Husted et al., 2011). 

Digestion may be carried out as wet digestion or dry ashing, also called combustion. In wet 

digestion, samples are digested in an oxidizing and acidic environment. A strong acid, often 

HNO3, works as an oxidant, sometimes in combination with H2O2. The latter is only a weak 

oxidant, but it is able to regenerate HNO3 from NOX and thereby increase the overall efficiency of 

the digestion. Both open and closed vessel methods exist. Open vessels are most prone to 

contamination and loss of analyte, why they are unsuitable for trace analysis. However, they 

allow easy high-throughput, and equipment is relatively low cost, which are great advantages if a 

sufficient quality of the digested sample is obtained. The closed vessel methods provide efficient 

digestion, as samples in an acid, oxidizing environment are heated under pressure, leading to a 

higher boiling point. A common workflow for this is to mix dried, finely ground plant material 

with H2O2 and HNO3. The mixture is heated under pressure, e.g. up to 140°C, in a microwave 

and, after cooling, diluted to an appropriate acid concentration, according to spectrometer 

details (Flores et al., 2007;Hansen et al., 2009). Recently, new closed vessel, wet digestion 

methods have been developed enabling high-throughput digestion of small sample sizes, 1 - 

20mg dry weight plant material, which is down to 4‰ of the amount needed for common 

macroscale digestion (Hansen et al., 2009). This is extremely useful in many scientific 

applications, where sample material may be limited. 
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Dry ashing is the method of choice when digesting samples containing high amounts of carbon, 

such as coal and graphite, or much glycerol, which is used e.g. for stabilization of chloroplasts 

isolated from tissue and cell fractions, as combining HNO3 and glycerol in wet digestion 

constitutes a serious safety risk (Flores et al., 2007;Husted et al., 2011). The decomposition of 

organic material in dry ashing is based on a reaction between the organic material and oxygen at 

high temperatures, or in some cases excited oxygen or oxygen radicals in plasma (Flores et al., 

2007). Oxygen is considered analytically pure, why dry ashing has a very low risk of 

contamination as compared to wet digestion, where strong acids are added to the sample. 

However, if open vessels are used, there is a high risk of analyte loss due to volatilization as well 

as of cross-contamination. Closed vessel procedures for dry ashing have been developed to limit 

this risk, but these systems do not have the capacity for high-throughput. Together with recent 

advances in wet digestion this means that dry ashing is presently used only to a limited extent 

(Flores et al., 2007;Husted et al., 2011). 

3.4.2 Sample Introduction and Ionization 

 Atomic Absorption Spectroscopy 

For AAS, samples are ionized either by flame ionization or by using a GF (F-AAS and GF-AAS, 

respectively). In flame ionization, the liquid, digested sample is sucked into a flame with a 

temperature of 2,000-3,000K. The liquid evaporates, whereas the solids are ionized, and their 

concentration is determined (Harris, 2007). A GF is an electrothermal atomizer in the form of a 

graphite tube in which the sample is placed and heated. Depending on sample and instrument, 

the temperature of the tube may reach up to 3,000 – 3,300K (Bucksci, 2013;PerkinElmer, 2013). 

Liquid, slurry or solid sample material can be placed in the graphite tube without any prior 

digestion step, which is a great advantage of the system. Avoiding the digestion step means 

avoiding a major source of error in the form of sample loss or contamination, as well as a 

significant reduction of time consumption. However, measuring on solid material is complicated, 

and the rate of success is highly dependent on the specific matrix and the desired elements, why 

liquid samples are the most common, especially when connected to AAS (Rodrigues et al., 

2007;Resano et al., 2008). For analysis of plant material, GF is most frequently used for 

determination of concentrations of heavy metals and contaminants such as Pb, Ni, Cu and Cd, 

and samples are often extracted or digested before sampling into the GF. (Jorhem et al., 

2000;Liao et al., 2000;Sun et al., 2008;Araujo et al., 2009). 

Inductively Coupled Plasma 

For –MS and –OES instruments, sample ionization is usually done by ICP. The first step in this 

procedure is the formation of an aerosol from the liquid, digested sample using a nebulizer. The 

aerosol is led into a spray chamber, in which the larger droplets are removed. The resulting fine 

mist, constituting as little as 1-2% of the original amount of sample pumped into the nebulizer, 

then continues further into the plasma (Browner and Boorn, 1984).  

Two types of nebulizers exist; pneumatic and ultrasound. Pneumatic nebulizers come in 

numerous designs, which vary in their ability to handle small sample sizes and solids in the 

sample, in resistance to strong acids or caustic, in gas pressure needed and in obtained precision 

and detection limits. The most common design is the concentric, pneumatic nebulizer. It works 

much like a spray deodorant using the mechanical force of a gas flow, in ICP usually Ar gas, to 

create a fine mist; the aerosol. Ultrasound nebulizers are able to improve detection limits by as 
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much as a factor ten as compared to pneumatic ones, but in return they are significantly more 

expensive (Thomas, 2001e;Gaines, 2005). 

Spray chambers are commonly found in two designs: double pass and cyclonic. The double pass 

design is a tube fitted with a smaller, central tube, and while the aerosol is travelling the length 

of the latter, the larger, and heavier, droplets fall to the bottom due to gravity and are drained 

away. The smallest droplets are forced back through the space between the inner and outer 

tubes and continue to the torch. In the cyclonic design, centrifugal forces are used to separate 

heavy and light droplets before reaching the torch (Thomas, 2001e). 

To create the plasma, a torch, a radio frequency (RF) coil, an RF source and a gas are needed. 

The torch usually consists of three concentric tubes inside each other, creating three “spaces”. 

Between the outer wall and the first inner tube flows the gas that subsequently forms the 

plasma. Between first and second inner tubes is a flow of auxiliary gas and in the innermost tube 

is the sample aerosol and a carrier, or nebulizer, gas. All three gases are usually Ar, but other 

gases or mixtures may be used in some cases. Around the end of the torch is the RF coil, 

powered by the RF source. Alternating current within the coil leads to the creation of an 

electromagnetic field, which is able to strip off electrons from the Ar atoms in the gas. Collisions 

between these electrons and other Ar atoms cause more electrons to be stripped off in a chain 

reaction (Thomas, 2001a). This leads to the formation of a plasma, which may reach a 

temperature of up to 10,000K, and into which the sample aerosol is led. In this heat, remaining 

liquid is evaporated from the sample mist, forming at first very small, solid particles. These solids 

are subsequently turned into a gas, and then atomized. Collisions with electrons arising mainly 

from the Ar gas lead to the formation of positively charged ions, which continue into the 

interface region and further into either the mass spectrometer (in ICP-MS) or the optical 

emission spectrophotometer (in ICP-OES) (Taylor, 2001;Thomas, 2001a;Harris, 2007). 

3.4.3 Detection of Atoms 

Atomic Absorption Spectroscopy 

All free atoms absorb light at specific frequencies. This is exploited in AAS by placing a hollow 

cathode lamp with a cathode made of the analyte element just before the flame or GF. The 

excited atoms sputtered off from the lamp emit light at the exact same frequency as what is 

absorbed by the analyte atoms in the flame or GF. The difference between the intensity of light 

passing around the flame and passing through it therefore defines the absorption, and using a 

calibration curve based on a dilution row, this is related to elemental concentrations in the 

sample (Hanlon, 1998;Harris, 2007). The procedure is repeated for each selected element, with a 

change of lamps. In newer instruments, this change is done smoothly, making the analysis de 

facto multi-elemental. An overview of the experimental setup is given in Figure 15. 
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Figure 15. Overview of the AAS setup using either flame ionization (a) or graphite furnace (b). 
From Thermo (2013). 

The Continuum Source-GF-AAS (CS-GF-AAS) is a newer method, which approaches actual multi-

elemental measurements. The setup resembles that of F-AAS and GF-AAS, but the light source is 

a xenon lamp, which provides high light intensities in the visible and ultraviolet (UV) regions. 

After passing through the GF, the light is grated by a monochromator and subsequently detected 

by a Charge Coupled Device (CCD) array to quantify the amounts and wavelengths of absorbed 

light. In theory, this setup should enable multi-elemental analysis; however, further 

development of the detector is essential to obtain this. At present, the bandwith of the detector 

is <1nm, meaning that only elements with very close absorption lines may be detected 

simultaneously (Resano and Garcia-Ruiz, 2011). 

In AAS, non-metal elements cannot be detected; meaning for instance macronutrients as N and 

S. Heavy metals and transition metals, e.g. Mn, Fe, Cu and Zn, on the other hand are atomized 

and measured very well. For refractory elements, e.g. Mo and B, the flame temperature in F-AAS 

is not high enough to break down compounds of these elements. In GF-AAS, the slightly higher 

temperature combined with the longer residence time improve detection limits by as much as a 

factor 1000 as compared to F-AAS in some cases. However, for refractory elements, 

performance is still limited (Thermo, 2013). 
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Optical Emission Spectroscopy 

The basis for the OES technique is the excitation of an electron from an atom or an ion to a 

higher level of energy. During the following return to their ground state (relaxation), light is 

emitted at wavelengths characteristic for each element. Directly after sample ionization in the 

plasma, ions are excited as a result of collisions with energetic electrons derived from the Ar gas.  

When the excited electrons relax, the emitted light is grated and the various wavelengths are 

detected. The resulting spectrum is employed for calculation of total elemental concentrations 

in the sample by use of a calibration based on standard solutions. As one spectrum contains 

information regarding numerous elements, the technique is multi-elemental. An overview of an 

ICP-OES instrument is shown in Figure 16 (Boss and Fredeen, 1997). 

 

Figure 16. Overview of the ICP-OES, from sample introduction to detection. From Chemiasoft 
(2013). 

Mass Spectrometry 

In an ICP-MS instrument, the ions enter an interface region after ionization in the plasma. The 

purpose of this region is to align and focus the ion stream while leading it from the plasma at 

atmospheric pressure, to the MS-region under vacuum. The ion stream is lead through two 

cones, first a sampler cone, with an orifice of 0.8-1.2 mm, then a skimmer cone, with an orifice 

of 0.4-0.8 mm (Taylor, 2001;Thomas, 2001b) and further directed through an ion focusing 

system. The exact design of this may vary much between manufacturers, but the role of the 

system is to transport as many ions to the detector as possible while at the same time avoiding 

matrix components and non-analyte-based species. This is done using one or more electrodes in 

the shape of metallic plates, barrels or cylinders, which stop protons and neutral species (Taylor, 

2001;Thomas, 2001c). 

The final selection according to mass to charge ratio takes place in a quadropole consisting of 

four identical rods. Currents are placed on pairs of rods, direct current on one pair, an RF field on 
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the other, enabling only ions of a specific mass to charge ratio to travel through the center of the 

quadropole to reach the detector at the end, where the number of ions is counted. Changing the 

currents of the quadropole enables passage of other elements, rapidly after each other, making 

the MS a multi-elemental method. By means of a calibration based on standard solutions, 

elemental concentrations are calculated (Taylor, 2001;Thomas, 2001d). An overview of the ICP-

MS is provided in Figure 17.  

 

Figure 17. Overview of the ICP-MS, from sample introduction to detection. Modified from Jebb 
and Barron (2013). 

ICP-OES and ICP-MS are able to measure both metal and non-metal elements, though not N, due 

to high background levels of atmospheric N, and C, which is removed already during digestion. 

3.5 Fast Spectroscopic Methods 

Fast spectroscopy to determine plant nutritional status is a field in rapid development. Several 

methods are already available and used for plant analysis directly on plants in the field. 

Assessment of N status of crops by tractor mounted or hand-held equipment is being used 

increasingly, a hand-held device for detection of Mn deficiency exists, and related equipments 

for assessment of e.g. grape maturity are also on the market, to mention a few (Force-A, 

2010;Cerovic et al., 2012;NutriNostica, 2013;Yara, 2013). At the same time, intensive research is 

undertaken to improve existing and develop new and better techniques. 

Fast, spectroscopic techniques offer rapid analysis with instant results, enabling in some cases 

tractor mounting with a direct link to fertilizing equipment. In most cases, the methods require 

no or only little sample pre-treatment and they are often non-destructive. Once the equipment 

has been acquired, each measurement is essentially free, as no chemicals or disposables are 

necessary. The measurements are in most cases indirect, which means that they do not measure 

nutrient concentrations directly. Instead, they measure compounds that relate to physiological 

effects derived from plant nutritional status, and in some cases, within certain limits, this may be 

related to plant nutrient concentrations. Therefore, the methods need to be thoroughly tested 

to ensure that they yield information specifically about status of the given nutrient. This includes 

considering if biotic or abiotic stresses may interfere with the results. An insight into the basics 

of the different spectroscopic methods is given below, in order to provide an understanding of 

the practical applications. 
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3.5.1 Ultraviolet, Visual, Near- and Mid-Infrared Spectroscopy 

Absorption of light in the ultraviolet-visual (UV-Vis, 200-780 nm), Near Infrared (NIR, 780-

2500nm) and Mid Infrared (MIR, 2500-50,000nm) parts of the electromagnetic spectrum reflects 

concentrations of specific molecules in a sample and is therefore routinely used for fast analysis, 

in science as well as in industry. Measuring UV-Vis absorption is based on electronic energy 

transitions within molecules. Electrons in molecular bonds can be excited by absorbing the 

energy from light of UV-Vis wavelengths, the main electron acceptors being single bonds (σ 

electrons), multiple bond (π electrons) and unshared electron pairs (Herman, 2000). The degree 

of absorption of UV-Vis light of a sample, thus, contains information about the sample 

concentrations of molecules containing these bonds. Reflectance of Vis light of a sample 

furthermore indicates the sample color directly. 

The basis for NIR and MIR spectroscopy is molecular vibrations. For a molecule to vibrate and 

thereby yield an absorption signal when exposed to NIR or MIR light, it needs to have a dipole 

moment, or a degree of asymmetry. This means that symmetric molecules as H2, Cl2 or H2-C-C-H2 

are not NIR or MIR active, whereas asymmetric molecules as CH3-CH2-OH and H2O are. The 

frequency of molecular vibrations depends on the strength of chemical bonds and the mass of 

each atom involved. Incoming light with a frequency corresponding to that of the molecular 

vibrations is absorbed, and the remaining is either reflected or transmitted. Measuring either, 

thus, gives information of the molecular composition of a sample (Osborne et al., 1993;Pavia et 

al., 2001). 

In plant analysis, UV-Vis, NIR and MIR spectroscopy can be used for fast elemental analysis if a 

stable correlation between a mineral nutrient and a spectroscopically active compound is 

present. The mineral may form part of the compound or be essential in its biosynthesis to obtain 

this. However, any excess of a nutrient will generally not be incorporated into spectroscopically 

active compounds and therefore not be detectable (Huang et al., 2009). Likewise, it could be 

anticipated that at very low concentrations, a linear relationship between nutrient 

concentrations and spectroscopic data would fade due to additional, negative side-effects. The 

indirect nature of spectroscopic methods when applied for plant elemental analysis causes an 

essential need for validation not only of the concentration range in which applying the method is 

reasonable, but also for the specificity of the method, as the spectra may be influenced by 

factors such as diseases, drought or deficiencies of other nutrients (Zillmann et al., 2006). 

Where Vis-NIR is widely used in plant analysis, UV-Vis alone is less commonly applied for this 

purpose. One example of using Vis is, however, the L*a*b* or CIELAB system. Detecting the 

red/green color distribution (a*), the blue/yellow distribution (b*) and the lightness (L*) of 

reflected light from a fresh leaf sample in the Vis range has been found to characterize plant 

status, qualitatively, of several nutrients very well. For instance, N, P, Mg and Fe deficient maize 

plants could be separated from control samples when still in a latent stage, i.e. before 

development of visual deficiency symptoms (Graeff et al., 2001). 

3.5.2 Chlorophyll Detection by Vis-NIR 

Vis and NIR are by far the most commonly used wavelength ranges for measurements in plants, 

very often in combination. A number of handheld gauges using Vis-NIR detection for chlorophyll 

determination in plants are commercially available (Inc., 2011;Hansatech, 2013;Spinoff, 2013). 

The SPAD (Soil-Plant Analysis Development) chlorophyll meter was the first to be developed 
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already in the 1980’s. This instrument measures transmittance of light at 650 and 940 nm 

through a leaf and relates the ratio of the two measurements to chlorophyll concentration (Inc., 

2011). However, no fixed or strictly linear ratio between SPAD readings and chlorophyll 

concentrations has been found (Uddling et al., 2007), and a continuous development of 

alternative chlorophyll and growth parameters has taken place. 

Tractor-mounted instruments for determination of N status of a crop, based on chlorophyll 

concentrations, are used today in practical agriculture. Two examples are the Yara N-sensor™ 

and the GreenSeeker®. These instruments measure and calculate the Normalized Difference 

Vegetation Index (NDVI) defined as 

     
           

           
 

Where RNIR and Rred designate reflected light at specific wavelengths in the NIR and red (620-700 

nm) parts of the electromagnetic spectrum, respectively. The exact wavelengths vary between 

instruments and may be shifted for customization to different crops, and related indexes may be 

calculated in comparable instruments. The idea behind the NDVI is that chlorophyll absorbance 

is high in the red part of the electromagnetic spectrum and low in the beginning of NIR. A ratio 

between the two gives an approximation of the chlorophyll concentration in the leaf. This is 

useful in many contexts, but as previously discussed, it is not a specific measure of the N status 

of plants (Zheng et al., 2009;Römheld, 2012). In addition, pigmentation varies significantly 

between plant genotypes, which should be taken into account. In fields where N is in fact the 

growth limiting factor, use of systems, hand held or tractor mounted, to distribute N fertilizer in 

accordance to chlorophyll concentration will optimize yields, as the use of the fertilizer is 

maximized. However, where other factors cause chlorophyll concentrations to decrease, the use 

of such systems has been shown to cause a decrease in nitrogen use efficiency with a risk of 

increased N leaching and no improvement of yields (Zillmann et al., 2006). 

3.5.3 Vis-NIR for Nutrient Management 

It has been attempted to use Vis-NIR spectroscopy to determine concentrations of most 

essential plant nutrients in numerous species, commonly using chemometrics to relate spectral 

information to nutrient concentrations. An overview of specific wavelengths and plant materials 

used in selected papers is provided in Table 3. The papers are chosen to present work on a broad 

range of essential nutrients. Only one paper uses mainly Vis data, combined with the lowest part 

of NIR (Menesatti et al., 2010), whereas the remaining focus exclusively on NIR or a combination 

of Vis-NIR. The information contained in Vis-NIR spectra from leaves reflect the concentrations 

of compounds, of which some may be related to the nutritional status of the plant. In the 

reviewed papers, no investigations have been carried out regarding which exact compounds are 

measured, though speculations based on spectral inspections combined with theoretical 

knowledge occur. This aspect will therefore only be sparsely covered in the present review. 
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Table 3. Overview of wavelength ranges and plant materials used in the papers reviewed for Vis-
NIR calibrations to determine nutrient status. 

Author Wavelength 
Range (nm) 

Plant Material Nutrients 

Menesatti et al. (2010) 400 - 1100 Fresh orange leaves N, P, K, Ca, Mg, Fe, Mn, Zn 

van Maarschalkerweerd et al. (2013) 1000 - 2500 Fresh barley leaves Cu 

Gonzalez-Martin et al. (2007) 1100 - 2000 Ground alfalfa P, K, Ca, Fe, Mn, Zn 

Agnew et al. (2004) 400 - 2500 Dry, ground ryegrass N 

Chen et al. (2002) 400 - 2500 Dry, ground sugarcane leaves P 

Cozzolino and Moron (2004) 400 - 2500 Dry, ground lucerne and clover S, Fe, Mn, Zn, Cu, B 

Dealdana et al. (1995) 1100 - 2500 Dry, ground grasses N, P, K, Ca, Mg, Fe, Mn, 
Zn, Cu 

Huang et al. (2009) 400 - 2500 Dry, ground or cut wheat and 
rice straw 

K, Ca, Mg, Fe 

Liao et al. (2012) 1100 - 2500 Dry, ground tree leaves N, P, K, Fe, Mn, Zn, Cu 

Petisco et al. (2005) 1100 - 2500 Dry, ground tree leaves N, P, Ca 

Petisco et al. (2008) 1100 - 2500 Dry, ground tree leaves K, Mg, Fe, Zn, Cu 

Ward et al. (2011) 830 - 2500 Dry, ground grasses N, P, K 

Villatoro-Pulido et al. (2012) 400 - 2500 Freeze-dried, ground rocket 
leaves 

K, Ca, Mg, Fe, Mn, Zn, Cu 

 

The indirect correlation between NIR spectra and nutrient concentrations means that caution 

must be taken during development and use of calibrations. The specificity of a calibration must 

be ascertained, necessitating that at least the most relevant other stresses that could interfere 

with the results are tested for interference with the calibration. This is rarely done, though van 

Maarschalkerweerd et al. (2013) demonstrated that at least for Cu, it is possible to develop a 

specific method based on NIR spectra. 

Table 4 provides an overview for the reviewed papers of the Residual Prediction Deviations, or  

Ratio of Prediction to Deviation (RPD), which are standard deviations of data divided by root 

mean squared error of predictions (RMSEP) or root mean squared error of  cross validation 

(RMSECV), representing the average error on predicted or cross-validated values, respectively. 

The RPD thus relates calibration performance to the range of measurements and is often used as 

an indicator of calibration performance (Ward et al., 2011;Williams, 2014). It does not, however, 

contain any information about the quality of the validation set, which can be highly variable, 

from a random subset of the same dataset as the calibration to samples collected in a different 

growing season. Furthermore, interpreting the quality of calibrations using RPD values is done 

using a variety of different schemes, as seen in e.g. Chen et al. (2002);Gonzalez-Martin et al. 

(2007);Huang et al. (2009) and Ward et al. (2011). The higher the RPD value, the better the 

calibration, but deciding whether it should surpass a value of 2, 3 or even 5 to be “good enough” 

will always depend on the intended use, why such qualitative assertions are not included in this 

review. 

Mineral elements in plants can be detected by NIR either as part of a metallo-complex or by 

their influence on plant metabolism and hence the concentrations or structure of specific 

metabolites. Especially the composition and distribution of complexes, including the major 

complexes in which trace elements are contained, may vary between and within crop types as 
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well as in response to nutritional disorders or other biotic or abiotic stresses (Clark et al., 

1987;Clark et al., 1989;Cozzolino and Moron, 2004;Villatoro-Pulido et al., 2012). This means that 

wavelengths of main importance to specific NIR calibrations will differ much between crops, and 

versatility of calibrations is, thus, often limited. Combining data from rocket leaves (Eruca 

vesicaria subsp. sativa and subsp. vesicaria) with a genetic origin in 11 widely diverse 

geographical regions (Villatoro-Pulido et al., 2012) resulted in NIR calibrations, which for Ca, Mg 

and Mn performed considerably  poorer than in the other publications reviewed. Calibrations for 

Cu, Zn and Fe obtained RPD values in the lowest ranges of what was achieved in other 

publications, and only the performance of the K calibration was average compared to that of 

other publications (Table 4). On the other hand, combining data from up to 18 different tree 

species, including deciduous and evergreen species, grown in mountainous, riparian and dry 

areas, did not affect calibration performance negatively for most macro- and micronutrients as 

compared to other publications (Petisco et al. (2008), Petisco et al. (2005) and Table 4). Thus, 

combining various species, geographical origins and growth conditions is possible in some cases, 

but it is yet a factor to investigate thoroughly before employing an NIR calibration in any 

practical association, be it research or agriculture. 

Table 4. Overview of calibration performances in the reviewed papers. Standard deviation / 
RMSEP, or RPD, is provided for all relevant elements. In four cases (Agnew et al., 2004;Gonzalez-
Martin et al., 2007;Villatoro-Pulido et al., 2012;van Maarschalkerweerd et al., 2013), RMSEP was 
not available, why RPD is based on RMSECV instead. Well performing calibrations are 
characterized by high RPD values. The quality of validations is highly variable, why the RPD 
values should be interpreted with caution.  

 RPD 

Author N P K Ca Mg S  Fe Mn Zn Cu B 

Menesatti et al. (2010) 2.3 0.7 6.1 1.5 2.0   2.8 3.7 2.7   

van Maarschalkerweerd et al. (2013)           1.4  

Gonzalez-Martin et al. (2007)  2.4 2.3 1.5    2.1 1.4 1.7   

Agnew et al. (2004) 6.5            

Chen et al. (2002)  1.7           

Cozzolino and Moron (2004)      5.6  1.7 1.3 0.6 0.9 1.8 

Dealdana et al. (1995) 3.9 1.5 1.8 2.2 1.9   1.8 1.5 1.9 1.8  

Huang et al. (2009), cut   1.7 1.8 2.1   1.3     

Huang et al. (2009), milled   2.6 2.3 2.6   1.5     

Liao et al. (2012) 2.5 1.4 1.2     1.7 1.5 1.0 1.0  

Petisco et al. (2005) 4.3 2.3  3.8         

Petisco et al. (2008)   2.4  2.2   <3  <3.1 <2.7  

Ward et al. (2011) 1.8 1.4 1.8          

Villatoro-Pulido et al. (2012)   1.9 0.8 1.1   1.2 0.9 1.3 0.9  

 

Several authors find that calibrations for micronutrients generally perform poorer than 

calibrations for macronutrients (Petisco et al., 2005;Petisco et al., 2008;Huang et al., 2009;Liao et 

al., 2012). This is somewhat supported by Table 4, where RPD values above 2 are almost 

exclusively found for macronutrient calibrations, though values below 2 also occur for 

macronutrients in eight out of 13 publications. The reason for the poorer performance of 
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micronutrient calibrations is likely to be the lower concentrations, which lead to a smaller signal 

to noise ratio and make spectral variation caused by differences in particle size more prone to 

affect calibrations (Yeh et al., 2004;Huang et al., 2009). In most investigations, NIR spectra are 

measured on dried, ground plant material. In addition to the homogeneity of the sample, this 

benefits from avoiding interference from water, which has a very dominant signal in NIR spectra. 

The advantage of a completely dry, homogenous sample for both macro- and micronutrient 

calibrations is emphasized by Huang et al. (2009), who demonstrated that RPD values of K, Ca, 

Mg and Fe calibrations increased significantly by measuring on dry, milled straw samples instead 

of cut straw (Table 4). In other words, as standard deviations were the same, RMSEP values 

decreased as a result of drying and milling. 

When approaching sufficiency levels, the main part of the variation in a nutrient concentration is 

likely to be in a non-metabolic pool, such as in vacuolar storage, rather than in a pool of 

metabolically or structurally active nutrient, which may yield a signal in Vis-NIR (Lauer et al., 

1989;Huang et al., 2009). This means that a significant part of a given nutrient in well-supplied 

plants is likely to stay undiscovered by the Vis-NIR measurements causing the calibration to be 

skewed or simply perform poorer. In a few cases (Ward et al. (2011) for P and Cozzolino and 

Moron (2004) for S), a vague tendency of the predictions to approach a constant value at some 

level above the sufficiency threshold concentration can be noticed, as exemplified in Figure 18, 

though this is not commented by the authors. The critical concentration threshold for P in 

grasses is between 0.2 and 0.3%, depending on species (Campbell, 2009); this investigation using 

various species of meadow grasses sampled throughout four growing seasons. 

Cozzolino and Moron (2004) appear to have approximately a factor 10 error in their S reference 

values, which does not affect calibration performance, but obviously results cannot be 

compared directly to other publications. 

 

Figure 18. Predicted versus measured plot of P concentrations for a true validation set (Ward et 
al., 2011). Work was based on meadow grass sampled throughout four growing seasons. The 
unit of X and Y axes is %P in dry matter. The black line indicates Y=X, the blue line is the best 
linear correlation between data. 
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3.5.4 Nutrient Influence on Vis-NIR spectra 

In section 3.5.2, several Vis-NIR based on-the-go sensors for chlorophyll detection, linked to N 

concentrations, are presented. Multivariate calibrations, typically Partial Least Squares (PLS), for 

N concentrations to a high degree also make use of the correlation between N and chlorophyll. 

In addition to chlorophyll, N calibrations have been shown to depend on N-H and peptide bonds 

of proteins, indicating a more solid correlation to N concentrations (Dealdana et al., 1995;Petisco 

et al., 2005). Calibrations for Mg, the central atom in chlorophyll, also rely on chlorophyll signal 

in Vis-NIR calibrations (Dealdana et al., 1995;Tremblay et al., 2009). However, the proportion of 

total plant Mg bound in chlorophyll is highly variable. For a fully Mg-supplied plant, at little as 

below 6% of the Mg content may be bound in chlorophyll. During Mg deficiency this proportion 

can increase up to 35% , and in combination with low light conditions, which increase 

chlorophyll concentrations, more than 50% of the total plant Mg may be bound in chlorophyll 

(Hawkesford et al., 2012). This variability weakens the strength of an NIR-based calibration very 

much. That numerous factors in addition to Mg and N deficiencies may also affect the 

chlorophyll concentration is clearly exemplified by Ward et al. (2011), who as the only of the 

reviewed investigations tested the developed models on a validation set derived from an 

independent growth season. This resulted in a validation error of the N calibration of 3.2, which 

is between three and six times more than in the other publications mentioned, and an RPD of 

1.8 (Table 4), which is clearly the lowest.  These figures may, however, be closer to what can be 

expected if using the method in practice and a comparable increase in error, meaning a decrease 

in RPD, may be expected for Mg calibrations if validated in a similar fashion. 

Variations of P supply within deficiency to sufficiency ranges mainly affect the concentrations of 

major P fractions as lipids and esters, which are detectable using NIR. Also the absorption 

frequency for amino-acids, which are part of protein-P bonds, has been found to be of 

importance for P calibrations (Petisco et al., 2005;Hawkesford et al., 2012). Only at excessive P 

levels, the fraction of Pi increases significantly (Hawkesford et al., 2012), why a calibration set 

including large variations of P levels, excluding excessive levels, would be expected to yield a 

relatively precise NIR calibration. However, according to Table 4, P calibrations tend to perform 

poorer than other macronutrient calibrations. Further investigating the influence of data range 

on P calibration performance would be interesting, considering the possible change in effects 

around the sufficiency threshold (Figure 18), and because calibrations focusing exclusively on 

lower concentrations theoretically could perform very well. 

One effect of Cu deficiency is an impaired lignification of cell walls (Broadley et al., 2012), but 

this has been found to occur only at severe Cu deficiency (van Maarschalkerweerd et al., 2013). 

During stress, also the composition of lignin may change (Gou et al., 2008), which is likely to be 

detectable using Vis-NIR, and it could be speculated that this is what happens during milder Cu 

deficiency. However, the signal from this is not sufficient to develop a quantitative calibration. 

An alternative approach for successfully diagnosing latent Cu deficiency in barley has been 

developed using supervised or unsupervised classification methods to separate NIR spectra from 

deficient and healthy control plants already at very early stages of deficiency. It is demonstrated 

that deficiencies of a number of other nutrients do not affect the diagnostic power of this 

method, thus, specificity is established. Using the same measurements, this paper also finds that 

total Cu concentrations are only poorly assessed using NIR (van Maarschalkerweerd et al., 2013). 
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The remaining micronutrients investigated, Fe, Mn, Zn and B, generally result in calibrations with 

poor prediction power. The only exception is found in Menesatti et al. (2010), where 

measurements are performed directly on fresh leaves and almost only Vis spectra are included, 

and it could, hence, be speculated that this approach is advantageous for micronutrients. 

However, as standard deviations of data in general are extremely low in this publication 

compared to other, the better performance is expected, and a comparison to other publications 

is not feasible. 

Vis-NIR methods carry a large potential for assessment of the nutritional status of crops. 

Measurements are much faster than traditional laboratory analysis, even if drying and grinding 

has to be performed. Furthermore, the use of toxic, and expensive, chemicals is avoided. 

However, there is a lot of work to be done in verifying specificity of methods and assessing 

concentration ranges and extent of application for each single calibration. Due to the indirect 

nature of the Vis-NIR nutrient calibrations, this should be subject to continuous investigation 

during development and application of methods. 

3.5.5 Fluorescence Spectroscopy and Chlorophyll Fluorescence 

Fluorescence spectroscopy is based on electronic energy transitions and is thereby related to 

UV-Vis spectroscopy. Incoming energy, in the form of light, can excite molecules from the 

ground state to an excited state. However, where UV-Vis spectroscopy measures the absorption 

of light and thereby the excitation of molecules, fluorescence is an emission of light during 

relaxation. Fluorescence is a highly sensitive form of spectroscopy, being able to detect very low 

intensities of light. An intuitive explanation of this is that light seen on a dark background is 

much clearer than an increased amount of darkness, i.e. light absorption, on a background of 

light (Harris, 2007). 

When light reaches a chlorophyll molecule, one out of three events will occur. The light may be 

absorbed and used for driving photosynthesis, it can be dissipated as heat or it is absorbed and 

re-emitted as fluorescence, i.e. chlorophyll fluorescence. Only between 2 and 10% of light 

absorbed by the plant result in chlorophyll fluorescence, but due to the competition between 

the three processes, chlorophyll fluorescence measurements contain information about the 

functionality of the photosynthesis (Maxwell and Johnson, 2000;Stirbet and Govindjee, 2011). 

Figure 19 shows the so-called Z scheme, which provides an overview of the electron transport 

chain during photosynthesis. A thorough description of the scheme can be found in textbooks 

such as Buchanan et al. (2000), but briefly explained it shows how electrons are transported 

from water through the two photosystems via the cytochrome b6f complex to finally reach the 

NADPH synthesis. Excitation of P680 in PSII provides the energy to transport electrons from 

water to plastoquinone A, QA, which is then reduced. The QA
- delivers the electron to 

plastoquinone B, then QB
-, after which the process is repeated to produce QB

2-. The QB
2- then 

detaches from PSII to join the plastoquinone pool (PQ) as PQH2 and delivers the electrons to the 

cytochrome b6f complex. From here, electrons are transported to PSI via plastocyanin, PC. 

Finally, on the acceptor side of PSI, electrons are transported to ferredoxin (Fd) and ferredoxin-

NADP reductase, enabling synthesis of NADPH. 
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Figure 19. The Z scheme, illustrating the photosynthetic electron transport chain, which starts in 
PSII, then continues via the Cytochrome b6f complex to PSI. From Govindjee et al. (2010). 

When a plant is dark adapted, all active PSII reaction centers are open, meaning that all QA is in 

the oxidized state. Exposing this plant to actinic light of weak intensity, about 0.1 µmol m-2 s-1, 

yields a basic level of chlorophyll fluorescence called the O or F0 step (Baker, 2008), which is 

recognized as the starting point of the transient in Figure 20. Exposing the same plant to 

continuous, actinic light at a high intensity causes all QA to be reduced within one second, and 

the chlorophyll fluorescence forms a curve, commonly known as the OJIP transient or the 

Kautsky curve. When plotted on a logarithmic time scale, the transient of a healthy plant has 

four steps or plateaus, known as O, J, I and P (Figure 20). P, or Fm, is the maximum fluorescence 

level. J, I and P steps are reached at approximately 3, 30 and 200ms, respectively (Schansker et 

al., 2013). 

 

Figure 20. The OJIP transient of chlorophyll fluorescence. A dark adapted plant has been exposed 
to continuous, actinic light of 3200 µmol m-2 s-1. Modified from Stirbet and Govindjee (2011). 
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The first phase of the OJIP transient, from O to J, is called the photochemical phase, and this is 

strongly affected by the intensity of the exciting light. The photochemical phase is followed by 

the thermal phase, which goes from J over I to the P step. The course of this phase is influenced 

by the temperature during measuring (Schansker et al., 2011;Stirbet and Govindjee, 2011). It has 

been demonstrated that the fluorescence in the photochemical phase reflects the electron 

acceptor side of PSII, or more exactly the first reduction of QA (Oukarroum et al., 2009;Yusuf et 

al., 2010;Stirbet and Govindjee, 2011). The J, I and P steps all seem to represent kinetic 

bottlenecks in the electron transport chain, and there are indications that they represent 

electron transport beyond PSII (Schreiber et al., 1989;Schansker et al., 2005). However, the 

physiological explanations of the OJIP transient, and especially the thermal phase, are much 

debated and further knowledge is likely to appear as investigations of the processes continue 

(Schansker et al., 2013). 

Several stresses have been demonstrated to influence the OJIP transient, including salt, drought 

and heavy metal toxicity (Oukarroum et al., 2009;Yusuf et al., 2010;Adamski et al., 2011). The 

relation between plant nutritional status and chlorophyll fluorescence has also been 

investigated, and e.g. light scattering curves of leaves from N, P, K, Mn, Fe, S or Cu deficient 

sugar beets during photosynthetic induction were shown to deviate from curves of leaves from 

healthy control plants by visual inspection. The idea of using such measurements for fast and 

easy diagnosis of nutritional disorders was presented already in 1988 (Abadia et al., 1988). 

However, visible symptoms of the various deficiencies were pronounced at the time of 

measuring, why these specific results were of little practical use. A fully validated method for 

fast detection of Mn deficiency in barley has been developed more recently, based on 

determination of Fv/Fm values; Fv being the difference between Fm and F0. In healthy control 

plants, this ratio is very stable around 0.83. However, rapidly after depriving plants of Mn, it 

declines (Hebbern et al., 2005;Husted et al., 2009). An example of chlorophyll fluorescence 

curves for a healthy and a Mn deficient barley plant is shown in Figure 21. The method has been 

validated to be specific for Mn deficiency at a time when no visual deficiency symptoms are 

present, if stress factors such as light and temperature can be ruled out. A small, hand-held 

apparatus has been developed based on this finding, and it is commonly used in Danish 

agriculture today, where Mn deficiency is a risk. 
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Figure 21. Chlorophyll fluorescence for Mn deficient (black circles) and Mn sufficient (open circles) 
barley plants at growth stage 45, i.e. at booting. From Hebbern et al. (2005). 

In many cases, fluorescence measurements are combined with Vis-NIR. Using multivariate data 

analysis, this has enabled a distinction between N sufficient and N deficient potato plants in a 

greenhouse experiment. Also plants exposed to various levels of K and Mg deficiencies were, 

mostly, correctly classified according to N status (Bélanger et al., 2005). Another suggested 

approach for determination of N status is to use the ratio between concentrations of chlorophyll 

and phenolics, both of which can be determined spectroscopically (Cartelat et al., 2005). A newly 

developed, hand-held instrument, Dualex®, uses this methodology for assessment of N status of 

plants, more specifically by measuring the Nitrogen Balance Index (NBI), which is the chlorophyll 

concentration divided by the flavonoids concentration. Chlorophylls are determined based on 

transmittance measurements in the infrared and red ranges, comparable to the methods 

described for other N sensors (section 3.5.2). Flavonoid concentrations are described by the 

logarithmic ratio between infrared fluorescence at red and UV excitation light. Chlorophyll is 

excited by both wavelengths, whereas flavonoids only fluoresce when exposed to UV light. The 

NBI ensures a better correlation to N concentration than a simple measurement of chlorophyll, 

the level of which is affected by a number of factors, as previously discussed (Force-A, 

2010;Cerovic et al., 2012). 

3.5.6 X-Ray Fluorescence 

X-ray fluorescence (XRF) is a spectroscopic technique for multi-elemental characterization of 

samples, measuring elemental concentrations directly. It exposes sample material to X-rays of 

appropriate energy to excite the elements in the sample, and during relaxation, X-rays of lower 

energy are emitted. The energy and intensity of the emitted light is characteristic for each 

element. For measurements in plant material, quantification of the elements is commonly done 

by calibrating the XRF instrument against another technique, e.g. ICP-OES. Generally for XRF, the 

heavier an element is, the easier it is to detect. Thus, heavy trace metals such as Mn, Fe, Cu, Ni 

and Zn are easily detectable even in very low concentrations, with limits of quantification down 

to a few ppm for the heaviest elements. Higher concentrations are needed for quantification of 

S, P, K, Mg, Ca, Cl and Na, whereas B and N are generally not detectable. Measurements are 
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affected by particle size and sample density, and dry plant material is therefore often ground 

and pelleted before measuring (Paltridge et al., 2012a;Paltridge et al., 2012b;West et al., 2012). 

Using XRF can be advantageous as a lower cost alternative to ICP-OES and –MS that is also easier 

to operate and less sensitive to contamination, if only concentrations of heavier elements are 

required. Recently, XRF has been used successfully to assess Zn, Fe and Se concentrations in 

wheat and pearl millet grains in relation to breeding, as well as multi-elemental compositions of 

sunflower and alfalfa under various growing conditions (Gunes et al., 2008;Gunes et al., 

2009;Paltridge et al., 2012a;Paltridge et al., 2012b). As XRF measures elemental concentrations 

directly, different plant species may be combined in a common calibration curve, as shown for P 

in cotton and maize (McLaren et al., 2012), giving the instrument a high versatility. Portable XRF 

instruments may have potential within plant analysis. The portable instruments are cheaper 

than stationary and have the theoretical advantage of working in the field. However, only 

theoretical, because with the common need to dry and grind samples, measuring in the field is 

rarely possible, leaving lower costs as the remaining advantage. Nevertheless, if a method is 

developed based on one relatively stable particle size, as a grain, it has been shown in rice, 

wheat and pearl millet that a grinding step can be omitted and good correlations for a number 

of elements can still be obtained (Paltridge et al., 2012a;Paltridge et al., 2012b). Where this is 

not possible, one of the main disadvantages of XRF with respect to plant analysis is the time 

consuming grinding and often pelleting of samples. In addition to this, the limited applicability 

for a range of essential plant elements is another disadvantage of XRF. However, in scientific or 

agricultural applications where focus may be on a smaller range of elements, the relatively low 

costs and ease of use makes XRF a good alternative to atomic spectroscopy. 

3.5.7 Laser-Induced Breakdown Spectroscopy 

Laser-Induced Breakdown Spectroscopy (LIBS) is a technique employing a laser beam, focused 

through a lens, to create a small plasma of the irradiated part of a sample surface. The plasma 

contains excited atomic and ionic species, which emit light as they relax to lower energy states 

during cooling of the plasma, which lasts only milliseconds. This light is detected and results in a 

spectrum with specific emission lines for the various species (Cremers and Radziemski, 2006a). A 

schematic overview is given in Figure 22. By use of certified reference material, the detected 

spectrum can be related to total concentrations of elements, much like the output from an ICP-

OES.  
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Figure 22. Schematic presentation of the LIBS technique. A laser pulse is focused using a system 
of mirrors and lenses, before it hits the sample. A plasma is created, and part of the emitted light 
is collected and led, via an optical fiber, through grating and detection. 

A major advantage of the LIBS technique is the possibility of little, or even none, sample 

preparation. However, a few points have to be considered to obtain acceptable performance: 

The laser only vaporizes a very small amount of the whole sample. Significant sample 

inhomogeneity therefore means that measurements will not represent the whole sample. This is 

a particularly relevant consideration when working with plant material, where leaves include 

both veins and leaf blades, which may have very different elemental compositions. Also particle 

size distribution affects the interaction between laser and sample, why this should be optimized 

and standardized within a group of samples. It is therefore crucial that physical and chemical 

properties of the certified reference material used are comparable to those of the samples 

(Santos et al., 2012). 

Laser Induced Breakdown Spectroscopy is still a new technique for measuring nutrients in plants, 

and the number of investigations is limited. However, with some success, concentrations of K, P, 

Mg and Ca have been measured in ground and pelleted plant material of wheat, poppy, barley 

and rape. The number of samples was relatively low, and K seemed to interfere with predictions 

of Mg and Ca in the certified reference material. This was attributed to the concentration range 

of K, which was considerably lower in the certified reference material than in the sample, but 

still, recovery values varied between 89 and 114%, which is a promising result (Pouzar et al., 

2009). Effects of matrices and variations in particle size distribution and particle composition are 

among the most commonly mentioned problems with LIBS analyses of nutrients in plant 

material (Santos et al., 2012), and they are subject to thorough investigations (e.g. Gomes et al. 

(2011)). Solving these problems will obviously bring the LIBS technique forward, but it should be 

kept in mind that the main advantages of LIBS are still the ability to conduct fast measurements 

and the fact that one can measure directly on surfaces, even at a distance. Thus, any 

preprocessing added will limit the advantages of LIBS as compared to ICP methods. Semi-

portable LIBS devices occurred already in the late 1980’s and from that time, lasers and 

spectrographs have become more and more compact. This increases the application possibilities 

of LIBS markedly (Cremers and Radziemski, 2006b). 
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3.6 Other Techniques 

New approaches to plant analysis are continuously being tested, as technological advances make 

them possible. The POCI array, developed by a consortium of laboratories named the Potato 

Oligo Chip Initiative (POCI), is an oligonucleotide potato microarray chip, which can be used to 

compare gene expression profiles of potato in response to stresses, for instance P deficiency. It 

is able to determine the expression of 42,034 potato genes simultaneously, which leads the way 

for multivariate data analysis yielding an overview of changes in gene expression during stresses. 

A major advantage of the method is the possibility to screen for a wide array of biotic and abiotic 

stresses at the same time. However, though the POCI has reduced time of analysis significantly, 

it still takes 2-3 days to obtain results, which in a practical context is relatively long (Kloosterman 

et al., 2008;Hammond et al., 2011), and the price may be too high for use in practical agriculture, 

where a large number of analyses are needed. 

The term “remote sensing” is used broadly, from the visual inspection of plants over the tractor 

mounted sensors described in sections 3.5.2 and 3.5.3 and up to the extremes where data is 

collected from towers, airplanes or even satellites. The most common platforms for the latter 

are Vis-NIR, for generation of NDVI, or fluorescence emission. When measuring at such far 

distances, the investigations are mainly with the purpose of understanding ecological processes 

rather than precision agriculture, as the resolution naturally decreases at increasing distances. 

Nevertheless, Vis-NIR data detected from airborne sensors have been shown to correlate to 

some extent to grain yield of corn even if affected by N and P deficiencies. With time and 

development, the potential of air- and space-borne sensors for large scale farming may 

therefore be huge (Osborne et al., 2004;Malenovsky et al., 2009;Hall et al., 2011;Barton, 2012). 

4 Perspectives 
As the world population is continuously growing, harvest yield increases will have to grow 

accordingly, preferably more, to feed the world. In order to maximize yields on both fertile as 

well as marginal soils, optimization of nutrient management is one essential factor. Presently, 

soil analysis is by far the most used tool to assist plant producers in this, and a new method for 

soil analysis, DGT, may improve the usefulness considerably. However, monitoring of plant 

nutritional status throughout the growing season as well as diagnosis of acute disorders depends 

on accurate plant analysis. With the recent developments towards fast, easy to handle, low-cost 

methods, it is evident that plant analysis can play a much larger role in agricultural fertilizer 

management in the future than it has done up to now. 

Techniques using fast spectroscopy to determine plant nutritional status still face a number of 

challenges related to being based on secondary correlations. Instruments are, however, already 

sold and used in practical agriculture, as methods have proven valuable when used 

appropriately. Furthermore, it demonstrates a willingness amongst plant producers to invest 

time and money in adapting to new ways of nutrient management, which will be a major driver 

towards investments in development of methods and instrumentation. The expectation of 

continuously increasing oil prizes, affecting as discussed the cost of mineral fertilizer itself as well 

as spreading of fertilizer, is another driver for development of methods to optimize the use. 

Along with the development of new techniques for plant analysis, a number of perspectives 

arise. Using one spectroscopic technique for simultaneous determination of plant status of 
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several nutrients will save time and money. In addition, superior results are likely to be obtained 

due to the importance of interactions between different elements. As discussed, these 

interactions may influence plant nutritional health more than the concentration of each single 

nutrient. 

Tractor mounting and direct linking to fertilizer equipment is already in use for N, but may be 

extended to other nutrients as methods are developed. For diagnosis of acute deficiencies as 

well as monitoring of less common deficiencies, handheld instruments have a great role to play. 

Furthermore, as tractor mounted instruments are costly to acquire and therefore at first will be 

accessible only on larger farms in high-income countries, handheld instruments may be the 

cheaper solution for smaller and lower income farms.  
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Chapter 3 

Spectroscopic and Chemometric 
Methods  

Near Infrared Spectroscopy 

When molecules with a dipole moment, or asymmetry, absorb light in the mid-infrared (MIR, 

2500-50,000nm) part of the electromagnetic spectrum, they are excited to a higher energy state. 

As a result of this, they start vibrating in a number of ways. The frequencies of these 

fundamental vibrations determine which reflectance, or transmittance, is detected. Near 

infrared (NIR, 780-2500nm) spectra reflect the overtones and combination bands of the 

fundamental vibrations. Overtones result from excitation to higher energy states, so that 

wavenumbers of overtones are multiples of wavenumbers of the fundamental vibrations. 

Combination bands have wavenumbers of any combination of two or more fundamental 

vibrations, though combination bands arising from more than two vibrations are of low 

probability (Osborne et al., 1993;Pavia et al., 2001). Several overtones of the same fundamental 

vibration may occur, and there is no theoretical limit to the number of combination bands in a 

spectrum. This results in a high number of overlapping, non-specific peaks, which make the NIR 

spectrum an indistinct picture of all IR-active chemical constituents in the given sample. In 

addition to these effects, hydrogen bonds occur. They are weak bonds between H and mainly O 

or N, which affect the vibrations of the molecules involved and thereby cause peak shifts, 

observed as peak broadening. An example of NIR absorption spectra from barley leaves is 

presented in Figure 1. Where a univariate data analysis to some extent may work in MIR, the 

broad and overlapping peaks in NIR mean that data analysis here depends on multivariate 

methods (Næs et al., 2004). 
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Figure 1. NIR absorbance spectra measured on the adaxial side of barley leaves. The x-axis 
shows wavenumbers in cm-1, and the range from 4000 – 9000cm-1 is equivalent to 2500 – 
1111nm.  Spectra are a subset of data from Paper II. 

Wavenumbers, with the unit cm-1, are a commonly used x-axis unit for NIR spectra because using 

these, overtones and combination bands are directly calculated as multiples or sums of 

fundamental vibrations. Those calculations are less simple when based on wavelengths, usually 

measured in nm, though the unit is often encountered in NIR literature. Which unit is used 

seems to depend on the type of instrument employed. The look of spectra will change when 

switching between units, but data, and thus results of data analysis, are the same. 

Actual measurements in NIR are typically recorded as reflectance, as in Paper II, or as 

transmittance, but a different unit, commonly denoted “absorbance”, is usually employed in the 

subsequent analysis. It is related to reflectance as: 

       
 

 
             (1) 

Where A is “absorbance” and R is the detected reflectance (Geladi et al., 1985). Actual 

absorbance is calculated as the negative logarithm of transmittance, but the “absorbance” 

measure presented in equation (1) is likewise linearly related to concentrations of absorbing 

species, according to Beer’s law (Harris, 2007). Thus, for reflectance measurements the 

“absorbance” unit is convenient for calculations, though correctly it should be, and sometimes 

is, denoted log(1/R). 

The analysis of the broad and overlapping peaks in NIR spectra is further complicated by 

interferences from variation in factors such as sample thickness, refractive index and particle 

size as well as light scattering (Geladi et al., 1985;Næs et al., 2004). The occurrence of such can 

be limited by ensuring uniform sample presentation and handling and optimization of 

instrumental settings and the recording of a blank background spectrum. In the reflectance 

measurements used in Paper II, this background was a completely white object. Including the 

background measurement in equation (1) results in the following: 
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   (2) 

Where A is absorbance, and Isample and Ibackground are the spectra of sample and background 

recordings, respectively. However, precautions during sample handling cannot remove all light 

scattering, which may cause both additive and multiplicative effects and results in a lack of linear 

relation between absorption and species concentrations. Fortunately, however, the noise can be 

corrected for, and doing so before analyzing a data set enables the development of a simpler 

and thus more accurate model. 

Multiplicative Signal Correction 

The NIR spectra in Paper II were preprocessed using Multiplicative Signal Correction (MSC), a 

common method for preprocessing of NIR spectra (Næs et al., 2004). Multiplicative signal 

correction is a method developed for removing additive and multiplicative noise from spectra, 

based on the fact that the dependency of light scatter on wavenumber is different from that of 

chemically based light absorption (Geladi et al., 1985). By using a number of measurements it is 

therefore possible to ensure a uniform contribution of light scatter to the measured absorbance 

of all samples. The MSC is an object-wise correction, meaning that spectra from each 

measurement are corrected one at a time. The model for each individual spectrum is: 

              (3) 

Where x is a spectrum, a is the average additive effect, b is the average multiplicative effect, and 

e is the residual, which optimally represents the chemical information in x. An “ideal” sample is 

represented by   . The MSC preprocessing of each sample takes place by first subtracting a 

(equivalent to intercept) from each sample at each wavelength. The result of this is divided by b 

(equivalent to slope). The spectra presented in Figure 2 are the same as were shown in Figure 1, 

only after MSC preprocessing, to demonstrate the effect. 

 

Figure 2. Plot of NIR spectra from Figure 1 after MSC preprocessing.  
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In practice, the “ideal” sample will usually be the average spectrum of the dataset, which makes 

MSC sensitive to outliers. This is a major weakness of the method, making thorough outlier 

removal extremely important. Alternatively, a median spectrum or a differently selected “ideal” 

sample may be employed. 

Chlorophyll a Fluorescence 

In fluorescence spectroscopy, emission of light is measured during relaxation of molecules 

excited by incoming light. Actinic light reaching a photosynthetically active tissue is used either 

for photosynthesis, reflected directly or re-emitted as chlorophyll fluorescence. During the first 

second of emission of chlorophyll a fluorescence, a characteristic curve called the Kautsky curve 

or OJIP transient, after the four, characteristic plateaus it develops, is formed (Figure 3). 

 

Figure 3. Kautsky curve or OJIP transient of a healthy barley leaf. The four plateaus, O, J, I 
and P, are indicated in the figure. 

Before recording chlorophyll a fluorescence, the leaf is dark adapted for 20 minutes to render all 

photosystems in the open, or oxidized, state. The O plateau, or F0, indicates the level of 

background fluorescence, and this is determined by exposing the dark-adapted leaf to a short 

pulse of non-actinic light before the actual measurement. Gain of the detector is adjusted 

accordingly to avoid saturation. The leaf is then exposed to actinic light at a high intensity 

(>3000µmol m-2 s-1), and after the first 0.3 seconds of this, the maximal fluorescence intensity, 

the P plateau of the OJIP transient, is reached. Exciting light is optically filtered to a maximal 

wavelength of 650nm, and likewise, another optical filter ensures that only light of wavelengths 

longer than 650nm reaches the detector, ensuring that only actual fluorescence, and no 

reflections from exciting light, is detected. 
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The exact mechanisms resulting in the various plateaus of the OJIP transient are not yet fully 

understood, though it is generally accepted that the OJIP transient reflects events in the 

photosynthetic electron transport chain, and that the J, I and P plateaus are assumed to be 

caused by kinetic bottlenecks (Schreiber et al., 1989;Schansker et al., 2005;Stirbet and 

Govindjee, 2011). Analyzing OJIP transients is often done using the so-called JIP test. Rather than 

an actual test, this is a wide range of parameters calculated from only 5-6 data points and 

corresponding areas above the OJIP transient (Force et al., 2003). The simplicity is a great 

advantage of the JIP test and a good reason for the widespread use of it. Parameters from the 

JIP test have proven useful e.g. as parameters describing general photosynthetic performance 

(Force et al., 2003;Swain et al., 2010) and the Fv/Fm specifically for diagnosing latent Mn 

deficiency (Hebbern et al., 2005). However, as the JIP test is based on specific points and not the 

whole course of the OJIP transient, correlations may be overlooked. The work for the present 

thesis clearly demonstrates this, as the impact of P deficiency on OJIP transients has in fact been 

investigated previously (Ripley et al., 2004;Jiang et al., 2009;Lin et al., 2009). However, focusing 

on the parameters defined in the JIP test instead of the complete course of the OJIP transient 

means that the systematic correlation between P nutrition and the shape of the OJIP transient, 

as identified in Papers III and IV, was overlooked. 

OJIP transients were preprocessed using an approximation to differentiation, being the 

difference between consecutive measuring points (Papers III and IV). This preprocessing 

emphasizes the shape of the curve, thereby enabling subsequent multivariate data analysis to 

focus on this rather than absolute intensities. 

Multivariate Data Analysis 

For analysis of spectroscopic data, multivariate methods, chemometrics, are now the most 

commonly used, for obvious reasons. As discussed, the peaks in NIR spectra are broad and 

represent only an indistinct image of the fundamental vibrations. To identify general patterns, it 

is therefore necessary to include information from the whole spectrum and a relatively large 

number of samples. Even in spectra with more discrete peaks, such as MIR, including a broader 

range of data will often add robustness to a calibration, though larger amounts of irrelevant data 

still have to be avoided (Kjeldahl and Bro, 2010). 

Generally, chemometric methods can be divided into quantitative and qualitative analyses, 

where qualitative analyses count both supervised and unsupervised methods. Principal 

component analysis (PCA), partial least squares analysis (PLS) and partial least squares – 

discriminant analysis (PLS-DA) are employed in Papers II – IV and are, thus, further described 

here. 

Principal Component Analysis 

Principal component analysis is a method for reducing the number of dimensions in multivariate 

data with a minor loss of information, thereby enabling a simpler, yet comprehensive, overview 

of the main variations within the data set. It is often used for unsupervised exploration of 

samples in a data set. The data matrix, X, is approximated using the least squares model in 

equation (4): 
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          (4) 

T is a score matrix, P is a loading matrix and E is the residual. X is often mean centered, meaning 

that the average value of each variable is subtracted from data, or autoscaled, where mean 

centered data are furthermore divided by the standard deviation of the variable. Mean 

centering causes a shift, which in most cases improves the presentation of results. Autoscaling 

centers data and in addition enables the use of variables of different scales, such as e.g. shoot 

biomass in grams and root length in centimeters. 

Geometrically, the PCA finds a set of new axes, named loading vectors, for X. The loading vector 

and its associated score vector is called a principal component (PC). The direction of the first 

loading is coincidental with the largest variation in X. The second loading is orthogonal to the 

first and represents, given the restriction of orthogonality, the second largest variation in X, and 

so on. Data is visualized on these new information-rich axes, where often the first few will be 

sufficient for showing major differences between samples. Especially for spectroscopic data, 

where the covariance between variables is very high, the PCA offers a significant reduction of 

dimensions, often down to 3-4 PC’s, and thereby enables identification of sample clustering, 

which may not be easily seen from the raw data (Wold et al., 1987;Næs et al., 2004). 

Partial Least Squares Analysis 

The PLS analysis is a method for quantitative prediction that models the relationship between a 

data matrix, X, e.g. a set of spectra, and a response matrix, Y,  as well as the structures of X and 

Y. In the present work, only PLS1, which uses a response matrix containing one column, i.e. a 

vector y, is used. In the present work, the response vector represents nutrient concentrations in 

leaves. 

Geometrically, the explanation of the PLS regression has similarities to that of PCA, and the data 

matrix is described by scores and loadings like the PCA, see equation (4). In addition, y is 

described by the scores matrix, T, loadings, q and residuals, f: 

          (5) 

In PLS, the first loading weight vector, or latent variable (LV), of X is determined not to describe 

the major variation in X, as in PCA, but to maximize the covariance between y and X. This is done 

by rotating the first loading vector in the X space to the optimal position, where the residual in a 

least squares regression of X scores against y is minimized. The second LV is determined using 

the same methodology, only X and y input is now based on residuals calculated by subtracting 

the first component from the original data matrices, and the process is repeated for subsequent 

LV’s until the desired number of components has been extracted. The final outcome of the PLS 

regression is, thus, a model which is able to predict y values based on x input (Geladi and 

Kowalski, 1986;Wold et al., 2001;Næs et al., 2004). 

Partial Least Squares – Discriminant Analysis 

The PLS-DA is a supervised classification method, which is basically a special case of the PLS 

analysis. In PLS-DA, y is a dummy matrix containing 1 and 0, or -1 and 1, referring to whether or 

not a given sample belongs to a class. A PLS calibration is then carried out, and the loading 

weight vectors will, according to the description above, be orientated in the direction of X that 
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maximizes the separation between samples belonging to the given class in y or not (Wise et al., 

2006). 

Both PCA and PLS-DA can be used to envisage clustering of samples. A main difference is, 

however, the subject of supervision. The PCA is a “pure” method that visualizes sample 

distribution based exclusively on X input. It gives a clear overview of what can be concluded 

from data alone, presupposing no prior knowledge of samples. The PLS-DA on the other hand is 

supervised, meaning that input regarding the class of calibration samples is provided. This 

enables the model to focus on the information most relevant for classification and hence, often 

use fewer components (LV’s) to obtain the result (Barker and Rayens, 2003;Næs et al., 2004). 

Precaution is however a prerequisite. If no validation or cross-validation is performed, the 

apparent result of the model will be overly optimistic. Predicting the class of samples while 

already knowing the class is obviously always possible, irrespective of the true correlations 

(Kjeldahl and Bro, 2010). 
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Chapter 4 

Sampling and Experimental 
Variability 

Working with live plants is asking for trouble. A batch of seeds may suddenly experience an 

almost complete loss of viability, plants can be attacked by pests and though cultivation is done 

according to a set scheme, deviations in growth effects are expected. Substantial deviations 

usually have a cause, though, and in such cases, plant scientists have the advantage of being 

allowed to “kill the patient” and improve the setup in a successive experiment. However, a 

natural variation will always occur between individual plants, even within genotypes. When 

basing experimental work on such material, it is important to investigate how much of the 

variation in the experiment derives from random factors such as growth units and plants, and 

how much from the actual treatments. This provides insight into which performance level can be 

expected from calibration work, as a large influence from random factors hampers the 

identification of systematic effects. 

The experimental work of the present thesis was initiated as a screening of various methods and 

their ability to predict different nutrient deficiencies in plants. A number of spectroscopic 

methods were employed, and the two most successful findings resulted in Papers II, III and IV, 

employing NIR and chlorophyll a fluorescence. The contribution of random factors to the total 

variance within these measurements is examined more closely here to support the overall 

validity of the results. 

Near Infrared Spectra of Leaves 

Within Leaf and Within Plant Variability 

A batch of barley plants were cultivated in hydroponics, according to the method described in 

Paper II, and NIR spectra were recorded after four weeks, when deficiency was established in 

Cu-deprived plants. The within-leaf variation was investigated by measuring three different 

places in one leaf; on the middle of the lowest (basal), middle and apical (apex) thirds of the leaf. 

The positions are illustrated in Figure 4. 
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Figure 4. Positions of NIR measurements within a barley leaf, for investigation of within-leaf 
variability. 

Investigating the preprocessed (MSC and mean centered) data revealed that especially “apex” 

samples deviated from the “middle” and “base” samples and showed great variance within the 

group as well (Figure 5a). Performing a PCA on the same data confirmed this observation (Figure 

5b). 

  

Figure 5. Preprocessed (MSC + mean centering) NIR spectra of barley leaves measured in 
three different leaf positions (a) and scores plot of a PCA on the same NIR spectra (b). Both 
reveal “apex” samples as deviating strongly from “base” and “middle” samples. In (b), the 
separation is along PC1, which explains 96% of the total variation in data, demonstrating the 
high degree of deviation of “apex” samples. 

Part of the “base” samples deviate along PC2 from the main group of “middle” and “base” 

samples. However, as PC2 accounts for less than 3% of the total dataset variation, this spectral 

deviation is less significant than that of “apex” samples, which is also seen in the preprocessed 

spectra (Figure 5). 

Primary plant growth occurs at the apical meristems, meaning that the apex is the youngest part 

of the leaf (Raven et al., 1999). All measurements were carried out on the so-called “youngest 

fully developed leaf” (YFDL) of plants, however, these measurements imply that the term 

“youngest fully expanded leaf” would be more accurate, as the deviation of the apex clearly that 

compositional changes are ongoing and that this part is not yet fully developed in all leaves, 

though the leaf blade has indeed fully expanded. 
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The “apex” measurements along with “base” measurements were accordingly removed from the 

dataset. To avoid any uncertainties in future data analysis, all spectra recorded after this point, 

including those used in Paper II, were therefore derived from the middle of the leaves. 

Measuring a completely homogeneous sample repeatedly using NIR should theoretically yield 

identical spectra, if no degradation of NIR active tissue components or metabolites takes place 

and heating effects are avoided. Heating effects occur if a sample is measured repeatedly 

without removing it from the instruments in between measurements. In a PCA scores plot, 

heating is recognized as a gradual displacement of the sample, moving in one specific direction, 

as repeat number increases. However, leaves are far from homogeneous, with an irregular 

surface and the presence of veins. In a minor study, five samples were measured five times each, 

immediately after harvesting from the plant. The middle of the leaf was found, measuring was 

performed, and the leaf was removed from the instrument. Again, the middle was found, the 

leaf was placed and measured, and removed. No heating effect occurred, and a scores plot of a 

PCA on the data (preprocessed by MSC and mean centering) along with the remaining samples 

of the study, which were measured only once, is found in Figure 6. 

 

Figure 6. Scores plot of a PCA indicating the variability of measuring the same leaf samples 5 
times in repeat. 95% of total variation in the dataset was explained by the first two PC’s, 
presented in the figure. Repeated measurements are connected with lines; repeat number for 
each measurement is indicated in the figure. Remaining samples in the PCA are measured 
only once. Repeated measurements do not follow a specific direction, meaning that no 
systematic effect of repeat number is found to be of high importance. 

No systematic effect of the repeat number is seen, i.e. there is no specific grouping or direction 

of the repeats, meaning that no systematic degradation of tissue or metabolites within these 
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first, few minutes after harvest is indicated. However, it is evident that identical measurements 

from each leaf are absolutely not obtained, despite the identical procedure employed, and this 

constitutes a fundamental weakness of any method using NIR spectra derived from fresh barley 

leaves, or supposedly fresh leaves from any other plant species. Cu deficiency was not induced 

at an NIR-detectable level at the time of measuring, why all samples concerned must be 

regarded as control samples. To minimize the problem, several spectra could be collected from 

each sample, and the average or median spectrum used for analysis. This would, however, 

require equipment fitted more specifically for this purpose to enable sampling of a high number 

of leaves within a reasonable time frame. 

Variability of Hydroponic Growth Units 

Estimating the variability between hydroponic growth units is measuring the success of 

repeating the exact same conditions for plants cultivated in different units but provided in 

theory the same conditions. This needs to be done in a larger study, including many units, and 

simply investigating PCA scores plots will not provide the sufficient overview, as various effects 

of treatments need to be taken into account as well. 

Linear mixed models (proc mixed command in SAS version 9.3, SAS Institute, USA) is a method 

that estimates the contribution and variance of random factors as well as the contribution of 

systematic factors to the total variance in the data set. It has the general formulation: 

            (5) 

Where y is the vector of observations, b is the vector of systematic effects, a is the vector of 

random effects and e is the vector of residual error. X and Z are incidence matrices that relate 

observations to systematic and random effects, respectively (Hofer, 1998). In the present 

investigation, the only random effect that can be assigned specifically is the variation between 

hydroponic growth units. Systematic effects derive from nutrient level, day of measuring, due to 

progressing nutrient deficiency, and for the P experiment also the climatic treatment, as plants 

were cultivated under different light and temperature settings (see Paper III). The error term will 

include variation between plants within a growth unit and measuring error. As each sample is 

only measured once, these terms will be confounded and therefore cannot be separated. The 

observations vector, y, can contain score values from a selected latent variable of a PCA or PLS 

based on a relevant dataset. The predictions of variance for systematic, random and residual 

effects are joined to obtain the relative contribution of each for comparison. 

The NIR measurements of the time series of progressing Cu deficiency (Paper II) were used as a 

basis for the investigation of variability in NIR spectra between growth units. A PCA was carried 

out on the complete dataset, with preprocessing, MSC and mean centering, as described in 

Paper II. Where PC1 mainly related to the age of plants, PC2 showed a clear effect of increasing 

Cu deficiency (Figure 7). 
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Figure 7. Scores plot of a PCA based on preprocessed (MSC + mean centering) NIR spectra 
from the time series of progressing Cu deficiency (Paper II). 92% of total variation in the data 
set is explained by the first two PC’s. Plant age and degree of Cu deficiency interact, as Cu 
deprived plants go from healthy to deficient over time, why the separation between 
treatments is not completely clear in this figure. 

The output of the statistical analysis is found in Table 1, where it is seen that systematic effects 

accounted for 55 and 74%, respectively, of the explained variability in PC1 and PC2, and only 3 or 

2% could be ascribed to growth units. The residual error term contributed with 42 and 24%. In 

this case, error includes the variation between plants within a growth unit, which are subject to 

competition, and measurement error. In practice, measurement error will to some degree affect 

other terms in addition to residual error, but the larger the number of samples, the less this 

effect. 

Table 1. Total and relative contribution of systematic and assigned random (i.e. growth unit) 
effects as well as error to the explained variability in PC1 and PC2 scores. Together, 92% of 
the total variation in data is explained by PC1 and PC2. 

 
PC1  PC2 

 
Variance % of total  Variance % of total 

Systematic 0.094 55%  0.039 74% 

Growth unit 0.005 3%  0.001 2% 

Error 0.072 42%  0.013 24% 
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The contribution of random error is almost twice as big when analyzing PC1 scores compared to 

PC2 scores (Table 1). PC1, as stated, is for a large part spanned by sample age, and from   

Figure 5 it was derived that spectra were highly influenced by which part of the leaf blade was 

sampled or, in other words, the age of the sampling area. Whereas plant age, as measuring day, 

is included in the systematic part of the mixed linear model, the exact leaf age is not known and 

may vary from “just unfolded” to right before the next, younger, leaf is completely unfolded. Age 

of the sampling area is therefore very likely to be a main contributor to the relatively large 

random error, especially in PC1. The high variability that was observed between repeated 

measurements on the same leaf following the exact same procedure (Figure 6) is another 

contributor to random error in both PC1 and PC2 and must be regarded a basic weakness of 

recording spectra in NIR, and possibly other wavelength ranges, on fresh leaf samples.  

In spite of the large contributions of random error, it is demonstrated in Paper II and numerous 

other publications that correlations can in fact be found between NIR spectra and plant 

nutritional status (see Paper I for review), though in many cases, correlations are poor (e.g. 

Dealdana et al. (1995);Cozzolino and Moron (2004);Liao et al. (2012)). Measuring a large number 

of samples will generally increase robustness and to a higher degree enable models to find 

characteristics in the spectra related to treatment, despite the random error. Employing PLS-DA 

instead of PCA might also, as demonstrated in Paper II, improve the classification power for the 

NIR-based model. Finally of course, there will be cases where no fingerprint of a nutrient 

deficiency can be found in corresponding NIR spectra. 

Chlorophyll a Fluorescence Measurements 

The contributions to total dataset variation from systematic and random effects as well as from 

error were investigated for chlorophyll a fluorescence measurements, in the form of OJIP 

transients, in a similar way as for NIR data. No measurements to support a study of the effects of 

measuring position within the leaf were carried out, nor was repeatability of measurements in a 

single leaf investigated, why the contribution of these factors to the random variation cannot be 

explored. 

OJIP transients were recorded in the YFDL and 2nd YFDL of plants in experiment 2 of Paper III. A 

PCA was carried out on the differentiated and mean centered transients, i.e. a preprocessing 

similar to that employed in Paper III, and included control samples and three levels of 

increasingly P deficient samples, measured at three different measuring days. The scores plot of 

the first two PC’s is presented in Figure 8. 
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Figure 8. Scores plot of a PCA based on differentiated and mean centered OJIP transients 
measured on YFDL and 2nd YFDL in barley plants. The first two PC’s, explaining 63% of 
total dataset variation, clearly show systematic differences between the two leaf ages. Data 
from Paper III. 

As a highly phloem mobile nutrient, retranslocation of P from the older parts of the plant to the 

youngest parts takes place, and the general difference found between YFDL and 2nd YFDL was 

therefore expected. Inspecting the differentiated OJIP transients reveals that around the I-step, 

which is the main part of the transient affected by P deficiency, values of transients measured on 

the 2nd YFDL are at a lower level than transients from YFDL, for both control and P deficient 

samples. Structural differences between YFDL and 2nd YFDL, such as chlorophyll concentrations, 

are likely to cause this difference. As demonstrated in Paper III, applying a model developed on 

YFDL to 2nd YFDL samples does not work, and hence, settling on one specific leaf number is 

necessary. Choosing the 2nd YFDL for measuring purposes could be an advantage in terms of 

early detection of deficiency. However, the frequency of physiological spots and other minor 

damages on the 2nd YFDL’s was found to be rather high, why the YFDL was preferred for the 

analytical work. 

To investigate the relative contributions of systematic and random effects to the total dataset 

variance, mixed linear models were employed in a procedure similar to that for NIR spectra. A 

PCA was based on the dataset from experiment 1, Paper III, after differentiation and mean 

centering. The scores of PC1 and PC2 represent almost 80% of variation in data (Figure 9), and it 

is seen that PC1, explaining 61%, mainly reflects P concentrations. Thus, scores of PC1 were 

chosen as input for the statistical analysis. 
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Figure 9. Scores plot of a PCA based on differentiated and mean centered OJIP transients. 
More than 79% of total dataset variation is explained by the first two PC’s.  P1, P2 and P3 
treatments represent decreasing levels of P provided to plants. P3 samples are P deficient 
both measuring days, whereas P2 and to a lesser extent P1 go from healthy to P deficient 
between the two measuring days. This is reflected in the scores plot by samples moving 
diagonally, roughly in the direction from 1st to 3rd quadrant. Data from Paper III (experiment 
1). 

It is noted that the P3 plants, the most P deficient, and to a lesser degree also P2 plants have a 

large within group deviation along PC1. For P2 this regards mainly samples from the second 

measuring day, when P deficiency was most pronounced. Control and P1 plants have less within 

group variance along PC1. Phosphorus deficiency in plants is induced gradually when P supply is 

limited. As P becomes scarcer, the competition between plants increases and, thus, results in 

larger variation within growth units. Where P3 plants were clearly P deficient already the first 

measuring day, P2 plants moved from less to more pronounced P deficiency between measuring 

days 1 and 2, why the variation between individual plants also increased. 

Table 2 shows the result of the statistical analysis. It is seen that growth units contribute with 

almost no variation in the dataset. This is a very positive result, indicating once again that 

conditions in different hydroponic units are very similar when provided the same treatments. 

Residual error contributes with as much as 28% of the total explained variance, which is a lot. 

This error includes variation between plants, within leaf variation and measuring error. 
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Table 2. Total and relative contribution of systematic and assigned random (growth unit) 
effects as well as error to the explained variability in PC1 scores. PC1 explains 61% of total 
dataset variation. 

 Variance % of total 

Systematic 4450 71.2% 
Growth unit 21 0.3% 
Error 1777 28.4% 

 

The large variation observed within P2 and P3 treatments is likely to explain the significant size 

of the error term, if the variation is found within each bucket. This was further investigated by 

calculating the variance of PC1 score values within each bucket, averaging these values for 

treatments (P-level * Chamber * Day) and finally take the square root for comparison of average 

standard deviations. The results are presented in Table 3. Relatively low values (<30) are found 

for all control treatments, P1 treatments with one exception, P2 treatments on the first 

measuring day and for no P3 treatments. The highest values are found for P2 treatments on the 

second measuring day. This supports the observation of large variation within P2 and P3 

treatments, and that these are likely to be major contributors to the large residual error of the 

mixed linear models. 

On the second measuring day in cold climate treatment, the average standard deviation for P3 

plants was significantly lower than the three other results for P3 treatment. The severe degree 

of P deficiency in all plants in the growth unit at this stage might explain this lower level of 

variation, as all plants will be critically impaired by the deficiency.  
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Table 3. The average standard deviation within buckets for each combination of systematic 
effects, meaning P-level, chamber (climatic treatment) and measuring day. 

P-level Chamber Day Avr. Standard Deviation 

Control Warm 1 23.1 
Control Warm 2 16.3 
Control Cold 1 26.5 
Control Cold 2 25.6 

   

 P1 Warm 1 19.2 
P1 Warm 2 48.0 
P1 Cold 1 26.8 
P1 Cold 2 26.4 

   

 P2 Warm 1 15.5 
P2 Warm 2 78.6 
P2 Cold 1 16.0 
P2 Cold 2 80.0 

   

 P3 Warm 1 51.5 
P3 Warm 2 56.0 
P3 Cold 1 50.5 
P3 Cold 2 31.0 

 

When P nutrition becomes scarce, competition between plants is expected. A slight difference 

between plants in e.g. root biomass can in such a case have major influence on the share of the 

limited P that each plant is able to take up. Rapidly this will increase the differences between 

plants even more, and a large deviation within one growth unit occurs. It is indicated in Table 3 

that the large variability between plants occurs when nutrient levels decline and to a lesser 

degree when sufficient or only slightly limited P supplies are provided. The large error term is, 

thus, partly due to a biological competition. 

From the analysis of NIR spectra and OJIP transients it is concluded that the experimental 

methods employed were highly valid, as the main parts of total dataset variation derived from 

either systematic effects, i.e. treatments, or from random variation, which for a large part can be 

explained. The variability within leaves and between repeated measurements of OJIP transients 

is an obvious subject for further investigation, which would be of general interest for 

investigations of factors influencing chlorophyll fluorescence in plants. If using NIR to measure 

on fresh leaf material, improving the repeatability of sampling would decrease method error 

significantly. This could be done by optimizing sampling equipment for leaf analysis, enabling a 

number of consecutive measurements to mathematically “even out” the inhomogeneity of 

leaves. Improving the raw spectra this way would be expected to improve results of existing 

methods and may as well increase the possible applications. 
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Chapter 5 

Conclusions and Perspectives 

The aim of this thesis was to investigate whether latent deficiencies of essential plant nutrients 

can be detected by common spectroscopic techniques, using barley as a model plant. The work 

was initiated by methodological screening experiments, ending up in the development of two 

specific methods. The main conclusions are: 

 Near Infrared Spectroscopy can be used to distinguish between Cu deficient and Cu 

sufficient barley leaves. The method is specific for Cu, and the deficiency can be 

detected already at a latent stage. 

 A quantitative assessment of Cu concentrations using NIR results in high prediction 

errors. 

 Lignin concentrations are unaltered when Cu deficiency is first detected using NIR. 

Thus, decreased lignin concentration is not the first effect of Cu deficiency as 

commonly stated in the existing literature. 

 Near Infrared spectra of leaf samples are clearly affected by age and measuring 

position on the leaf.  

 Repeated NIR recordings on the same leaf show large variation. Consequently, 

several repeated measurements will be required to increase analytical precision. 

 

 Latent P deficiency is reflected in OJIP transients, with the main effect being a 

marked straightening of the I-step. The effect is specific for P deficiency. 

 Using OJIP transients, P concentrations in deficient plants can be assessed 

quantitatively. 

 The same effect of P deficiency on OJIP transients is found in tomato, indicating a 

mechanism affecting plant photosynthesis in a general manner. 

 Indications of specific effects in the OJIP spectra for deficiencies of S, Mg, Cu and Fe 

are found, in addition to the already known effect of Mn deficiency. 

 

 Variability between hydroponic growth units exposed to similar experimental 

treatment is very low for both NIR and chlorophyll a fluorescence measurements. 

 At deficient nutrient levels, a significant competition between plants within a 

hydroponic growth unit occurs.  
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Nutrient management in agriculture is as relevant as ever, though the character of the problems 

has large spatial variation. In Europe and North America, agricultural practice is very intensive, 

and environmental concerns are prevailing, with good reason. Methods to assist in optimal 

nutrient management are highly needed to maintain the high soil fertility and ensure optimal 

yields, while at the same time protecting the environment and cutting energy consumption from 

production and distribution of fertilizer. In China, mineral fertilizer along with livestock 

production have been identified as the major contributors to the deterioration of surface water 

quality (Chen et al., 2008), and optimization of nutrient management is therefore a major 

challenge. Good agricultural practice is a prerequisite for making the optimal use of even the 

most advanced, automated instruments and methods for assisting plant producers. But to 

optimize fertilizer management, assistance from analytical methods is crucial. This thesis 

demonstrates clearly that spectroscopic methods have huge potential for fast, cheap and 

accurate assessment of plant nutritional status. 

Spectroscopy to detect nutritional disorders is a little investigated field, with the exception of 

Vis-NIR, leaving many opportunities open. Further screening of methods and nutrient 

deficiencies is likely to reveal even more correlations, of which a number have been indicated 

during the work behind this thesis. In addition to detecting latent Cu deficiency using NIR (Paper 

II), many papers on prediction of a range of other, essential plant nutrients using NIR or Vis-NIR 

are found. Though not as thoroughly investigated previously, there are indications in this thesis 

that OJIP transients could be able to predict deficiency of a number of nutrients in addition to P. 

Assessing status of several nutrients using only one method or device would be a huge 

advantage, saving time during measuring as well as providing plant producers with a more 

complete assessment of plant nutritional status. This would be a great advantage for 

optimization of fertilizer management. 

The aim of fertilizer management can be condensed into assessing the right time, the right rate 

and the right place of fertilizer application. Whereas placement, e.g. spreading or precision 

placement, is a decision that must be taken directly by the farmer, spectroscopic methods can 

assist in determining both time and rate. Generally, instruments for fast determination of plant 

nutritional status can be either hand-held or tractor mounted. Advantages of tractor mounting 

include the fact that a complete field or area will be measured and the possibility of linking 

directly to tools for fertilizer application, enabling measuring and fertilizer application in one go. 

Mapping of the measured area is easily provided by connecting to GPS or other mapping 

systems from either hand-held or tractor mounted equipment; such systems are already 

implemented in existing devices. 

A hand-held instrument will result in a lower number of individual measurements and cannot be 

linked directly to fertilizer equipment. However, it is optimal to use as a diagnostic tool for 

monitoring plant nutritional status throughout the growing season as well as to test plants under 

suspicion of nutrient deficiency. For some nutrients, particularly micronutrients, varying the 

applied amount throughout a field may be unnecessary, and a hand-held instrument thus fully 

satisfies the need for analysis. Other advantages of hand-held equipment as compared to 

tractor-mounted include the price, which will be significantly lower. Sampling can be done much 

more precisely, placing the device e.g. exactly on a specific leaf or measuring for longer time, 

meaning that a broader range of methods can be incorporated into a hand-held device. Farming 
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in less accessible sites, such as rice terraces or vineyards on steep slopes, can benefit from a 

small, portable instrument but not from a tractor-mounted. Finally, for plant producers with no 

access to a tractor, a hand-held instrument could be of great assistance, provided they do have 

access to fertilizer, and the financial means and education to acquire and use such 

instrumentation. 

During development of methods, it is essential that more emphasis is put on specificity of the 

method to avoid misinterpretations. A low chlorophyll concentration misinterpreted as N 

deficiency may e.g. decrease, instead of increase, nutrient use efficiency (NUE) (Zillmann et al., 

2006). Likewise, assessing the variability of measurements is another important issue. Repeating 

a measurement on the exact same leaf may yield very different results, as demonstrated for NIR 

in this thesis. Sampling a high number of leaves may therefore be required to obtain a realistic 

indication of the nutritional status of a field or part of a field. This is especially important for 

hand-held instruments where a more limited number of measurements is performed. 
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ABSTRACT: Chemometric analysis of near-infrared (NIR) spectra recorded directly on fresh leaves of barley plants (Hordeum
vulgare, L.) enabled the separation of control and Cu deficient samples before any visual deficiency symptoms developed. This
demonstrates that the molecular structure of leaves is modified during latent Cu deficiency. Lignin biosynthesis is a primary
target of Cu deficiency, but lignin concentrations were unaltered when separation was first possible, indicating that alteration of
lignin composition, not concentration, is among the earliest effects of Cu deficiency in plants. Validation of chemometric models
using an independent test set found that 92% of samples were correctly classified as control or Cu deficient, respectively. Models
were undisturbed by including spectra from plants deficient in P, Mg, B, or Mn, establishing their specificity for Cu deficiency.
This study is the first to demonstrate that NIR has the potential to successfully diagnose the deficiency of an essential trace
element in plants.

KEYWORDS: barley (Hordeum vulgare, L.), copper (Cu) deficiency, NIR, spectroscopy, PCA, PLSDA, plant nutrition

■ INTRODUCTION

Copper is an essential micronutrient for plants, and Cu
deficiency is found worldwide, mainly in humic and sandy soils,
and in soils with high pH and Cation Exchange Capacity
(CEC). This results in considerable yield losses in plant
production. Cu deficiency in plants can be difficult to diagnose
and may not be recognized by the plant producer until it has
reached a stage where correction is no longer possible. Severe
Cu deficiency in cereals results in necrotic leaf tips, known as
“white tip disease”, which is caused by a collapse of cell walls
due to poor lignification.1 This is a key-symptom for Cu
deficiency in plants, caused by a general down-regulation of the
lignin biosynthesis.2 Lignin is a biopolymer, which is partly
responsible for the rigidity of plant cell walls, and it is
synthesized from three phenylpropanoid alcohols: coniferyl, p-
coumaryl, and sinapyl alcohols.3 These monolignols are
coupled to dimers and trimers by the enzyme laccase. Plant
laccase is a member of the multicopper protein family,
containing four Cu atoms per molecule,4 hence the correlation
to Cu status. The amount and composition of the different
monolignols vary with plant species and may also change
during plant development or as a result of stress.5

If Cu deficiency is latent, it will not result in any visual
symptoms during vegetative growth. Nevertheless, plant fertility
and productivity can still be severely affected either due to poor
lignification of anthers resulting in failure of pollen release6 or
because the number of pollen grains is highly reduced.7 The
first visual symptom of latent Cu deficiency in cereals is, thus, a
decreased grain set. This lack of clear visual symptoms in due
time for action is what causes Cu deficiency to be one of the
most challenging nutrient disorders to handle for the plant
producer. In the case of only limited yield loss, deficiencies may
never be recognized, and the prevalence of Cu deficiency could
therefore be much larger than commonly accepted.

The commonly used methods for the management of Cu
nutrition in crops are soil and, to some extent, plant analyses.
Soil analyses are typically carried out before the start of the
growing season and may thereby assist farmers in predicting
fertilization needs. However, the practical use of analyzing the
Cu concentration in soils has proven of little value, as the plant
available concentration of a nutrient often differs significantly
from the extractable nutrient concentration. Variations during a
growing season may also occur, depending on changes in the
soil water content.8 Plant analyses provide total concentrations
of essential nutrients in sampled plant tissue at a specific time of
growth, and these are related to sufficiency threshold values.
Unfortunately, the total concentration of a given nutrient does
not necessarily indicate whether the plant is optimally
supplied.9 The optimal concentration of a given plant nutrient
is highly dependent on plant species, cultivar, growth stage, and
level of other nutrients, especially N.1 A study in wheat and
cotton found no significant differences between Cu concen-
trations in leaves of Cu deficient and Cu sufficient plants.9

In order to develop methods for simple, fast, and inexpensive
plant analyses, various spectroscopic techniques have been
tested for their ability to predict nutrient concentrations in
plants. Near infrared (NIR) reflectance has been related to N
and P status in perennial ryegrass and sugar cane,
respectively.10,11 The L*a*b*, or CIELAB, system is a three-
dimensional system using the lightness (L*), green/red balance
(a*), and blue/yellow balance (b*) of a color. By photograph-
ing and analyzing leaf material in accordance with this system, it
has been used to assess the concentrations of N, P, K, Mg, or
Fe in various legumes, Brassica chinensis, and maize.12−14
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Chlorophyll concentrations are estimated by the ratio of light
transmittances at 650 nm and 940 nm in the commonly used
SPAD chlorophyll meter,15 though no strictly linear correlation
to chlorophyll is found.16 New, innovative methods count the
assessment of N level in plants by combining measurements of
polyphenolics and chlorophyll detected using absorbance in the
ultraviolet (UV) and visual (Vis) parts of the spectrum in a
hand-held device.17 Also tractor mounted equipment is found,
measuring indexes based on reflectance measurements in NIR
and red light (620−700 nm). These relate to chlorophyll
concentrations but not specifically to N level.18,19 Investigations
focus mainly on macronutrients, and the specificity of the
methods is rarely tested thoroughly, which is absolutely critical
for any practical use, as other deficiencies may occur in a field
situation. Furthermore, data are related to total nutrient
concentrations, which, especially for micronutrients, is not an
exact measure of the nutritional status of a plant. Finally,
investigations and discussions of how much growth conditions
influence the results and how this can be handled are essential
but yet often found missing. Altogether, this restrains the
applicability of the obtained results severely.
Enabling the plant producer to carry out analyses on the farm

or even in-field with results correlating directly to plant
nutritional status would be a major improvement. This can be
done by focusing on “the bioactive concentration”, which is
probed by investigating whether plant functions, for which the
nutrient is essential, are hampered. Thus, the impact of any
other factor influencing the optimal level is automatically taken
into consideration. One successful example of such a method is
the finding that Mn deficiency was correlated to the quantum
yield efficiency of PhotoSystem II (PSII) in barley.20,21

The present work investigates the spectral differences
between Cu sufficient plants and plants suffering from latent
Cu deficiency by analyzing the NIR range of the electro-
magnetic spectrum (800−2,500 nm/12,500−4,000 cm−1). The
differences detected by NIR spectroscopy are related to the
physiological changes induced during Cu deficiency, and it is
demonstrated that the NIR technology has a potential for fast
determination of the bioactive concentration of Cu in plants.

■ MATERIALS AND METHODS
Cultivation of Plants. Barley plants (Hordeum vulgare L., cv.

‘Chess’) were cultivated in hydroponics. In addition, plants of cv.
‘Matros’ were grown to produce an independent validation set. Seeds
were germinated for six to eight days in vermiculite and irrigated with
double demineralized water. Seedlings were transferred to black 4 L
containers with nutrient solution and aerated using steel medical
syringes suspended in the solution, which was changed weekly. The
control nutrient solution contained 200 μM H2PO4, 200 μM K2SO4,
300 μM MgSO4·7 H2O, 100 μM NaCl, 300 μM Mg(NO3)2·6 H2O,
900 μM Ca(NO3)2·4 H2O, 600 μM KNO3, 50 μM Fe(III)-EDTA-Na,
2.0 μM H3BO3, 0.8 μM Na2MoO4·2 H2O, 0.7 μM ZnCl2, 1.0 μM
MnCl2·4 H2O, and 0.8 μM CuSO4·5 H2O. During the first week of all
experiments, the concentration of micronutrients was reduced by 50%
in order to avoid EDTA poisoning of the young and sensitive plants.
To avoid Fe deficiency, additional 50 μM Fe(NO3)3·9 H2O was
supplied this week. All stock nutrient solutions were prepared in Milli-
Q water (Milli-Q Element, Millipore, MA, USA), and macronutrient
stock solutions were purified by Chelex-100 resin (Sigma-Aldrich,
USA) and allowed only trace impurities of cationic micronutrients. For
the entire growing period, Cu was excluded from plants selected for
the induction of Cu deficiency, and Mn was excluded from plants
selected to develop Mn deficiency. The pH was adjusted regularly to
6.0 ± 0.3 using ultrapure NaOH and HNO3 or HCl. Each container
held 12 plants, fitted into slits in circles of rubber foam covering the

top of the container. The number of containers varied in the different
experiments as noted below. Plants were cultivated in a growth
chamber with a light regime of 16/8 h day/night with 250−280 μmol
m−2 s−1 at plant level. Except from the time series of progressing Cu
deficiency (see below), temperature was kept at 20/15 °C day/night
and relative humidity at 75%.

Time Series of Progressing Cu Deficiency. A setup with 40
containers as described above was used. Twenty containers were
provided with optimal, control, conditions throughout the experiment,
and 20 containers were deprived of Cu throughout. Analyses were
carried out daily during 10 days, from 9 to 18 days after emergence
(DAE). The temperature was kept constant at 18 °C and the relative
humidity at 60%.

Manganese Deficiency, Resupply of Copper, and Cultivar
Variation Experiments. A setup with 60 containers as described
above was used. Fifteen containers were given control conditions, 15
containers were deprived of Mn, and 30 initially deprived of Cu. The
plants were measured regularly, and Mn deficient plants were
harvested 31 DAE. At 32 DAE, 15 containers were resupplied with
Cu and provided with control conditions for 17 days, until the end of
the experiment. NIR analyses were carried out regularly throughout
the 49 day growing period. In parallel with this, three containers of cv.
‘Matros’ provided with control conditions and three deprived of Cu
were cultivated. This validation set was measured and harvested 32
DAE.

Near Infrared Absorbance Analysis. Near infrared reflectance
was measured in the range from 10,000 to 4,000 cm−1 (1,000−2,500
nm) using a spectral resolution of 8 cm−1. Data were recorded for
every 3.86 cm−1, resulting in a total of 1556 data points. All
measurements were carried out in the middle of the youngest fully
developed leaf (YFDL). The NIR spectra were recorded on a Bomem
QFA Flex FT-NIR spectrometer (Q-Interline A/S, Roskilde, Den-
mark), but it was tested and verified that other spectrometers yielded
comparable results. The measured reflectance was converted into
absorbance as follows:

= −
⎛
⎝⎜

⎞
⎠⎟Abs

R
R

log
0

where Abs designates absorbance, R is reflectance of the sample, and
R0 is reflectance of a white standard reference. Each leaf was mounted
with the adaxial side facing the sampling window of the light source. A
black object was mounted on the abaxial side to prevent any light
interference. Only leaves without necrotic or chlorotic spots were
measured. Measuring order of samples was randomized in order to
avoid confounding treatments.

Plant Biomass and Growth Rates. Biomasses of roots and
shoots of individual plants were recorded at harvest. The two parts
were separated just above the seed position and weighed immediately
after NIR analyses were performed. Relative growth rates (RGR) were
computed as follows:

=
−
−

Y Y
t t

RGR
ln( ) ln( )0

0

where Y is fresh weight at measuring day t, and Y0 is fresh weight at t0,
the first measuring day of the experiment.

Quantum Yield Efficiency. Quantum yield efficiency of PSII,
expressed as Fv/Fm, was measured to diagnose Mn deficiency in the
Mn deficiency experiment, according to the method described by
Husted, et al.20 Leaves were dark adapted for a minimum of 30 min
using Hansatech leaf clips, after which the Fv/Fm ratios could be
determined using a Handy Plant Efficiency Analyzer (Hansatech
Instruments, Kings Lynn, UK). Healthy plants have Fv/Fm ratios
around 0.83, whereas a value of 0.55 indicates strong Mn deficiency.

Chlorophyll and Carotenoid Concentrations. Concentrations
of chlorophyll and carotenoids were determined in plant material from
the time series experiment. Approximately 1 cm of leaf material in full
width from the middle part of the YFDL was extracted for 24 h in
methanol. Absorbance was subsequently measured in a Genesys 10S
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UV−Vis spectrophotometer (Thermo Scientific, MA, USA), according
to the method described by Lichtenthaler and Wellburn.22

Lignin Concentrations. Leaf material originating from plants
grown in the same container was pooled in order to obtain sufficient
biomass for analyses of lignin and multielemental composition. After
freeze-drying, samples were ground in zirconium-coated jars
containing a zirconium-coated mill ball in a Retsch MM301 ball-
mill. Cell walls were isolated using the method described by Hatfield,
et al.23 in a microscaled version. Then, 10 mg samples were weighed
exactly into a centrifugal filter with a 0.45 μm nylon filter (Millipore
Ultrafree-MC, Millipore, MA, USA), and 500 μL of 80% ethanol was
added. The samples were sonicated for 10 min at ambient temperature
and centrifuged in a table-top centrifuge (Eppendorf MiniSpin, Fischer
Scientific, USA) for 15 s at 14,500 rpm. This extraction step was
repeated for a total of four cycles and followed by a single extraction
cycle using 500 μL of chloroform/methanol (2:1). Finally, samples
were rinsed twice by 500 μL of acetone and dried at 45 °C until
completely dry for approximately 20 min.
The lignin concentration in cell walls was determined as described

in the “microscale method using microplates” in Chang, et al.24 Four
to 6 mg of extracted cell walls were weighed exactly and transferred to
8 mL glass vials. One milliliter of 25% acetyl bromide in glacial acetic
acid was added and the vials closed tightly with Teflon coated screw
caps. Vials were placed in a 70 °C water bath for 30 min, shaken gently
every 10 min, causing degradation of cell walls together with
acetylation and bromine substitution of the lignin.25 The digested
samples were cooled on ice, and 5 mL of glacial acetic acid was added
to each vial followed by vortexing. After mixing, samples were left on
ice for a minimum of 30 min in order to allow residues of protein to
precipitate.26 Thirty microliters of each sample, including a blank, was
transferred in triplicate to a 96-well quartz microplate. In each well, 40
μL of 1.5 M NaOH, 30 μL 0.5 M hydroxylamine hydrochloride, and
150 μL of glacial acetic acid were added, and absorbance of the lignin
derivate was measured at 280 nm in a microplate spectrophotometer
(Eon Microplate Spectrophotometer, BioTek Instruments, Winooski,
USA). The method was verified by standard addition of 2, 4, 8, and
12% (of dry matter) pure lignin (Aldrich 471003, Sigma-Aldrich,
USA) to a control sample of barley leaf. The value “absorbance per mg
cell wall” was used for comparisons between samples.
Multielemental Composition of Leaves. The multielemental

composition of plants was analyzed using inductively coupled plasma−
mass spectrometry (ICP-MS) (Agilent 7500ce, Agilent Technologies,
Manchester, UK) or ICP−optical emission spectroscopy (ICP-OES)
(Optima 5300DV, PerkinElmer, Waltham, Massachusetts, USA). Prior
to analysis, approximately 20 mg of each freeze-dried, ground sample
was digested in 500 μL of 67−69% HNO3 (Plasmapure, SCP Science)
and 250 μL of 30% H2O2 (Ultrapure, Riedel de Haen̈, Sigma-Aldrich)
using a single reaction chamber microoven digestion system
(Ultrawave, Milstone S.r.l., BG, Italy). All samples were subsequently
diluted to 10 mL with milli-Q water (Milli-Q Element, Millipore) and
analyzed directly by ICP-MS as described by Laursen et al.,27 or by
ICP-OES as described by Laursen et al.28 A minimum of 5 samples of
digested certified reference material (spinach, NCS ZC73013, National
Analysis Center for Iron and Steel, China; and apple leaves, NIST
1515, National Institute of Standards and Technology, Gaithersburg,
MD, USA) was used in each analytical run for data quality evaluation.
Accuracy was generally better than 90% of the reference values for all
elements. Multielemental ICP-MS data was processed using the
MassHunter software (version B.01.01, Agilent Technologies), while
the WinLab32 software (version 3.1.0.0107, PerkinElmer) was used
for ICP-OES data.
Chemometric Analyses. Chemometric analyses were carried out

using Matlab R2011b (Mathworks, Inc., Natick, MA, USA) and
PLS_Toolbox 6.0.1 (Eigenvector Research, Inc., Wenatchee, WA,
USA). Three methods were used, namely principal component
analysis (PCA), partial least squares regression (PLS), and PLS
discriminant analysis (PLSDA), all explained briefly below.
Preprocessing of Spectra. Before analysis, data was prepro-

cessed. In the present work, multiplicative scatter correction (MSC)
followed by mean centering was used on all data. MSC is a standard

preprocessing approach for NIR data. By correcting the individual
spectra so that their slope and intercept are similar to those of the
mean spectrum, the irrelevant influence of scatter and offset is
minimized.29 Mean centering is done by subtracting the mean of all
spectra included in the model from each individual spectrum in order
to focus on the variation between samples.

Principal Component Analysis. Principal component analysis is
a method for reducing the number of dimensions in multivariate data
with a minor loss of information, thereby enabling a simpler, yet
comprehensive, overview of the main variations within the data set.
Data are visualized on information-rich axes named principal
components, where often the first few will be sufficient for showing
major differences between samples. For a more thorough introduction
to PCA, see Martens and Næs.30

Partial Least Squares and Partial Least Squares Discriminant
Analysis. The partial least-squares analysis has many similarities to
PCA, only where the new axes, here named latent variables, are
determined so as to maximize how much they are able to covary with a
set of responses in a y-matrix, for instance total concentrations of a
nutrient. The outcome is a regression model which is able to predict y-
values based on x-input. The PLSDA is an extension of the PLS
analysis, yielding a model focused on finding the variation that
separates two or more groups. Barker and Rayens31 discuss the
method more thoroughly.

Validation and Cross-Validation. When the number of samples
does not allow a separate validation set, as in most of the present work,
cross-validation is used instead. Cross-validating a model means that a
number of models are computed, excluding in turn all data in groups.32

The error of the predictions of y of the excluded data provides an
estimate of the error that would be obtained when predicting truly new
samples with the model. In the present work, plant samples grown in
the same container were excluded groupwise in the cross-validation, so
that the number of cross-validation groups equaled the number of
containers.

A PLSDA model was developed using 982 samples of cv. ‘Chess’
pooled from different, preliminary experiments. The experiments were
carried out under a variation of growing conditions, in both growth
chambers and the greenhouse, and P, Mg, Mn, and B deficient plants
were included in the control group. The model was validated on a
validation set containing 72 samples (cultivated in 6 containers) of cv.
‘Matros’. The independence of the validation set can be disputed by
the growing conditions, which were similar for the validation set and
120 samples of the calibration set. It should be noted, though, that the
cultivars and measuring days differed.

■ RESULTS

Plant Growth and Development of Cu Deficiency
Symptoms. The first visual difference between Cu treatments
in all experiments was a retardation of both shoot and root
growth in plants deprived of Cu, which increased clearly with
time (Figure 1). No Cu deficiency symptoms were apparent on
the leaves during the experimental period, but the characteristic
“white tip disease” developed in plants deprived of Cu when
they were cultivated for an extended period of up to 49 DAE
(Figure 2).

Chlorophyll and Carotenoids. A significant (p < 0.0001)
elevation of average carotenoid concentrations in plants
deprived of Cu, compared to that in control plants, was
shown throughout the time series (Table 1), indicating that the
plants were stressed. No differences were found in chlorophyll
concentrations between treatments (data not shown).

Elemental Composition of Plants. Multielemental
analysis showed that Cu was the only essential plant nutrient
differing consistently in concentrations between treatments. In
control plants, a slightly declining trend in the high Cu
concentrations was noticed from 10 DAE and onward (Table
2). Similar observations were made in control plants of the
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experiment running until 49 DAE. Plants deprived of Cu for
the entire period contained little Cu, whereas Cu deprived
plants resupplied with Cu at 32 DAE increased their Cu
concentrations rapidly and even exceeded the level in control
plants slightly but at a significant level (Table 3).
Lignin Concentrations. Lignin concentrations were

assessed in the time series of progressing Cu deficiency.
Comparing control samples with those deprived of Cu, no

significant differences were observed until 14 DAE. After that
time, lignin concentrations in Cu deficient plants were lower
compared to those of control plants, though an overall
increasing tendency was noted for concentrations in samples
of both treatments (Figure 3). At 17 DAE, the samples had

somewhat lower concentrations than expected and must be
regarded as outliers. This is not an unexpected incident, as the
number of biological repeats is very low.

NIR Analysis. NIR absorbance spectra were measured
directly on the adaxial surface of the YFDL of all plants. Copper
has restricted phloem mobility in plants, which is why the
expression of deficiency is expected first in the youngest leaves.

Figure 1. Shoot (a) and root (b) fresh weight of control and
increasingly Cu deficient plants from the time series of progressing Cu
deficiency. Values are shown as means (n = 24) ± 1 standard deviation
(SD). Means of treatments were significantly different in both shoots
and roots according to Student’s t test during the entire measuring
period.

Figure 2. Youngest fully developed leaf of control and heavily Cu
deficient plants at 49 DAE. Healthy leaf from a control plant (top) and
a leaf with clearly developed Cu deficiency symptoms, “white tip”,
from a plant deprived of Cu (bottom).

Table 1. Total Concentrations of Carotenoids (mg/g Fresh
Weight) at 9-13 DAE in Control and Cu Deficient Plants
from the Time Series of Progressing Cu Deficiencya

treatment

DAE control −Cu

9 0.06 ± 0.04 0.11 ± 0.06
10 0.05 ± 0.02 0.10 ± 0.03
11 0.04 ± 0.03 0.15 ± 0.04
12 0.07 ± 0.03 0.11 ± 0.08
13 0.15 ± 0.04 0.20 ± 0.05

aValues are shown as means (n = 24) ± 1 SD. Concentrations differed
significantly according to Cu treatment (p < 0.0001).

Table 2. Total Cu Concentrations (μg g−1 Dry Weight) at 9-
13 DAE in Control and Cu Deficient Plants from the Time
Series of Progressing Cu Deficiencya

treatment

DAE control −Cu

9 10.1 ± 0.2 2.4 ± 0.0
10 15.2 ± 0.6 2.2 ± 0.0
11 14.7 ± 0.4 1.6 ± 0.1
12 13.0 ± 0.2 2.5 ± 0.0
13 13.2 ± 0.1 1.8 ± 0.0

aValues are shown as means (n = 2) ± 1 SD. All measuring days and
means of treatments were significantly different according to a
Student’s t-test.

Table 3. Total Cu Concentrations (μg g−1 Dry Weight) in
Control, Cu Deficient, and Cu Resupplied Plants from the
Cu Resupply Experimenta

treatment

DAE control −Cu Cu resupplied n

28 20.3 ± 4.9 0.9 ± 1.1 5
35 17.1 ± 2.1 <LOD 4.6 ± 1.5 6
44 10.7 ± 2.0 <LOD 13.4 ± 1.4 3
49 11.6 ± 1.2 <LOD 14.6 ± 1.5 5

aMeasurements are derived from 28-49 DAE, where 35-49 DAE is
equivalent to 3−17 days after resupplying Cu. Values are shown as
means (n indicated in table) ± 1 SD, and concentrations below the
limit of detection (LOD) are designated <LOD. All measuring days
and means of treatments were significantly different according to a
Student’s t-test.

Figure 3. Lignin concentrations in the YFDL of control and
increasingly Cu deficient plants from the time series of progressing
Cu deficiency. Expressed in units of absorbance at 280 nm per mg
isolated cell wall material after derivatization of lignin. Values are
shown as means (n = 2) ± 1 SD. Means of treatments were
significantly different from 14 DAE according to a Student’s t test.
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The adaxial side was chosen due to practical considerations, as
the leaf was the easiest to place on the NIR instrument this way.
In Figure 4, an example of raw and preprocessed spectra is
shown together with the raw spectrum of pure lignin. Using
only raw spectra, no immediate classification of an unknown
spectrum would be possible due to the overlapping of spectra
from the two treatments. After preprocessing, the spectra
separate systematically according to treatments in the beginning
of the spectrum, at 5,200−5,300 cm−1 and at 6,800−7,100
cm−1. At these specific ranges, the spectrum of lignin is also
found to peak. From 7,500−10,000 cm−1, the preprocessed
spectra are similar for both treatments and contain little
information about the plant tissue chemical composition. This

was found to be a general pattern for all spectra measured, and
consequently, this part of the spectrum was omitted before
modeling.

Partial Least Squares Model. We tested whether the
obtained NIR spectra could be related to total Cu
concentrations in leaves, using a PLS model developed on
data from the Cu resupply experiment. The Cu concentrations
in leaf tissue span the range from below the limit of detection
and up to almost 28 μg Cu g−1 dry matter. A calibration based
on 7 latent variables resulted in a cross-validated model with a
root mean squared error of cross-validation (RMSECV) of 5.7
μg Cu g−1 dry matter. The RMSECV is the average error in
cross-validation and hence a measure of the inaccuracy of the

Figure 4. Raw (a) and preprocessed (b) NIR spectra from 13 DAE in the time series of progressing Cu deficiency; the spectrum of pure lignin is
inserted in panel a. Preprocessing was carried out using MSC and mean centering.

Figure 5. Score plots for PCA models based on NIR spectra from plants in the time series of progressing Cu deficiency. The principal components
performing optimal separation of treatments in each model are presented, from 9−13 DAE.
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predictions. With a concentration range from below the
detection limit to 28 μg Cu g−1 dry matter, 5.7 μg Cu g−1

dry matter must be considered a relatively large error value.
The poor prediction quality of the calibration is further
substantiated by the squared correlation coefficient (R2) for
cross-validated data, which is 0.5. Thus, a model based on NIR
absorbance data is unlikely to predict the total concentration of
Cu in leaves at a satisfactory level.
Principal Component Analysis Models. In the time

series of progressing Cu deficiency, spectral data were analyzed
for each separate measuring day by PCA using 2 to 4 principal
components and investigating the ability of the model to
separate samples into two groups according to Cu treatment.
The separation between treatments improved daily from 9
DAE, when the first analyses were carried out, to 13 DAE,
when an almost complete separation was obtained (Figure 5).
From 14 to 18 DAE, the separation of groups remained close to
complete, with only few outliers as exceptions (data not
shown). The loadings of the first principal components were
found to peak in the same ranges as the raw spectra, i.e., 5,200−
5,300 cm−1 and 6,800−7,100 cm−1 (loadings not shown).
Hence, depriving plants of Cu affects molecules with strong
absorption in these specific ranges, thereby enabling a
separation of Cu treatments using the spectral information.
Analyzing all NIR spectra collected during the time series of

progressing Cu deficiency in one PCA resulted in a model
exhibiting a clear effect of age (Figure 6a). The first principal

component declines in value with increasing sample number,
i.e., increasing age of the plant. In the second principal
component, the effect of Cu treatment is found. Samples are
separated according to treatment from sample number 234,
equivalent to 14 DAE, and onward (Figure 6b). This is one day
later than the first occurrence of complete separation by a
model based on data from only one day at a time (Figure 5).

Validation of Specificity. The physiological effects of Mn
and Cu deficiencies have a number of similarities, and they are
therefore likely to be confused. Hence, the specificity of the
method using NIR absorbance spectra to detect Cu deficiency
could be examined to some extent by investigating whether Mn
and Cu deficiencies differ in spectral fingerprints. This was
tested in a setup where both disorders were induced, along with
the cultivation of control plants with ample supply of nutrients.
Severe but still latent Mn deficiency was established 31 DAE,

around Zadoks growth stage 23, with Fv/Fm ratios of 0.55.
Control plants had Fv/Fm ratios of 0.82, and Cu deficient
plants were only slightly lower, at 0.79, which does not indicate
any critical PSII malfunctioning of the plant. The NIR
absorbance spectra of the YFDL on all plants were measured
on this day and a cross-validated PCA developed. The score
plot of this model shows that Cu and Mn deficient plants have
separated from control plants and from each other along the
first and to some extent the second principal component
(Figure 7).

A method for diagnosing a nutritional disorder must ideally
be efficient at a stage where the disorder can be remedied and
the plants brought back into a growth condition similar to that
of control plants. Whether models based on NIR spectra fulfill
this requirement was tested by resupplying Cu to plants
suffering from latent Cu deficiency as indicated by comparing
NIR absorbance spectra with those of control plants. Thirty-
two DAE, at Zadoks growth stage 22−23, Cu deficiency was
clearly established according to a cross-validated PLSDA model
with four latent variables on the NIR absorbance spectra of the
YFDL (Figure 8), and half of the Cu deficient plants were
resupplied with Cu to the same level as that used in the control
treatment. The subsequent plant response was followed by
measuring NIR spectra regularly in order to establish whether
the deficient plants resupplied with Cu were brought back into
a healthy state. Each measuring day, a PLSDA model was
constructed based on control and Cu deficient samples. Using
this model, the Cu resupplied plants were predicted to see
when the major part would be classified as control plants. Four
of the PLSDA models are shown in Figure 9, based on data
from 3, 10, 14, and 17 days after resupply (DAR) or 35, 42, 46,
and 49 DAE (Zadoks growth scale 23−29), and they used 6, 6,

Figure 6. Score plots presenting the first (a) and second (b) principal
component versus measuring day (DAE) of a PCA model based on all
NIR spectra collected in the time series of progressing Cu deficiency.
One batch of control and Cu deficient samples was measured each day.
The order of samples within the measuring day and treatment is
random. The first and second principal components correspond
predominantly to the effect of age and Cu treatment, respectively.

Figure 7. Score plot of a PCA model based on NIR spectra from
control, Cu deficient, and Mn deficient plants 31 DAE. The two
deficiencies separate mainly along the first principal component,
whereas especially control plants tend to have higher values along the
second principal component.
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7, and 9 latent variables, respectively. It is seen that the spectra
of the YFDL of the Cu resupplied plants gradually became
comparable to those of the control plants.
NIR spectra of 982 samples from different, preliminary

experiments were pooled in a common calibration set, and a
PLSDA model separating control from Cu deficient samples
was developed. Plants deficient in P, Mg, Mn, and B alone or in
combination with Cu deficiency were included in the

calibration set, according to Cu status, in order to maximize
robustness. The model was validated on a 72 sample validation
set, half of which were control samples, and half were deprived
of Cu. In order to introduce variation between cultivars in the
investigation, these plants were of cv. ‘Matros’. Sixty-six of the
72 validation samples, or 92%, were classified correctly using
the developed PLSDA model.
A model developed exclusively on 120 calibration samples,

out of the 982, which were cultivated under similar growing
conditions as those of the validation set, was able to classify 62
out of 72, or 86%, of the validation samples correctly. Hence,
including only samples cultivated under similar growing
conditions in the calibration and validation sets did not
improve the performance of the model. Leaving out the same
120 samples of the calibration resulted in a model that classified
the validation set as outliers, thereby showing that growing
conditions are of major importance to the NIR spectra of barley
leaves.

■ DISCUSSION

Score plots of PCA models show that it is possible to
distinguish between control and Cu deficient leaf samples based
on NIR spectra (Figure 5). As Cu deficiency progressed, the
separation improved, demonstrating that the molecular
structure of plants exposed to different Cu treatments differed
more and more from control plants. The only visual symptom
present was growth retardation of roots and shoots when
compared to those of control samples. In a field situation where

Figure 8. Cross-validated predictions of Cu treatment according to a
PLSDA model based on NIR spectra from control and Cu deficient
samples measured 32 DAE. Four latent variables were used in the
model. The dashed line indicates the optimal separation of treatments,
resulting in a clear division.

Figure 9. Predictions of Cu resupplied plants according to PLSDA models based on NIR spectra from control and Cu deficient plants. X-axes show
sample numbers, i.e., they refer to the treatment of the samples. The dashed lines indicate the optimal separation of treatments. Data are derived
from 3, 10, 14, and 17 days after resupplying Cu. The models use 6, 6, 7, and 9 latent variables. With time, an increasing part of the Cu resupplied
samples are predicted as control plants. From 14 DAR, they are predominantly predicted as control samples, and this picture has not changed 17
DAR.
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no control plants are available, the deficiency would therefore
be visually undetectable.
Validity of Method. The specificity of the method was

tested in a setup where both Cu and Mn deficiencies were
induced, along with the cultivation of healthy control plants.
Copper and Mn deficiencies to some extent affect the same
processes in plants, which is why Mn deficiency is the disorder
most likely to be mistaken for Cu deficiency using NIR. Both
micronutrients are essential to the biosynthesis of lignin, which
is downregulated during deficiency,1 and both are components
of SOD’s, i.e., Mn-SOD and Cu−Zn−SOD. Also, photosyn-
thesis is affected by the deficiency of both Mn and Cu, with Mn
deficiency mainly depressing PSII20 and Cu deficiency mainly
affecting the activity of PSI.1 A PCA model successfully
separated NIR spectra of Cu and Mn deficient samples from
both control plants as well as each other, before any visual
deficiency symptoms had appeared (Figure 7). Half of the Cu
deficient plants were resupplied with Cu when clearly separable
from control plants using PLSDA on NIR spectra (Figure 8).
Fourteen days after resupply, the resupplied plants were
predicted, according to a PLSDA model, as belonging to the
control group or just around the threshold value separating
treatment groups (Figure 9). Hence, it is shown that a hidden
Cu deficiency, detectable using NIR spectra, can be remedied
and appears not to have caused any irreversible damage at this
stage of development. Cu concentrations in the resupplied
plants rapidly rose to levels significantly higher than those of
control plants (Table 3). It is, thus, demonstrated that plant
metabolism, as reflected by the NIR spectra, needs time to
equilibrate after having been exposed to a nutrient disorder,
though a sufficient amount of nutrient is provided rapidly.
Further testing of the specificity was carried out by using

PLSDA models, which are focused on separating groups and
which produce actual predictions. A PLSDA model was
developed, based on 982 samples pooled from various
experiments carried out in different climatic conditions,
harvested at different ages and levels of Cu deficiency, and
including plants subjected to other nutritional disorders (Mn,
Mg, B, and P) in addition to Cu. This model was able to predict
92% of a 72 sample validation set of a different cultivar,
‘Matros’, correctly. Limiting the calibration set to 120 samples,
which were cultivated under the exact same growing conditions
as the validation set, decreased the correct classifications slightly
to 86%. This shows that the advantage of similar growing
conditions and ages for calibration and validation sets can be
outweighed or at least balanced by including a large number of
samples covering a range of growing conditions, even combined
with several other nutritional disorders and across various ages
in the calibration set. Thus, it is demonstrated clearly that the
chemometric models developed from NIR spectra were able to
identify general characteristics in the spectra, which are
indicative of Cu deficiency, even when applying models to a
different cultivar. When the 120 samples were excluded from
the calibration set, the validation set became an outlier to the
model, showing that growing conditions do affect the spectral
characteristics to a high degree. In order to develop a robust
model that can be used in practical agriculture, it will therefore
be necessary to collect a wide variety of data from plants grown
under different climatic conditions, in a number of seasons, and
probably also from as many different geographical locations as
possible. Though genotype in this case appears to be of little
importance, most likely numerous cultivars must be included to
develop a generally applicable model.

Growth Characteristics. Lignin concentrations in leaves of
control and Cu deficient plants in the time series of progressing
Cu deficiency did not differ significantly until 14 DAE (Figure
3), the day after complete separation was found using a PCA
model (Figure 5). This result was surprising, as lignin
concentration in leaves was previously found to decrease
during Cu deficiency,33 albeit this finding was derived from
considerably older plants than those in the present experiments.
The spectrum of pure lignin (Figure 4) in the range from 4,000
to 7,500 cm−1 peaked at the same wavelengths as the loadings
of models separating control from Cu deficient samples,
indicating that lignin could be responsible for the separation of
groups. Curiously, when beginning separation between Cu
treatments was noted in PCA score plots, no separation was
found for lignin concentrations yet, which is why this might not
be the sole factor causing separation of Cu treatments. During
stress, the organization and chemical composition of lignin in
the cell walls have previously been shown to change, as
observed in black cottonwood using FT-IR.5 NIR spectra are
the overtones of signals observed in the IR part of the
electromagnetic spectrum, why similar changes are very likely
to be detectable also using NIR. Specifically identifying the
lignin structures in a new investigation would give more clarity
regarding the degree of organizational change and how fast it
occurs.
The presence of latent Cu deficiency in plants deprived of Cu

was stated in all experiments by the gradual decrease in total Cu
concentrations, accompanied by stunting of growth (Tables
2−3 and Figure 1). We observed that only when cultivating
plants deprived of Cu for a prolonged period, up to 49 DAE,
serious “white tip disease” developed. Supporting the stressed
state of the Cu deficient plants is the increase in carotenoids
concentrations relative to control plants, as these generally rise
when the photosystems or photoprotective components are
damaged as during Cu deficiency.1,34

Perspectives for Practical Use. Commercial databases for
NIR-based grain analysis have been developed by several
private companies, including FOSS Analytical, which has been
pioneering the application of NIR and Fourier transform−
infrared (FT-IR) analysis on food and agricultural products. At
first, predictions were only reliable for samples within a very
limited geographical origin, but stability of the calibrations
increased steeply with increasing numbers of growing seasons
and locations included. After collecting more than 30,000
samples from all over the world during 25 years, these
calibrations now span a huge variation, and an accuracy
superior to routine wet chemistry on common samples has
been obtained.35,36 Likewise, a very large data collection may be
necessary in order to build a global calibration for the detection
of Cu deficiency in barley. Local calibrations may be developed
using much smaller data sets, but for robustness, a number of
seasons should be included since climate and other growing
conditions are, as shown, factors of great influence on the
spectra of barley leaves.
The phenomenon of increasing quality of calibrations with

increasing variation and size of the data set has also been
described by Xu, et al.,37 who developed PLS models based on
NIR spectra to predict concentrations of chlorogenic acid in
plant extracts during ethanol precipitation of starch, protein,
polysaccharides, and inorganic acid salts. For predicting N
concentration in grasses using NIR, it has been shown that the
effect of year of growth is of significant influence, and a number
of years have to be included to develop a robust calibration.11
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On the basis of this, it is suggested that by careful and broad
selection of calibration samples, a robust calibration for
detection of Cu deficiency in cereals may be developed even
though a massive database is not yet available.
An attempt to develop a PLS model based on NIR spectra to

predict Cu concentrations in plants resulted in very poor
performance. This is in full accordance with previous findings
for Cu and other essential nutrients, even when combining NIR
with Vis spectra,38 and is explained by the fact that spectra do
not contain direct information about concentrations of
elements but are affected by molecular movements.39,40

Cu deficiency is not only a problem limited to cereal
production. In plantations of pine and eucalyptus species, Cu
deficiency comprises a limitation to optimal growth and
development.41,42 Similar problems are also observed in the
horticultural plant production, including the cultivation of
Prunus species.43 Thus, it would be of interest to investigate
whether NIR analyses of dicot leaves also show a specific
correlation to Cu deficiency and sufficiency and, if they do,
develop a method for diagnosing disorders at early stages also
in these species.

■ AUTHOR INFORMATION

Corresponding Author
*Tel: +45 3533 3498. E-mail: shu@life.ku.dk.

Notes
The authors declare no competing financial interest.

■ ABBREVIATIONS USED

Abs, absorbance; DAE, days after emergence; DAR, days after
resupply; FT-IR, Fourier transform infrared; ICP-MS/-OES,
inductively coupled plasma−mass spectrometry/optical emis-
sion spectroscopy; LOD, limit of detection; MSC, multi-
plicative scatter correction; NIR, near infrared; PCA, principal
component analysis; PLS, partial least squares; PLSDA, partial
least squares discriminant analysis; PSI/PSII, photosystem I/
photosystem II; R2, squared correlation coefficient; RGR,
relative growth rate; RMSECV, root mean squared error of
cross-validation; SD, standard deviation; SOD, super oxide
dismutase; UV, ultraviolet; Vis, visual; YFDL, youngest fully
developed leaf

■ REFERENCES
(1) Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F.
Function of Nutrients: Micronutrients. In Mineral Nutrition of Higher
Plants, 3rd ed.; Marschner, P., Ed.; Elsevier: London, 2012; pp 191−
248.
(2) Claus, H. Laccases: structure, reactions, distribution. Micron
2004, 35, 93−6.
(3) Lin, C.-C.; Chen, L.-M.; Liu, Z.-H. Rapid effect of copper on
lignin biosynthesis in soybean roots. Plant Sci. 2005, 168, 855−861.
(4) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Multicopper
oxidases and oxygenases. Chem. Rev. 1996, 96, 2563−2605.
(5) Gou, J. Y.; Park, S.; Yu, X. H.; Miller, L. M.; Liu, C. J.
Compositional characterization and imaging of “wall-bound” acylesters
of Populus trichocarpa reveal differential accumulation of acyl
molecules in normal and reactive woods. Planta 2008, 229, 15−24.
(6) Dell, B. Male-sterility and anther wall structure in copper-
deficient plants. Ann. Bot. (Oxford, U.K.) 1981, 48, 599−608.
(7) Takahashi, M.; Terada, Y.; Nakai, I.; Nakanishi, H.; Yoshimura,
E.; Mori, S.; Nishizawa, N. K. Role of nicotianamine in the intracellular
delivery of metals and plant reproductive development. Plant Cell
2003, 15, 1263−1280.

(8) Brennan, R. F.; Bolland, M. D. A. Comparing soil and tissue
testing of copper for early growth of wheat. Commun. Soil Sci. Plant
Anal. 2006, 37, 1451−1470.
(9) Rao, N. R.; Ownby, J. D. Development of an ELISA for
estimation of the copper nutritional-status of wheat and cotton. Plant
Soil 1993, 155, 453−456.
(10) Chen, M.; Glaz, B.; Gilbert, R. A.; Daroub, S. H.; Barton, F. E.;
Wan, Y. Near-infrared reflectance spectroscopy analysis of phosphorus
in sugarcane leaves. Agron. J. 2002, 94, 1324−1331.
(11) Gislum, R.; Micklander, E.; Nielsen, J. P. Quantification of
nitrogen concentration in perennial ryegrass and red fescue using near-
infrared reflectance spectroscopy (NIRS) and chemometrics. Field
Crops Res. 2004, 88, 269−277.
(12) Graeff, S.; Steffens, D.; Schubert, S. Use of reflectance
measurements for the early detection of N, P, Mg, and Fe deficiencies
in Zea mays L. J. Plant Nutr. Soil Sci. 2001, 164, 445−450.
(13) Li, B.; Liew, O. W.; Asundi, A. K. Pre-visual detection of iron
and phosphorus deficiency by transformed reflectance spectra. J.
Photochem. Photobiology., B 2006, 85, 131−9.
(14) Wiwart, M.; Fordon ́ski, G.; Żuk-Gołaszewska, K.; Suchowilska,
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Abstract 

Chlorophyll a fluorescence from dark-adapted leaves reflects the functionality of the pho-

tosynthetic metabolism of plants. It is expressed in OJIP transients, and here we demon-

strate for the first time that the shape of the transients gradually changes during P defi-

ciency, when the so-called I-step disappears. This effect is used successfully to determine 

whether barley plants (Hordeum vulgare, L.) are deficient or non-deficient of P, and to 

quantitatively assess the P concentrations of deficient plants. The method is shown to be 

specific for P deficiency. It is furthermore demonstrated that the same effect occurs in 

tomato plants (Solanum lycopersicum, L.), indicating that a general correlation between 

plant P nutrition and photosynthesis has been identified. 

This discovery opens the possibility of producing small, easy to use analytical instru-

ments that will allow for accurate in-situ control of P fertilizer addition to ensure optimal 

yields without excessive use of the worlds limited P reserves. 

Introduction 

The world population is estimated to reach 9 billion people by 2050. This means that 

global agriculture faces the enormous challenge of increasing food production by 70-

100%, while at the same time handling the uncertain consequences of global climate 

change and reducing its environmental footprint
1-3

. A major challenge related to this is 

the supply and use of P to support plant production
4-6

. 

Phosphorus is an essential plant nutrient, meaning that plants cannot fulfill a complete 

lifecycle without P. An estimated 30% to more than 50% of agricultural soils in the world 

are P deficient and need fertilizer addition to ensure optimal yields
5,6

. However, phos-

phate rock, the main source of P for fertilizers, is a finite natural resource, and the known, 

clean rock phosphate reserves are estimated to last as little as 50 years in the gloomiest 

forecasts
5,7

. This makes P a potential strategic material similar to oil, as very few coun-

tries control the vast majority of the known reserves
5-8

. Concurrent with the dwindling of 

the raw material, an immense over-use is found in some parts of the world, causing eu-

trophication of water resources while elsewhere, P depletion results in severe yield limita-

tions
5,6

. Phosphorus therefore plays a key role in enabling an increase in food production 

while excessive use is a significant contributor to the environmental impact of agriculture. 
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To manage agricultural input optimally, methods for monitoring plant P status during the 

growing season and testing for acute P deficiency are needed. At present, total P concen-

trations of plants can be determined, but this requires modern laboratory facilities and in-

volves considerable time consumption for sample transportation, processing and analysis. 

Here, we present a method that allows for fast, easy, non-destructive, on-site assessment 

of the plant P status by recording the so-called OJIP transient of a dark-adapted leaf. 

When a leaf is hit by actinic light, a large part of it is absorbed and used for photosynthe-

sis. The remaining light is either reflected directly or, for 2-10% of the absorbed light, it 

is re-emitted as fluorescence from the chlorophyll in the leaves
9-11

. This is commonly 

known as chlorophyll a fluorescence and is closely related to the photosynthesis in the 

leaf. When a dark-adapted leaf is exposed to continuous, actinic light, the resulting fluo-

rescence forms a so-called Kautsky curve
10

, with the rising part typically referred to as 

the OJIP transient after the four plateaus it forms (Fig. 1). After reaching a maximum, the 

P-step, at approximately 0.3 seconds, the fluorescence intensity declines again until it 

reaches a steady state in a matter of minutes
9,10,12

. 

 

Figure 1: OJIP transient of a healthy leaf plotted on a logarithmic timescale. The fea-

tures that give rise to the O-J-I-P designation are highlighted. Leaves were dark-adapted 

for 20 minutes prior to measuring the OJIP transient. 

Physiologically, the OJIP transient describes the changes occurring in a leaf that initially 

has had its photosynthesis halted through dark adaption. This renders the reaction centers 

of photosystem II (PSII) oxidized, meaning that they are ready to process photons col-

lected by chlorophyll. As the leaf is illuminated with actinic light, the OJIP transient rep-

resents the process towards all reaction centers eventually being reduced at peak fluores-

cence intensity
11,13

. Thus, while the fluorescence itself represents photons that are not 

processed by the photosynthesis, it does provide a unique insight into the workings of the 
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photosynthesis, arguably the most important biochemical pathway on the surface of the 

Earth
11,14,15

. 

It is not fully understood which processes in the photosynthetic electron transport chain 

the different steps of the OJIP transient are related to. The first rise (2ms) from O to J is 

referred to as the photochemical phase due to its dependence on the intensity of the in-

coming light. Commonly this phase is assumed to reflect the first reduction of 

plastoquinone A, QA, in PSII
11

. The second part, from J over I to P, is called the thermal 

phase due to its temperature sensitivity. This phase is much slower than the first, and ends 

when all QA is reduced
11

. The physiological reasoning behind the course of the OJIP tran-

sient, and the thermal phase in particular, is much debated. J, I and P steps represent ki-

netic bottlenecks in the electron transport chain, and relations to reduction of 

plastoquinone and activity in PSI have been suggested for the J-I and I-P phases, respec-

tively
16,17

. However, a wide array of alternative explanations has been presented, and 

there are strong indications that the view on the mechanisms behind OJIP transients needs 

to be broadened
18

. 

Consistent with their known influence on the photosynthetic metabolism, deficiencies of 

Fe, Cu, Mg, Mn and S have previously been shown to affect the OJIP transient
19-24

. It has 

also been reported that P has an effect on OJIP transients, although some of the reported 

effects seem mutually exclusive
25-28

. However, except for Mn
19

, no specific effect of defi-

ciency of any one element on the course of the OJIP transients has been described.  

We present the unique finding that P deficiency causes the I-step in the OJIP transient to 

‘straighten’ and disappear as a step. It is demonstrated that the effect is specific for P de-

ficiency for both barley and tomato plants and undisturbed by other nutrient deficiencies. 

Furthermore, it is shown that it is possible to determine whether a plant is P sufficient or 

deficient, and to quantitatively determine the P concentration in case of deficiency. 

Results 

Two independent experiments using hydroponically cultivated barley were conducted to 

test the ability to classify plants as P deficient or sufficient and quantitatively determine 

the P concentrations. One experiment was conducted in growth chambers at two different 

climatic conditions and one in greenhouse conditions; thus, the experiments can be con-

sidered mutually independent and were used for training- and validation purposes respec-

tively. 

Plant Growth and Development 

Decreasing levels of plant available P was manifested in lower total biomasses and re-

duced tillering. Root growth was increasingly prioritized relative to shoot growth as P de-

ficiency became more severe, and high light/low temperature further enhanced this effect 

(Fig. 2 and Supplementary Table 1). Only plants exposed to a combination of the lowest 

P levels and the high light/low temperature treatment developed the characteristic, red 

color of P deficient plants. This anthocyanosis was, however, only detected on the leaf 

margins of the most P deficient plants (Supplementary Table 1). Carotenoid concentra-
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tions were stable for all treatments, whereas chlorophyll concentrations decreased slightly 

with decreasing P levels (Supplementary Table 1). 

 

Figure 2: Pictures of plants from four measuring days: 21 (a), 23 (b), 28 (c) and 30 (d) 

DAT. Increasing levels of P deficiency were induced in P1-P3 plants up to 21 DAT, after 

which they were completely deprived of P up to 28 DAT. At 28 DAT, P1-3 plants were re-

supplied with P at control level. The increased root/shoot ratio of P deficient plants can 

be noted, but no visual leaf symptoms of P deficiency occurred. 

Elemental Concentrations 

Phosphorus concentrations in leaves were significantly affected by P treatments as well as 

climatic conditions, and plants ranging from having a so-called luxury uptake to severe P-

deficiency
29

 were obtained. Leaf P concentrations were clearly affected by reduced P 

availability 21 days after transplanting (DAT), and all P deficient plants experienced fur-



5 

 

ther decreases in leaf P concentrations between 21 DAT and 28 DAT where they were 

completely deprived of P. Control plants generally had the highest P concentrations, ex-

cept for plants that were resupplied with P after being heavily deficient. Resupplying re-

sulted in significant increases in P concentrations for plants that were strongly deficient 

only two days prior (Supplementary Table 2). Concentrations of other essential plant el-

ements remained fairly constant. 

OJIP Transients 

As P is a highly phloem mobile nutrient, any effect of P deficiency on the OJIP transients 

is expected to be found in older leaves first. It is easy to distinguish the OJIP transient of 

the youngest fully developed leaf (YFDL) from the second youngest fully developed leaf 

(sYFDL) in a plant exposed to the lowest P level (Fig 3a). The OJIP transient from the 

sYFDL can be discriminated from the YFDL in that the I-step has almost completely 

straightened, whereas the shapes of O, J and P steps appear unaffected. This difference is 

enhanced (Fig. 3b) by differentiation of the curves. As the plants become increasingly P 

deficient, the I-step eventually disappears from both the YFDL and sYFDL, and the I-step 

reappears for both when plants are resupplied with P (shown in Fig. 4 for YFDL). 

 

Figure 3: Top panel: OJIP transients of the YFDL and the sYFDL from severely P defi-

cient plant on the first measuring day. Data are normalized, and the transient for the 

sYFDL has been moved 0.1 units upwards to separate the two OJIP transients. Bottom 

panel: The same transients after differentiation. 

Observing the OJIP transients for the YFDL of a plant exposed to the lowest P level 

throughout an experiment (Fig. 4) shows the effect of P deficiency. An I-step could be 

distinguished the first two measuring days (Fig. 4a and 4b), though the plant was increas-

ingly P deficient according to total P concentrations. On the third measuring day (Fig. 
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4c), the I-step had disappeared. After resupplying plants with P, the I-step was once again 

clearly recognized two days later (Fig. 4d). 

 

Figure 4: OJIP transients for the YFDL of a plant provided the lowest P level. It is seen 

that the I-step gradually straightens and almost disappears as the plants become increas-

ingly P deficient from 21 DAT (a) over 23 DAT (b) to 28 DAT (c). The I-step has reap-

peared (d) two days after plants were resupplied with P at 28 DAT. 

Predicting Phosphorus Concentrations 

A Partial Least Squares (PLS) regression model was developed using measurements on 

the YFDL of plants in one experiment (training set) and validated using measurements 

from the other experiment (validation set). The first 0.3 seconds of the OJIP transients 

were included, i.e. up to the P-step, and all OJIP transients were differentiated to enhance 

the observed effect of a straightening of the I-step. Reference P concentrations were ob-

tained for the YFDL of individual plants in the validation set, whereas the YFDL’s of the 

five plants in each cultivation unit were pooled for reference analysis in the training set. 

In five cases, the OJIP transient of one plant deviated strongly from the remaining four 

plants in the cultivation unit. These outliers were discarded to limit their influence on the 

PLS model. 

The PLS algorithm was clearly unable to model the whole range of P concentrations. 

However, by only including leaves with P concentrations up to 4000 ppm, it was possible 

to obtain a PLS model with a low prediction error for P deficient samples, while the ma-

jority of leaves with higher concentrations were estimated around the sufficiency thresh-

old of 3000 ppm
29

. Calibration performance and consistency was seen to decrease signifi-

cantly if higher or lower maximum concentrations were included in the model. Leaves 

with a P concentration above 4000 ppm are used as an ‘internal validation set’. They were 

not included in the PLS model, but as they derive from the same experiment as the train-

ing set, they are not completely independent from this. 
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A PLS model with three latent variables (LV) was developed using 245 OJIP transients 

measured on plants from 50 independent cultivation units. All samples had reference P 

concentrations in the 0-4000 ppm range (Supplementary Fig. 1). This model has a root 

mean squared error of calibration (RMSEC) of 445 and a root mean squared error of pre-

diction (RMSEP) of 530, calculated for the 24 OJIP transients from the validation set 

within the 0-4000 ppm range. The regression vector for the PLS model (Supplementary 

Fig. 2) indicates that predictions are strongly dependent on the straightening of the I-step. 

Plotting the predicted P concentrations vs. reference P concentrations for all leaves (Fig. 

5), it is clearly noted that the predictions level off. Fitting a 1:1 line, representing a correct 

PLS prediction, intersecting with a constant line, yields a cut-off value of 2914 ppm (blue 

curve in Fig. 5). The gradual effect of leveling off is noted in the model predictions, as 

leaves with a P concentration in the upper part of the model range generally appear to be 

underestimated (Supplementary Fig. 1). 

 

Figure 5: Predicted vs. measured P concentrations for all 360 OJIP transients as pre-

dicted by the PLS model. The blue curve represents the optimal fit of a 1:1 line intersect-

ing a constant line at 2914 ppm. The dotted lines indicate the 2000 ppm P sufficiency 

threshold, and coloring indicates whether or not the PLS model predicts samples correct-

ly according to this threshold. 

Setting a P threshold value for the YFDL of 2000 ppm (as indicated in Fig. 5) where 

plants are consistently considered P deficient
29

, only eight leaves from the validation set 

were falsely classified (Fig. 5). Of these, five were measured to have a P concentration 

between 2000 and 3000 ppm, thus placing them close to the threshold, and even overlap-
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ping with leaves from the training set. In total, 88% of the leaves from the validation set 

and 98% of the leaves from the internal validation set were predicted correctly according 

to this threshold. The remaining 12% and 2% of the leaves, respectively, were incorrectly 

predicted to be deficient. 

Validation of Specificity 

To test whether the observed effect of P deficiency is specific to P, a Principal Compo-

nent Analysis (PCA) model was developed for OJIP transients collected in these and pre-

vious experiments
19,30,31

. OJIP transients were measured on barley and tomato plants ex-

posed to Ca-, Cu-, Fe-, K-, Mg-, Mn-, N-, P-, S- or Zn-deficiency, along with healthy 

control plants. 

Leaves with a P concentration above 3000 ppm were classified as healthy control leaves, 

and leaves with a P concentration below 2000 ppm were classified as P deficient. Leaves 

between these boundaries were discarded for this particular analysis as they may blur the 

subsequent data visualization. From the previous experiments, OJIP transients were simi-

larly selected to represent plants with a significant deficiency. The first 0.3 seconds of the 

OJIP transients were included and all OJIP transients were differentiated. In total, the 

PCA was based on 1029 OJIP transients. 

Investigating the scores plot of principal components (PC’s) 4 and 5 (Fig. 6), it is evident 

that the P-deficient samples from all experiments (including both barley and tomato 

plants) cluster in the first quadrant. Only few samples of other treatments interfere with 

this cluster. Clusters of Mn, Mg, Cu, S and Fe, which are all nutrients of known im-

portance to the photosynthetic transport chain, are also indicated (Fig. 6); they are seen 

more clearly in PC’s 1-6 (Supplementary Fig. 3). The strongest clustering is found for Mn 

along PC 1 (Supplementary Fig. 3a), which spans the absolutely major variation in the 

dataset, 91.92%. PC’s 1 and 2 combined show clear clustering of especially S and Cu 

(Supplementary Fig. 3a). Plotting PC’s 2-4 (Supplementary Fig. 3b-c) also indicate clus-

tering of S, along with a less strong clustering of Fe and Mg. PC’s 5 and 6 (Supplemen-

tary Fig. 3d) present weak clustering of P along with weak clustering of Mg and Mn. No 

clustering is observed for higher principal components. 
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Figure 6: Scores plot showing PC’s 4 and 5 of a PCA of OJIP transients from samples 

with various nutrient deficiencies. Principal Components 4 and 5 explain 1.14% and 

0.77% of the total variance respectively. P deficient samples of both barley and tomato 

plants are seen to cluster in the first quadrant. 

Discussion 

No visual symptoms of P-deficiency occurred in individual leaves of any of the P-

deprived plants used in this study. However, typical signs of latent P deficiency were 

found, including increased root/shoot ratio, decreased tillering, reduced biomasses and a 

decrease in chlorophyll concentrations
32

. Carotenoid concentrations were not significantly 

affected and ICP-OES analyses of the leaves showed that the plants suffered no additional 

nutrient deficiencies other than P
29

. Only minimal anthocyanin production was observed. 

In OJIP transients, a straightening of the I-step was observed when plants suffered from P 

deficiency (Figs. 3 and 4). As P has no known, direct association with the photosynthetic 

electron transport chain
32,33

, this effect on the shape of the OJIP transient was surprising. 

It was demonstrated that the effect is reversible when resupplying plants with P (Fig. 4), 

indicating that it is apparent before the photosynthetic apparatus has been permanently 

damaged. Consistent with P being a phloem mobile nutrient
32

, it was noted that the effect 

occurred in the sYFDL before the YFDL (Fig. 3); further indicating a direct connection to 

the plant P nutritional status. The unsupervised clustering of P deficient plants (both to-

mato and barley) in the PCA scores plot (Fig. 6) furthermore indicates that a unique fin-

gerprint of P deficiency, applying to both mono- and dicotyledonous species, has been 

identified. The observed effect is, thus, likely to be associated with photosynthesis as 

such, and can in that case be used to probe the P status of higher plants in general. 
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To test the ability of OJIP transients to be used for predicting plant P status, a PLS model 

was successfully generated. As indicated by the fitted cut-off value (Fig. 5), it was possi-

ble to predict the P concentration of the YFDL up to a value close to the sufficiency level 

of barley at 3000 ppm
29

. Leaves with higher P concentrations were all predicted around 

this concentration (Fig. 5). It was furthermore possible to correctly classify whether 

leaves contained above or below 2000 ppm for 93% of all validation samples. In fact, on-

ly three out of 93 validation samples were falsely predicted to contain below 2000 ppm 

while having a true P concentration above 3000 ppm, and no validation samples were 

falsely predicted to contain above 2000 ppm P. 

Due to the overall simplicity of performing chlorophyll a fluorescence measurements, the 

observed specificity and successful prediction model indicate that OJIP transients can be 

used as a valuable probe to determine the P status of crops and establish the need for ad-

ditional P-fertilizer accordingly; thereby ensuring optimal yields while avoiding excessive 

use. Considering the clustering seen for the elements Fe, Mg, Mn and Cu (Fig. 5 and 

Supplementary Fig. 3), it is furthermore possible that a common instrument could be de-

veloped to determine the nutritional status of a wider array of nutrients affecting the OJIP 

transients. More studies are however needed to determine the possibility of such a multi-

elemental analysis. 

Plants well supplied with P are known to store up to 85-95% of total P as a non-metabolic 

pool in the cell vacuoles
34

. This is believed to explain the inability to predict P concentra-

tions above the 3000 ppm sufficiency level of the YFDL of barley. When sufficiency has 

been reached, the processes reflected in the OJIP transients are saturated, and thus, 

providing additional P has no effect. Likewise it is seen that the approximate linear rela-

tion between the shape of the OJIP transient and the P concentrations at deficient levels 

gradually fades when P concentrations approach the sufficiency level and the plant starts 

storing P in the non-metabolic pool. This approximate agreement of the fitted maximum 

value with the P sufficiency level combined with the PLS regression vector (Supplemen-

tary Fig. 2) showing a strong dependence on the I-step further support the observed rela-

tion between P deficiency and the straightening of the OJIP transient around the I-step. 

Because of the observed saturation, it is furthermore assumed that this specific model and 

fitted maximum level is only applicable for the YFDL of barley; other species with dif-

ferent sufficiency thresholds will be expected to exhibit different maximum levels and 

hence a different relation to the total P concentration. Applying the model based on the 

YFDL to OJIP transients collected from the sYFDL gave poor results (data not shown), 

though the leaves derive from the same species. However, chlorophyll concentrations 

generally increase with leaf age
35,36

, while the proportion of total P bound in RNA de-

creases with leaf age
36

. This may affect chlorophyll fluorescence intensity and cause a 

difference in P sufficiency threshold between YFDL and sYFDL. It is therefore unlikely 

that a common model for YFDL and sYFDL would be successful. 

The high importance of P in plant energy metabolism and phosphorylation is well-known, 

but until now, no direct effect of P concentration on the photosynthetic electron transport 

chain has been reported
32,33

. The present work demonstrates the impact of P deficiency on 
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the shape of the OJIP transient, in particular a straightening of the I-step. Changes in the 

I-P phase have been suggested to indicate an effect on the PSI acceptor side
16

, but no 

clear consensus of the underlying processes of the OJIP transient exists
13,17,37

. The rela-

tionship between P status and the shape of the OJIP transient therefore remains specula-

tive. However, the specificity and accuracy of a multivariate regression analysis of OJIP 

transients to determine P deficiency in plants is established in the above. This finding has 

the potential to enable an optimization of P fertilizer management in modern agriculture, 

and thus, support continuous yield growth while minimizing the negative environmental 

impacts of P fertilizer use. 

Materials and Methods 

Cultivation of Plants 

Barley plants (Hordeum vulgare, L., cv. 'Quench') were cultivated in hydroponics. Seeds 

were pre-germinated for eight days in vermiculite in a greenhouse with minimum 

day/night temperatures at 18/15°C and a 16/8 hours day/night light regime. Seedlings 

were transferred to black 4L containers with nutrient solution and aerated using steel 

medical syringes suspended in the solution, which was changed weekly. Each container 

held ten (experiment 1) or four (experiment 2) plants fitted in a lid. The control nutrient 

solution contained 200µM KH2PO4, 200µM K2SO4, 300µM MgSO4·7 H2O, 100µM 

NaCl, 300µM Mg(NO3)2·6 H2O, 900µM Ca(NO3)2·4 H2O, 600µM KNO3, 50µM Fe(III)-

EDTA-Na, 2.0µM H3BO3, 0.8µM Na2MoO4·2 H2O, 0.7µM ZnCl2, 7.0µM MnCl2·4 H2O 

and 0.8µM CuSO4·5 H2O, and control plants were provided control nutrient solution 

throughout the experiments. In all containers, pH was kept constant at 6.0 ± 0.3 using ul-

trapure HCl, and during the first week of all experiments, the concentration of micronu-

trients was reduced by 50% in order to avoid EDTA poisoning of the young and sensitive 

plants. All stock nutrient solutions were prepared in Milli-Q water (Milli-Q Element, Mil-

lipore, MA, USA). 

Experiment 1 

After transplanting into hydroponics, plants were divided into two groups, which were 

exposed to different climatic conditions. Group A was in a growth chamber under normal 

light settings (400 μmol photons m
-2

s
-1

) at a 16/8 hours day/night light regime and a con-

stant temperature of 20°C during the whole experiment. Initially, group B was grown un-

der similar conditions; however, ten days after transplanting into hydroponics, the light 

intensity was increased to 750 μmol photons m
-2

s
-1

, and the temperature decreased to 

15°C. Hydroponic containers were randomized frequently in both growth chambers to 

avoid any systematic effect of position. 

In total, 32 hydroponic containers were cultivated, with 16 in each climatic treatment; 

four of these were control units, and four were units of each of three different P treat-

ments, P1, P2 and P3. The first ten days after transplanting, P1, P2 and P3 plants were all 

provided P1 treatment, meaning a reduction of the concentration of KH2PO4 to 89µM, as 

an approximation to sufficient P supply while avoiding luxury uptake. Then, P2 and P3 

treatments were induced in the ascribed plants. P2 nutrient solution contained 45µM 

KH2PO4 and P3 nutrient solution contained 9µM KH2PO4. Twelve days after induction of 
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P2 and P3 treatments, i.e. 22 DAT, P1, P2 and P3 treatments were deprived completely of 

P for the rest of the experimental period. 

Chlorophyll a fluorescence, in the form of OJIP transients, was measured 21 and 28 

DAT, and sampled plant material was freeze-dried for reference analysis. 

Experiment 2 

Experiment 2 was carried out entirely in a greenhouse under climatic conditions as stated 

above. In total, 16 hydroponic containers were cultivated. The first ten days after trans-

planting, all containers were provided control conditions. Then three P treatments were 

induced, P1, P2 and P3, each applied to four containers. P1 and P2 treatments were simi-

lar to P1 and P2 in experiment 1, whereas P3 was higher, namely 22µM KH2PO4. De-

pending on the amount of KH2PO4, KCl was added to ensure a constant K-concentration 

for all treatments. 21 DAT, P was completely removed from P1, P2 and P3 treatments. At 

28 DAT, P was resupplied by providing all containers with control conditions. 

Chlorophyll a fluorescence, in the form of OJIP transients, was measured 21, 23, 28 and 

30 DAT, and sampled plant material was dried in an oven at 50°C for reference analysis. 

Historic Data 

OJIP transients from previously conducted experiments
19,30,31

 were collected to validate 

the P specificity of the experimental findings. The transients were measured on barley 

and tomato (Solanum lycopersicum, L.), which had been cultivated in hydroponics under 

greenhouse conditions comparable to those in experiment 2. Based on the time after nu-

trient deficiencies were induced, OJIP transients were measured at stages where nutrient 

deficiencies were expected to be significant and in some cases even visual deficiency 

symptoms were present. No reference data of elemental concentrations was available. 

Measurements 

Biomasses 

Root and shoot fresh weight (FW) biomasses of plants were determined at harvest, before 

the YFDL was removed for further analyses. In experiment 2, biomasses were only de-

termined 28 and 30 DAT, i.e. the 3
rd

 and 4
th

 measuring day. 

Chlorophyll a Fluorescence 

Chlorophyll a fluorescence transients, or OJIP transients, were measured using a Handy 

PEA chlorophyll fluorimeter (Hansatech Instruments, Kings Lynn, Norfolk, England). 

The midsection of the youngest fully developed leaf (YFDL) or second youngest fully 

developed leaf (sYFDL) was dark adapted for at least 20 minutes before measuring. A 

short, non-actinic light flash was used to adjust the gain of the detector. The actual meas-

urement was conducted by illuminating the leaf with continuous, actinic light at a saturat-

ing intensity (>3000 μmol m
-2

s
-1

) for ten seconds. The light source was three red LED’s 

that were optically filtered to a maximum wavelength of 650 nm. The resulting fluores-

cence transients were recorded using a PIN photodiode and an optical filter to ensure that 

only the fluorescence signal, i.e. wavelengths >650 nm, was recorded. 
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In experiment 1, OJIP transients were measured for the youngest fully developed leaf 

(YFDL) of five plants growing in the same cultivation unit each measuring day. 60 OJIP 

transients from 12 independent cultivation units were measured for each climate treat-

ment on each of two measuring days. In experiment 2, OJIP transients were measured for 

both the YFDL and the second youngest fully developed leaf (sYFDL) of one plant from 

each cultivation unit. Here, 16 OJIP transients from independent units were measured on 

both the YFDL and sYFDL on each of four measuring days. 

Determination of Chlorophyll and Carotenoids 

In experiment 1, concentrations of chlorophylls and carotenoids were determined in leaf 

material from the midsection of the YFDL after measuring OJIP transients. Approximate-

ly 50 mg of leaf material were weighed exactly and extracted overnight in methanol. Ab-

sorbance was subsequently measured in a Genesys 10S UV-Vis spectrophotometer 

(Thermo Scientific, MA, USA) and chlorophyll and carotenoids concentrations were cal-

culated according to the method described in Lichtenthaler and Wellburn
38

. 

Anthocyanin Determination 

In experiment 1, anthocyanin concentrations were determined in leaf material from the 

midsection of the YFDL, according to the method described by Ticconi, et al.
39

, after 

measuring OJIP transients. Approximately 50 mg of leaf material were weighed exactly 

and transferred to 15 ml Falcon tubes, where they were powdered after being submerged 

in liquid nitrogen for 10 seconds. Two ml 100°C extraction buffer (1-propanol : 37% HCl 

: H2O in ratio 18:1:81) were quickly added. The samples were incubated at 100°C for 3 

minutes, then dark incubated and left overnight at 20°C. Next day, the plant material was 

centrifuged for 20 minutes at 10,000 g, and the supernatant was transferred to 2 ml tubes. 

A 60 seconds spin was performed and 300 µL supernatant were transferred to a 

microplate. An EON microplate spectrophotometer (BioTek Instruments, Winooski, 

USA) measured the absorbance at 535 and 650 nm, and the anthocyanin content was cal-

culated as A = A535 – A650/g FW. 

Multi-Elemental Analysis 

Leaf concentrations of P, Fe, Mg, Mn, Zn, K, S and Ca were determined using Inductive-

ly Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) (Optima 5300DV, Perki-

nElmer, Waltham, Massachusetts, USA).  

Sample digestion – Experiment 1 

After obtaining OJIP transients and saving material for pigment analysis, the YFDL of 

five plants in each container was freeze-dried. Subsequently, samples were ground in zir-

conium-coated jars containing a zirconium-coated mill ball in a Retsch MM301 ball-mill. 

Samples obtained from the same cultivation unit were pooled before grinding to obtain a 

sufficient amount of sample material. Approximately 20 mg of each dry, ground sample 

were digested in 500 µL of 70% HNO3 (Plasmapure, SCP Science) and 250 µL 30% 

H2O2 (Ultrapure, Riedel de Haën, Sigma-Aldrich) using a single reaction chamber 

microoven digestion system (Ultrawave, Milstone S.r.l., BG, Italy). 
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Samples digestion – Experiment 2 

After obtaining OJIP transient, the analyzed YFDL and sYFDL were cut off and oven-

dried at 50°C for three days until completely dry. Leaves were subsequently crushed, 

weighed and the entire sample digested in 2500 µL of 70% HNO3 (Plasmapure, SCP Sci-

ence) and 1000 µL 15% H2O2 (Ultrapure, Riedel de Haën, Sigma-Aldrich) using a single 

reaction chamber microoven digestion system (Ultrawave, Milstone S.r.l., BG, Italy). 

After digestion, all samples were diluted to 10 ml with milli-Q-water (Milli-Q Element, 

Millipore) and analyzed directly by ICP-OES as described by Laursen, et al.
40

 and 

Hansen, et al.
41

. Data quality was evaluated by including at least five samples of digested, 

certified reference material (NIST 1515, apple leaf, National Institute of Standards and 

Technology, Gaithersburg, MD, USA) in each analytical run. Data was processed using 

the WinLab32 software (version 3.1.0.0107, PerkinElmer). 

Chemometric Analysis 

Data was analyzed by the chemometric methods Principal Component Analysis (PCA) 

and Partial Least Squares (PLS) regression, carried out using Matlab® R2013b 

(Mathworks, Inc., Natick, MA, USA) and PLS_Toolbox 7.5.0 (Eigenvector Research, 

Inc., Wenatchee, WA, USA). The PCA is an unsupervised method that enables a simple 

and comprehensive overview of the major variations in a multivariate data set by reduc-

ing the number of dimensions with a minor loss of information. Data is presented using 

the principal components (PC’s) as axes, and in most cases the first few axes will contain 

information about the major variations within samples in the dataset. The PCA is de-

scribed more thoroughly in e.g. Martens and Næs
42

. 

The PLS analysis is related to the PCA regarding the focus on major variations in data. 

However, in PLS the new set of axes, latent variables (LV’s), are determined to maximize 

the covariance between X data and a set of reference data, Y. The resulting model can be 

used for prediction of Y-values using new X-data as input. The method is further de-

scribed in e.g. Wold, et al.
43

. 

Before analysis, the spectroscopic data was preprocessed using an approximated deriva-

tive, calculating the difference between consecutive time points. The time between con-

secutive data points increased by an order of magnitude at 0.0003s, 0.003s and 0.03s; en-

hancing differences between points accordingly. This caused the differences between 

consecutive data points in the latter part to be enhanced compared to the early part of the 

OJIP transients. Thus, shape features in general and of the I-P phase in particular are em-

phasized. 
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Supplementary information 

Supplementary Table 1: Biomasses in fresh weight (FW), root/shoot relationship and 

number of tillers for plants in experiment 1 and 2 and chlorophyll and carotenoids con-

centrations for plants in experiment 1. ‘A’ designates normal light and temperature con-

ditions; ‘B’ designates high light and low temperature conditions of experiment 1. In ex-

periment 2 plants were grown in greenhouse conditions. The results are average ± one 

standard deviation; n=12 and n=4 in experiments 1 and 2, respectively. 

    Shoot 

(g FW) 

Root 

(g FW) 

Root/Shoot Tillers Chlorophyll 

(mg/g FW) 

Carotenoids 

(mg/g FW) 

E
x

p
er

im
en

t 
1

 2
1

 D
A

T
 A 

Control 4.2 ± 0.8
 

2.2 ± 0.6
 

0.5 4 2.5 ± 0.1
 

0.4 ± 0.02 

P1 3.4 ± 0.4 3.0 ± 0.7
 

0.9 3 2.6 ± 0.1
 

0.3 ± 0.02 

P2 3.0 ± 0.6 2.7 ± 0.5 0.9 3 2.4 ± 0.2
 

0.3 ± 0.03 

P3 1.5 ± 0.3 2.4 ± 0.4
 

1.5 2 2.1 ± 0.2
 

0.3 ± 0.02 

B 

Control 4.1 ± 0.5
 

3.9 ± 0.8
 

0.9 5 2.0 ± 0.1
 

0.3 ± 0.02 

P1 3.6 ± 0.6 3.5 ± 0.9
 

1.0 4 2.0 ± 0.3
 

0.3 ± 0.04 

P2 3.0 ± 0.4 3.6 ± 0.8
 

1.2 3 2.3 ± 0.2
 

0.4 ± 0.02 

P3 2.1 ± 0.4
 

3.0 ± 0.6
 

1.4 3 1.9 ± 0.2
 

0.4 ± 0.02 

2
8

 D
A

T
 A 

Control 9.4 ± 1.4 4.2 ± 1.3
 

0.5 6 2.6 ± 0.2
 

0.4 ± 0.04 

P1 6.0 ± 0.9 3.7 ± 0.6
 

0.6 5 2.7 ± 0.2 0.4 ± 0.02 

P2 4.6 ± 1.0
 

3.4 ± 0.8
 

0.7 4 2.4 ± 0.2
 

0.4 ± 0.03 

P3 2.2 ± 0.5
 

3.0 ± 0.4
 

1.4 2 2.0 ± 0.2
 

0.3 ± 0.02 

B 

Control 9.8 ± 2.1
 

6.8 ± 3.4 0.7 7 2.3 ± 0.2
 

0.4 ± 0.03 

P1 5.9 ± 1.0
 

5.0 ± 2.1
 

0.8 6 2.0 ± 0.2
 

0.4 ± 0.04 

P2 4.4 ± 0.9
 

5.4 ± 1.2
 

1.2 5 1.9 ± 0.1
 

0.4 ± 0.04 

P3 2.3 ± 0.4
 

3.2 ± 0.6
 

1.4 3 1.7 ± 0.1
 

0.3 ± 0.02 

E
x

p
er

im
en

t 
2

 

2
8

 D
A

T
  Control 15.2 ± 2.7 8.5 ± 1.0 0.6    

 P1 10.9 ± 1.1 8.4 ± 1.5 0.7    

 P2 9.8 ± 1.6 8.2 ± 1.3 0.8    

 P3 6.7 ± 0.8 6.2 ± 1.6 1.0    

3
0

 D
A

T
  Control 20.4 ± 2.7 11.6 ± 2.8 0.6    

 P1 14.0 ± 5.1 10.4 ± 4.2 0.8    

 P2 10.8 ± 1.3 8.1 ± 0.8 0.8    

 P3 6.7 ± 0.8 5.5 ± 1.3 0.8    
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Supplementary Table 2: Elemental concentrations as obtained by ICP-OES. ‘A’ designates normal temperature and light, ‘B’ designates low tempera-

ture and high light. P1-P3 indicate decreasing levels of supplied P. P1-P3 plants were not provided any P between 21 DAT and 28 DAT. In experiment 

2, plants were resupplied with P at 28 DAT. 

    P (%) Ca (%) K (%) Mg (%) S (%) 

     YFDL sYFDL YFDL sYFDL YFDL sYFDL YFDL sYFDL YFDL sYFDL 

E
x

p
er

im
en

t 
1
 

2
1

 D
A

T
 

A Control 0.72±0.01 
 

0.95±0.12 
 

7.05±0.28 
 

0.40±0.03 
 

0.57±0.03 
 

P1 0.37±0.03 
 

1.00±0.04 
 

7.24±0.45 
 

0.41±0.02 
 

0.66±0.01 
 

P2 0.20±0.01 
 

0.84±0.04 
 

7.85±0.33 
 

0.34±0.02 
 

0.54±0.02 
 

P3 0.12±0.01 
 

0.49±0.02 
 

8.24±0.12 
 

0.22±0.01 
 

0.42±0.02 
 

B Control 0.41±0.04 
 

0.63±0.09 
 

4.24±0.33 
 

0.23±0.02 
 

0.44±0.05 
 

P1 0.24±0.05 
 

0.43±0.10 
 

5.12±0.73 
 

0.17±0.03 
 

0.45±0.08 
 

P2 0.13±0.01 
 

0.50±0.08 
 

5.83±0.45 
 

0.19±0.03 
 

0.39±0.05 
 

P3 0.09±0.01 
 

0.53±0.04 
 

7.71±0.21 
 

0.23±0.03 
 

0.37±0.01 
 

2
8

 D
A

T
 

A Control 0.58±0.06 
 

0.78±0.18 
 

5.53±0.66 
 

0.35±0.05 
 

0.61±0.05 
 

P1 0.16±0.01 
 

0.75±0.05 
 

6.36±0.36 
 

0.35±0.02 
 

0.52±0.03 
 

P2 0.11±0.02 
 

0.61±0.13 
 

7.50±0.20 
 

0.28±0.05 
 

0.44±0.04 
 

P3 0.06±0.01 
 

0.63±0.05 
 

8.81±0.38 
 

0.30±0.01 
 

0.38±0.02 
 

B Control 0.41±0.04 
 

0.65±0.21 
 

4.67±0.25 
 

0.20±0.05 
 

0.43±0.1 
 

P1 0.11±0.01 
 

0.45±0.11 
 

5.76±0.46 
 

0.16±0.03 
 

0.36±0.05 
 

P2 0.09±0.02 
 

0.55±0.05 
 

6.80±0.46 
 

0.18±0.02 
 

0.39±0.02 
 

P3 0.06±0.01 
 

0.52±0.03 
 

7.96±0.37 
 

0.24±0.01 
 

0.38±0.03 
 

E
x

p
er

im
en

t 
2
 

2
1

 D
A

T
  Control 0.62±0.04 0.64±0.11 1.04±0.40 1.07±0.34 8.36±0.45 8.41±0.41 0.46±0.16 0.48±0.11 0.4±0.03 0.4±0.05 

 P1 0.54±0.08 0.60±0.04 1.17±0.33 0.83±0.34 8.09±0.57 8.12±0.65 0.51±0.12 0.39±0.14 0.43±0.02 0.41±0.04 

 P2 0.21±0.04 0.30±0.08 1.30±0.05 0.67±0.04 7.54±0.40 8.29±0.27 0.58±0.01 0.32±0.02 0.44±0.01 0.43±0.04 

 P3 0.12±0.07 0.15±0.02 0.95±0.24 0.78±0.35 6.98±1.62 7.98±0.39 0.44±0.11 0.37±0.15 0.39±0.07 0.42±0.05 

2
3

 D
A

T
  Control 0.70±0.11 0.64±0.06 0.54±0.23 1.17±0.17 8.17±0.32 8.46±0.63 0.28±0.07 0.50±0.07 0.45±0.02 0.42±0.05 

 P1 0.44±0.06 0.37±0.01 0.35±0.02 0.93±0.10 7.77±0.18 8.24±0.39 0.21±0.01 0.41±0.02 0.43±0.02 0.42±0.02 

 P2 0.24±0.05 0.17±0.10 0.47±0.29 0.74±0.28 7.20±0.91 7.36±0.65 0.23±0.10 0.32±0.10 0.41±0.02 0.41±0.05 

 P3 0.12±0.04 0.11±0.07 0.70±0.26 0.94±0.46 7.46±0.24 7.22±1.17 0.32±0.09 0.43±0.18 0.38±0.02 0.38±0.04 

2
8

 D
A

T
  Control 0.65±0.04 0.60±0.06 0.42±0.08 1.06±0.19 6.05±0.63 6.51±0.42 0.26±0.02 0.44±0.07 0.53±0.04 0.48±0.04 

 P1 0.17±0.04 0.12±0.02 0.62±0.15 1.19±0.05 7.11±0.76 6.41±0.24 0.29±0.05 0.49±0.02 0.47±0.06 0.39±0.03 

 P2 0.11±0.01 0.07±0.01 0.43±0.16 0.94±0.21 6.40±0.20 6.54±0.62 0.21±0.04 0.39±0.08 0.37±0.04 0.35±0.03 

 P3 0.09±0.01 0.06±0.00 0.33±0.08 0.77±0.13 6.65±0.33 8.31±0.57 0.18±0.04 0.35±0.05 0.33±0.02 0.33±0.02 

3
0

 D
A

T
  Control 0.60±0.11 0.54±0.10 0.62±0.27 1.19±0.30 7.10±0.24 7.37±0.29 0.32±0.07 0.48±0.14 0.47±0.03 0.43±0.06 

 P1 0.89±0.13 0.87±0.12 0.64±0.22 1.15±0.35 7.64±0.52 7.81±0.48 0.29±0.06 0.50±0.14 0.47±0.04 0.41±0.04 

 P2 1.03±0.17 0.84±0.09 0.47±0.12 0.98±0.15 8.00±0.23 8.67±0.46 0.23±0.03 0.42±0.05 0.41±0.02 0.38±0.06 

  P3 1.09±0.20 0.74±0.13 0.33±0.07 0.72±0.09 7.73±0.27 8.89±1.04 0.19±0.03 0.34±0.05 0.39±0.03 0.36±0.04 
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Supplementary Table 2 (continued) 

  

  Fe (ppm) Mn (ppm) Zn (ppm) 

  

   YFDL sYFDL YFDL sYFDL YFDL sYFDL 

E
x

p
er

im
en

t 
1

 2
1

 D
A

T
 

A Control 90 ± 5  70 ± 15  60 ± 5  

P1 110 ± 15  100 ± 5  80 ± 5  

P2 100 ± 10  100 ± 15  85 ± 10  

P3 80 ± 5  100 ± 5  90 ± 5  

B Control 60 ± 5  40 ± 10  30 ± 5  

P1 70 ± 10  35 ± 10  50 ± 10  

P2 80 ± 5  50 ± 10  60 ± 5  

P3 100 ± 60  100 ± 10  105 ± 30  

2
8

 D
A

T
 

A Control 85 ± 5  45 ± 10  45 ± 10  

P1 85 ± 5  75 ± 10  50 ± 10  

P2 85 ± 15  80 ± 20  60 ± 10  

P3 80 ± 5  130 ± 20  90 ± 5  

B Control 70 ± 10  30 ± 10  30 ± 5  

P1 70 ± 20  35 ± 10  40 ± 10  

P2 70 ± 10  55 ± 5  55 ± 5  

P3 80 ± 30  100 ± 5  95 ± 10  

E
x

p
er

im
en

t 
2

 

2
1

 D
A

T
   Control 75 ± 5 80 ± 5 160 ± 100 170 ± 85 105 ± 55 115 ± 40 

 P1 80 ± 10 85± 15 215 ± 85 125 ± 70 150 ± 50 95 ± 40 

 P2 75 ± 10 80± 10 250 ± 25 100 ± 15 150 ± 10 75 ± 10 

  P3 60 ± 15 75± 10 190 ± 60 145 ± 90 125 ± 40 115 ± 50 

2
3

 D
A

T
   Control 70 ± 5 65± 10 65 ± 25 160 ± 50 75 ± 10 100 ± 30 

 P1 60 ± 5 70 ± 5 50 ± 5 130 ± 10 65 ± 5 85 ± 10 

 P2 70 ± 10 60± 10 80 ± 45 120 ± 40 80 ± 10 80 ± 10 

  P3 70 ± 10 60± 10 120 ± 30 180 ± 85 100 ± 10 120 ± 30 

2
8

 D
A

T
   Control 70 ± 5 70 ± 5 30 ± 5 90 ± 15 65 ± 25 70 ± 20 

 P1 70 ± 10 65 ± 5 90 ± 30 165 ± 20 70 ± 15 80 ± 10 

 P2 70 ± 10 60 ± 5 75 ± 30 145 ± 50 65 ± 15 70 ± 15 

  P3 60 ± 10 60 ± 5 75 ± 25 130 ± 25 75 ± 10 95 ± 15 

3
0

 D
A

T
  Control 60 ± 5 60 ± 5 50 ± 15 100 ± 40 65 ± 25 75 ± 20 

 P1 60 ± 5 60 ± 5 85 ± 35 150 ± 50 70 ± 20 85 ± 25 

 P2 60 ± 5 50 ± 5 70 ± 15 145 ± 25 70 ± 10 85 ± 15 

  P3 50 ± 10 60± 10 70 ± 15 130 ± 15 80 ± 15 100 ± 25 
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Supplementary Figure 1: Predicted vs. measured P concentrations based on PLS model with 3 la-

tent variables. Grey circles indicate calibration samples, red diamonds are validation samples. 

 
Supplementary Figure 2: Regression vector for PLS model predicting the P concentration. The high 

absorbance values of the highlighted area between 0.003s and 0.2s indicate that the more pro-

nounced the I-step is, the higher the predicted P concentration will be. 
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Supplementary Figure 3: PCA scores plots showing PC’s 1-6. 
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METHOD AND DEVICE FOR DETERMINING A NUTRITIONAL STATE OF A 

PLANT 

 

The present invention relates in one aspect to a method of determining a nutritional 

state of a plant. According to a further aspect, the present invention relates to an 5 

instrument for determining a nutritional state of a plant. 

 

BACKGROUND OF THE INVENTION 

Photosynthesis is a physiological process that is fundamental for the functioning of a 

plant. A measure of the photosynthesis performance of a plant is therefore a valu-10 

able source of information for determining the physiological state of the plant. Pho-

tosynthesis converts absorbed light energy into chemical energy that can be used 

by the plant, and is performed by complex processes in which chlorophyll plays an 

essential role. While a large part of the light energy absorbed by the plant goes to 

photosynthesis, some of it undergoes non-photochemical quenching (for a large part 15 

through heat dissipation) or is re-emitted by the chlorophyll as fluorescence. Since 

the three mechanisms – photosynthesis, non-photochemical quenching and chloro-

phyll fluorescence – are supplied by the same energy source, a variation in per-

formance of one of these processes due to biotic or abiotic factors will be reflected 

by a variation in at least one of the other processes. However, measuring the com-20 

plete energy balance for these processes is not practically possible. Nevertheless, 

the fluorescence signal contains a wealth of information. However, it is a very chal-

lenging task to disentangle this information and derive information from fluorescence 

studies about the physiological state of a plant, which is specific with respect to the 

influence of a particular parameter, such as deficiency of a particular nutrient or 25 

group of nutrients. 

 

The photosynthesis process is subject to a particular kinetics which is reflected in 

the time dependence of the chlorophyll a fluorescence. Upon excitation with actinic 

light, the chlorophyll a fluorescence increases on a time-scale of milliseconds up to 30 

about a second from a background fluorescence intensity F0 up to a maximum fluo-

rescence intensity Fm, and subsequently rolls off on a time-scale of minutes. This 

phenomenon is called fluorescence induction and can be observed most clearly for 

leaves that have been dark-adapted initially so as to allow for the largest possible 



 

2 

increase in photosynthesis performance. The rising portion of the fluorescence in-

duction curve exhibits a series of plateaus, commonly denoted by the letters O-J-I-P, 

and may thus be referred to as the OJIP-rise. Due to the link between chlorophyll a 

fluorescence transients and the photosynthesis process, analysing these transients, 

and the OJIP-rise in particular, can be used to provide a benchmark test on the 5 

overall performance of a given plant. However, it is generally very difficult to isolate 

the specific influence of a particular parameter on the fluorescence induction tran-

sient of a given plant and derive any specific information on the state of the plant, 

e.g. with respect to a specific nutrient. Exceptionally, it has proven possible to di-

rectly link the ratio of the difference between maximum and minimum intensity (Fv) 10 

and the maximum intensity (Fm) to the nutritional status of manganese – due to the 

very direct role manganese plays in the photosynthesis (Husted et al., Plant Physi-

ology, 2009, pp. 825-833). Other approaches suggest a detailed theoretical analysis 

of the physical mechanisms involved in the photosynthesis processes to retrieve 

information on the overall health of the plant from an analysis of the fluorescence 15 

induction transients (Stirbet et al., Journal of Photochemistry and Photobiology B: 

Biology, 2011, pp. 236-257). While justified in scientific studies targeted towards 

understanding the details of the photosynthesis processes, such physical models 

are not as yet available for implementation in an instrument targeted to determining 

the nutrient specific nutritional state of a plant. Apart from the above-mentioned 20 

method regarding manganese, available methods are generally not suited for distin-

guishing at least to some level the influences of different nutrients at an early stage 

of development of the plant, in the field, and with results on the spot. Such informa-

tion would be desirable, e.g. for facilitating micro-management of fertilization to im-

prove agricultural crops while avoiding excess usage. If available at an early stage, 25 

such information would allow for corrective measures before crop damage is per-

manent. 

 

Therefore, there is a need for a method of determining the nutritional state of a plant 

with respect to one or more nutrients, which addresses or overcomes at least some 30 

of the above-mentioned challenges. The method should at least to some degree be 

capable of distinguishing between influences of different nutrients. Preferably, the 

method should be suited for implementation in a mobile measurement instrument 

suited for field use. 
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SUMMARY OF THE INVENTION 

A first aspect of the invention relates to a method of determining a nutritional state of 

a plant with respect to one or more nutrients, the method comprising the steps of: 

 5 

- recording a time series of a fluorescence induction signal of a tissue sample 

of the plant using a fluorometer device to obtain signal data, wherein the time 

series at least comprises signal data within the rising portion OJIP of the 

fluorescence induction signal, and  

 10 

- determining the nutritional state from an empirical model applied to the signal 

data, wherein the empirical model is based on pre-recorded reference data 

and relates reference nutritional states to shape-related features in the time-

dependent progression of the fluorescence induction signal. 

 15 

In the context of the present application, the term 'nutrient' refers to a chemical ele-

ment that is considered essential for a plant to complete a full life cycle. The term 

'nutrient' thus includes the elements oxygen (O), hydrogen (H), carbon (C), nitrogen 

(N), phosphorus (P), potassium (K), calcium (Ca), sulphur (S), magnesium (Mg), 

boron (B), chlorine (Cl), manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), molyb-20 

denum (Mo) and nickel (Ni).  

 

The nutritional state of a plant with respect to one or more nutrients can be de-

scribed as healthy, when the plant contains sufficient amounts of these nutrients in 

order to function properly. If the plant only contains insufficient amounts of one or 25 

more nutrients, the lack of nutrient affects the health of the plant, and the nutritional 

state is described as deficient. The method according to the invention monitors the 

functioning of the photosynthesis process by recording the fluorescence transient 

and relating variations in the shape of the fluorescence transient curve to variations 

in nutrient concentrations in the plant. Consequently, the method detects the ‘bioac-30 

tive’ part of the nutrient concentration, which is the part that has an effect on the 

functioning of the plant – in this case the photosynthesis. A plant at any given age is 

deficient of a nutrient, when the bioactive concentration is insufficient for the plant to 
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function properly. As such, this method is able to detect deficient nutritional states 

with respect to one or more nutrients. 

 

Time resolved fluorescence induction data may be obtained using a continuous ex-

citation fluorometer such as the “Handy PEA” commercially available from 5 

Hansatech Instruments; or any fluorescence induction measuring device providing a 

time-resolved fluorescence induction curve with a time-resolution sufficient to re-

solve the shape of the O-J-I-P features in the rising portion of the fluorescence in-

duction transient. In such an instrument, a tissue sample, such as a leaf, is illumi-

nated by actinic light that activates and saturates photosystem II of the tissue sam-10 

ple. The resulting fluorescence is then collected by a detector capable of measuring 

the fluorescence intensity emitted by the tissue sample as a function of time. In the 

“Handy PEA” instrument, the actinic light is provided by an LED-source with a spec-

tral maximum at a wavelength of about 650nm and an intensity of 3000 micro-moles 

photons/(m2 * s), and using optical filters to block the LED-source, the chlorophyll a 15 

fluorescence is collected at wavelengths above 650nm using a PIN-photodiode as 

detector. The spectral range of detection should include a significant portion of the 

spectral range of chlorophyll a fluorescence emission in order to provide a reliable 

representation of induction kinetics. The chlorophyll a fluorescence has a pro-

nounced maximum at a wavelength of about 680nm, and a typical range of detec-20 

tion would therefore include this maximum, such as up to 700nm, or even up to 

800nm. 

 

The onset of actinic light defines the origin of the time axis, and the fluorescence 

response from the tissue sample is recorded as a function of time with respect to 25 

this origin. Typically, the fluorescence is recorded at intervals that increase with time 

to account for the logarithmic nature of the fluorescence transient curve exhibiting a 

fast rise and a slow decline. Typical time intervals between subsequent fluorescent 

measurements range from 10µs (microseconds) in the beginning to about 10ms 

(milliseconds) at the maximum of the transient, and may further increase in a loga-30 

rithmic fashion along the slow decline of the transient. 

 

The method relies on pre-recorded reference data. The reference data is a set of 

fluorescence transients obtained from plants prepared with a variety of reference 



 

5 

nutritional states with respect to one or more nutrients. The reference states should 

reflect the range of nutritional states to be tested for. By design, the reference data 

thus contains the information on how the different nutritional states of the plant affect 

the fluorescence induction signal. As mentioned above, the chlorophyll a fluores-

cence may be affected by numerous biotic and abiotic factors simultaneously and 5 

the wealth of information contained by the fluorescence signal tends to conceal any 

specific information on the influence of a particular nutrient. The present invention 

solves this by identifying that differences in shape related features in the time-

dependent progression of the signal data are associated to different nutritional 

states, and utilizing an empirical model to interpret these differences. The term 10 

‘shape-related’ refers to structures in the progression of the time-dependent fluores-

cence induction signal; ‘shape-related features’ are such structures that carry rele-

vant information – here in the form of changes in the shape of the fluorescence in-

duction transient that occur as a function of varying nutritional states. The empirical 

model is based on the pre-recorded reference data obtained for the various refer-15 

ence nutritional states, and is constructed from the reference data using e.g. multi-

variate analysis techniques. Based on this empirical model, it is possible to predict 

the nutritional state of a plant with respect to the nutrient from the signal data. 

 

One of the important merits of the present invention is that shape-related features of 20 

the fluorescence induction transient, in particular during the fast OJIP-rise, may be 

analysed to yield information on the nutritional state of a plant with respect to a par-

ticular nutrient or group of nutrients. A further merit of the invention is that, by ana-

lysing the shape of the fluorescence induction transient, such information on the 

nutritional state of a plant may even be independent of genotype and plant species. 25 

As a consequence, reference data from one genotype or species may be validated 

as a reference for signal data of plants of a different one. Yet a further merit of the 

invention is that an analysis of shape-related features in the fluorescence induction 

transient yields nutrient-specific information about latent nutrient stress of a plant at 

a very early stage thus allowing a nutrient-specific treatment of the plant. Early de-30 

tection of a nutrient deficiency followed by an adequate specific treatment enables 

correction with a minimum of crop damage, and hence yield loss, as compared to 

other methods. Yet a further merit of the invention is that a nutrient-specific quantita-

tive analysis of the bioactive level may be achieved. 
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For some nutrients, the empirical model may allow for a direct and unique identifica-

tion of the nutritional state with respect to one particular nutrient with a high level of 

reliability. Examples of such nutrients are phosphorus (P), copper (Cu), manganese 

(Mn), and sulphur (S). For other nutrients, the empirical model may at least provide 5 

a prediction that a plant has a nutrient deficiency, wherein the nutrient may be one 

of a group of nutrients. Examples of such nutrients are nitrogen (N), potassium (K), 

calcium (Ca), magnesium (Mg), and iron (Fe). Nevertheless, for these other nutri-

ents, the prediction provides information on the nutritional state of the plant, and 

reduces the ambiguity in identifying the relevant nutrients. The remaining ambiguity 10 

may be lifted by providing additional information. Such additional information may be 

available beforehand, and allow for eliminating some of the other nutrients in that 

group. Alternatively such additional information may be sought in supplementary 

analyses. 

 15 

The method allows for providing a fast, reliable, and accurate test result from a non-

destructive/non-invasive optical measurement that may be performed directly on the 

plant. Preferably, the empirical model is “pre-constructed” and readily available at 

the time of testing, i.e. when the nutritional state of the plant under test is to be de-

termined. In this case, only the parameters of the empirical model and not the full 20 

range of reference data need to be stored for the test. The reference data need only 

be accessed again when the empirical model needs to be re-validated/re-

constructed. This further reduces the need for processing power and data storage 

capacity, and is therefore particularly advantageous for implementation in mobile 

devices and for providing a fast test result. 25 

 

Further according to one embodiment, the method further comprises the step of pre-

processing the signal data to enhance non-linear components thereof, wherein the 

empirical model is constructed from correspondingly pre-processed reference data. 

 30 

Non-linear features of the time dependent progression of the signal data are en-

hanced by removing a background of lower order components, thereby enhancing 

modelling of the nutrient dependent differences between samples in these non-

linear features using linear multivariate analysis techniques. Prior to analysis, the 
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same pre-processing is applied to the time-dependent fluorescence induction tran-

sients of the signal data as the one applied to the time-dependent fluorescence in-

duction transients of the reference data when constructing the empirical model. The 

method relies for the analysis of the shape-related features on the information con-

tained in the non-linear features. Variations in the bioactive levels of nutrients in the 5 

plant, and thus changes in the nutritional state of the plant, are detected as varia-

tions in the non-linear components of the corresponding fluorescence induction 

transients. Thereby, a vastly improved analysis of "shape-related features" is 

achieved. 

 10 

Further according to one embodiment of the method, pre-processing comprises 

normalisation, such as multiplicative scatter correction (MSC) or standard normal 

variate (SNV) transformation, and/or differentiation. Non-linear components in the 

time-dependent progression of the fluorescence induction signal are enhanced by 

suppressing lower-order components. For example, this may be achieved by nor-15 

malization or differentiation with respect to time to suppress linear and sub-linear 

components. The first derivative removes a constant background. The second de-

rivative removes any linear background. Thereby any non-linear components of the 

time-dependent progression of the fluorescence induction signal are made more 

prominent, i.e. enhanced. Similarly MSC and SNV tend to suppress differences in 20 

lower-order components between time series. As a consequence, non-linear com-

ponents become more prominent, i.e. they are enhanced. 

 

Further according to one embodiment of the method, determining the nutritional 

state comprises classifying the sample in a classification scheme with respect to the 25 

one or more nutrients on the basis of the empirical model. Thereby, the method is 

adapted to provide a classification of the plant under test with regard to its nutritional 

state as an output. Such output is particularly advantageous in micro-managing ag-

riculture, e.g. in order to detect any unhealthy state, identify the particular nutrients 

or group of nutrients concerned, and decide on corrective actions to be taken based 30 

on that output. 

 

The classification scheme may comprise different levels of detail, e.g. depending on 

the predictive power of the empirical model with regard to the particular nutrients or 
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group of nutrients. A classification may be specific for one particular nutrient, and/or 

comprise a remaining ambiguity by determining a deficiency for at least one out of a 

group of nutrients. The classification may be performed according to quantitative or 

semi-quantitative information, such as a number representative of a reliability of the 

prediction, or classes of deficiency (e.g. slightly/moderately/heavily deficient), 5 

wherein the classification scheme may be calibrated against the pre-recorded refer-

ence data, e.g. by multivariate analysis techniques. 

 

Further according to one embodiment of the method, determining the nutritional 

state comprises providing a quantitative prediction representative of a bioactive con-10 

centration of the one or more nutrients in the plant on the basis of the empirical 

model. Thereby, the method is adapted to provide a quantitative output with regard 

to the nutritional state of the plant under test. The quantitative prediction is cali-

brated against the pre-recorded reference data obtained on reference tissue sam-

ples with a known/measured bioactive concentration of one or more nutrients in the 15 

plant. Calibration may be performed using any adequate technique, such as by mul-

tivariate analysis techniques. The quantitative output may be consolidated into a 

value representing the bioactive level of one or more nutrients. A quantitative output 

is advantageous in order to provide a detailed diagnosis of the plant with regard to 

its nutritional state. Furthermore, a quantitative output has the advantage that any 20 

measures of correction can be adjusted to avoid oversupply of nutrients, and that 

the uptake of available nutrients by the plant can be monitored. 

 

Further according to one embodiment of the method, the empirical model is con-

structed from the reference data using a multivariate analysis technique selected 25 

from the group of partial least squares regression (PLS), or principal component 

analysis (PCA). In one variant, the partial least squares regression may be a partial 

least squares discriminant analysis (PLS-DA). 

 

Further according to one embodiment of the method, the empirical model is con-30 

structed by training an artificial neural network using the reference data as a training 

set. The artificial neural network may be trained to recognise any patterns present in 

the reference data, which relate changes in the shape-related features to changes in 

the nutritional state with respect to a particular nutrient or group of nutrients. 
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Further according to one embodiment, the method further comprises the step of 

selecting a sub-set of the recorded reference and signal data from one or more time 

intervals. The method may be optimized with respect to a particular nutrient or a 

particular group of nutrients by selecting a sub-set of the reference and signal data 5 

from one or more time-intervals. The sub-set is selected with regard to shape-

related features in the time-dependent fluorescence induction signal that are ex-

pected to carry information on the nutritional state of the plant with respect to a par-

ticular nutrient or group of nutrients, or with regard to shape-related features that 

have been identified beforehand to carry such information, e.g. by studying the 10 

shape of fluorescence induction transients in the reference data with regard to varia-

tions in the nutritional state for this particular nutrient or group of nutrients. Prefera-

bly, the selection is made so as to enhance the influence of the shape-related fea-

tures for this particular nutrient or group of nutrients on the empirical model. 

Thereby, the empirical model is configured for determining a nutritional state for a 15 

particular nutrient or a particular group of nutrients by selecting a sub-set of the 

data. 

 

One way of identifying shape-related features in the time series of the fluorescence 

induction curves is recording a set of reference data on tissue samples that have 20 

been cultivated to contain varying bioactive concentrations of one or more nutrients 

(the nutrients of interest), and identifying changes in shape by comparing traces 

from tissue samples with different bioactive concentrations. Shape-related changes 

may be enhanced by pre-processing to improve prominence of the features, e.g. 

differentiation prior to comparison. Sub-sets are then selected from particular time 25 

intervals where these shape-related features are prominent. 

 

Further according to one embodiment of the method, the reference and signal data 

is selected in the range between 10ms and 1s, alternatively between 15ms and 

100ms, or between 20ms and 50ms. 30 

 

According to one advantageous embodiment, the signal data and the corresponding 

reference data are selected from the time interval between 0s and 10s, covering the 

full OJIP rise and the peak at P including the beginning of the slow decline. 
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According to a further advantageous embodiment, the signal data and the corre-

sponding reference data are selected from the time interval between 0s and 3s, 

covering the full OJIP rise. 

 

According to one preferred embodiment, the signal data, and the corresponding 5 

reference data are selected from a time-range covering the so-called ‘I-step’ in the 

OJIP rise of the fluorescence induction transient. The I-step is a shape-related fea-

ture that comprises information on the nutritional state with respect to a number of 

nutrients. For example, a pronounced change in shape of this feature is observed 

for latent phosphorus deficiency. Suitable time-intervals covering the I-step are for 10 

example in the range between 10ms and 1s, alternatively between 15ms and 

100ms, or between 20ms and 50ms. 

 

For some nutrients, such as phosphorus (P), copper (Cu) and sulphur (S), a high 

level of reliability of predictions of the nutritional state is observed in particular 15 

around the I-step. The information carried by this shape-related feature thus allows 

for direct and unique determination of the nutritional state with respect to these nu-

trients – including a quantitative prediction of the bioactive concentration of these 

nutrients based on the same data. 

 20 

Further according to one embodiment of the method, the one or more nutrients are 

selected from the group of nitrogen (N), phosphorus (P), potassium (K), calcium 

(Ca), sulphur (S), magnesium (Mg), boron (B), manganese (Mn), iron (Fe), zinc (Zn), 

and copper (Cu). 

 25 

Further according to one embodiment of the method, the one or more nutrients are 

selected from the group of phosphorus (P), copper (Cu), manganese (Mn), and sul-

phur (S). Surprisingly, a high level of reliability for nutrient-specific prediction is ob-

served for these nutrients, thus entailing a low risk of confusion with other nutrients 

 30 

A second aspect of the invention relates to an instrument configured for performing 

the method according to any of the above mentioned embodiments. Further em-

bodiments of instruments for determining a nutritional state of a plant with respect to 

one or more nutrients are cited in the following. The same advantages as mentioned 
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above with respect to the method for determining a nutritional state are achieved. In 

particular, the instrument allows for providing a fast, reliable, and accurate test result 

from a non-destructive/non-invasive optical measurement that may be performed 

directly on the plant. Furthermore, the instrument may be a mobile device suited for 

use in the field. 5 

 

According to a further aspect of the invention, an instrument for determining a nutri-

tional state of a plant with respect to one or more nutrients comprises 

- a fluorometer device configured for recording a time series of a fluorescence 

induction signal of a tissue sample of the plant to obtain signal data, wherein 10 

the time series at least comprises signal data within the rising portion of the 

fluorescence induction signal, and  

- an analysis device configured for determining the nutritional state of the plant 

by applying an empirical model to the signal data, wherein the empirical 

model is based on pre-recorded reference data and relates reference nutri-15 

tional states to shape-related features in the time-dependent progression of 

the fluorescence induction signal. 

 

Further according to one embodiment of the instrument, the analysis device gener-

ates an output representative of the nutritional state of the plant. The output may be 20 

directly displayed to present data on the nutritional state of the plant under test to a 

user. The output may be used for deriving a health index for the plant, wherein the 

health index may be nutrient specific or nutrient-group specific. The instrument may 

provide the output at an interface for use by a subsequent device, such as a device 

for diagnosing and/or treating the plant under test. For critical threshold levels, i.e. if 25 

a critical state of the plant is determined, the instrument may generate an alarm trig-

gered by the output. 

 

Further according to one embodiment of the instrument, the nutrient specific output 

is a classification according to a classification scheme based on the empirical 30 

model. 

 



 

12 

Further according to one embodiment of the instrument, the output is a quantitative 

prediction representative of a bioactive concentration of the one or more nutrients in 

the plant on the basis of the empirical model. 

 

Further according to one embodiment of the instrument, the one or more nutrients 5 

are selected from the group of nitrogen (N), phosphorus (P), potassium (K), calcium 

(Ca), sulphur (S), magnesium (Mg), boron (B), manganese (Mn), iron (Fe), zinc (Zn), 

and copper (Cu). 

 

Advantageously according to a further embodiment of the instrument, the one or 10 

more nutrients are selected from the group of phosphorus (P), copper (Cu), manga-

nese (Mn), and sulphur (S). 

 

BRIEF DESCRIPTION OF THE DRAWINGS 

In the following the invention is further explained by way of examples and with refer-15 

ence to the drawings. The drawings show on 

 

Fig.1 Time series of the fluorescence induction signal recorded from four tissue 

samples with different phosphorus nutritional states, 

 20 

Fig.2 The data of Fig.1 after pre-processing by section wise differentiation in 

each of the time windows A-F to enhance shape-related features, 

 

Fig.3 Median time series of the fluorescence induction signal recorded from a 

plurality of tissue samples with a specific nutrient deficiency as well as 25 

healthy control plants. 

 

Fig.4 The data of Fig.3 after pre-processing by section wise differentiation in 

each of the time windows A-E to enhance shape-related features, 

 30 

Fig.5 a PLS prediction of phosphorus concentration (ppm) against independently 

measured phosphorus concentration (ppm), 
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Fig.6 a PCA score plot for the first two principal components PC1 and PC2 of a 

PCA model based on MSC pre-processed data around the I-step. 

 

DETAILED DESCRIPTION / EXAMPLES 

 5 

Recording of fluorescence induction transients 

In all examples, chlorophyll a fluorescence transient measurements were performed 

using the commercially available Hansatech Instrument “Handy PEA”. Using the 

dark adaption clips fitting this instrument, the tissue samples to be analysed were 

initially dark adapted for at least 20 minutes, thereby effectively stopping all photo-10 

synthesis activity and maximizing the intensity increase of the OJIP-rise. When 

measuring, the sensor unit of the Handy PEA is placed on the dark adaption clip, 

thereby allowing the tissue sample to be exposed to the sensor and diodes without 

letting light in. Initially, a background level was determined by using a short flash of 

non-actinic light and measuring the response from the tissue sample, and the gain 15 

of the detector was adjusted accordingly. 

 

After this initial adjustment, the actual measurement was conducted by illuminating 

the exposed leaf by three red LED’s that are optically filtered to a maximum wave-

length of 650nm. This light is on for the duration of the measurement, and irradiates 20 

the tissue sample with a photon flux of at least 3000 μmol m-2 s-1 so as to effectively 

saturate the tissue sample with actinic light during the measurement. 

 

Switching on the actinic light induces a chlorophyll a fluorescence induction signal 

with a fast rise of the fluorescence intensity, followed by a slow decline. The fluores-25 

cence signal occurs at wavelengths above the wavelength of the actinic light. The 

intensity of the fluorescence transient was recorded using a PIN photodiode as a 

detector. Optical filtering is used to ensure that only the longer wavelength 

(>650nm) fluorescence signal is recorded, thereby avoiding artefacts stemming from 

actinic light reaching the detector. The PIN-detector integrates the intensity of the 30 

induced fluorescence signal over the full spectral range reaching the detector. 

 

A time series of fluorescence intensity measurements was recorded at increasing 

intervals between successive measurements as a function of total time evolved, 
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wherein the origin of the total time axis is defined as the point when actinic light is 

switched on. The following gives an overview of the number of data points recorded 

for a set of signal data, and intervals between successive data points in different 

time windows of the total time evolved after switching on the actinic light. The cho-

sen distribution of time intervals is one example of a somewhat logarithmic increase 5 

of the time intervals with total time evolved. However, other distributions may easily 

be conceived by the skilled person in order to adapt the time resolution of the re-

corded signal data with respect to the overall logarithmic nature of the progression 

of the fluorescence intensity as a function of total time evolved. 

 10 

Data point number Interval / s Total time / s Time window 

1–30 10 x 10-6 (0,0–0,30) x 10-3 A 

31–57 0,10 x 10-3 (0,40–3,0) x 10-3 B 

58–84 1,0 x 10-3 (4,0–30) x 10-3 C 

85–111 10 x 10-3 0,04–0,30 D 

112–138 0,10 0,40–3,0 E 

139–145 1,0 4,0–10 F 

 

For the purpose of the present examples each fluorescence induction data set thus 

consists of 145 individual measurements, and provides a time-dependent fluores-

cence curve that is best visualized using a logarithmic time-scale. The data sets 

cover the first 10 seconds of the fluorescence induction transient including the fast 15 

fluorescence rise, the peak intensity, and the beginning of the slow decline. When 

merely studying the fluorescence rise up to and including the intensity peak, only the 

first approximately 3 seconds are recorded, of which the first second may suffice. 

 

Reference nutritional states 20 

Two experiments where performed providing two sets of reference nutritional states, 

each covering a range of physiological states of spring barley (cv. Quench) with dif-

ferent levels of phosphorus deficiency. In both cases, barley plants were grown hy-

droponically, thereby allowing for a clear control of the nutrient-levels available to 

each plant. Plants were divided into four different treatments that varied slightly be-25 

tween the two experiments, but in both cases they consisted of one control treat-

ment (P0), and three P-treatments (P1-P3) with decreasing P concentration. 

 



 

15 

In both experiments, spring barley, cv. Quench, was germinated for eight days in 

soaked Sorbix vermiculite in a greenhouse with minimum day/night temperatures at 

18/15 oC and 16 hours of light each day (minimum 250-300 μmol photons m-2 s-1), 

and subsequently grown hydroponically in 4 L opaque cultivation units. The nutrient 

solution in the growing units is based on a standard control treatment with: 200 μM 5 

KH2PO4, 200 μM K2SO4, 300 μM MgSO4 7H2O, 100 μM NaCl, 300 μM Mg(NO3)2

6H2O, 900 μM Ca(NO3)2 4H2O, 600 μM KNO3, 50 μM Fe(III)-EDTA-Na, 0.8 μM 

Na2MoO4 2H2O, 1 μM MnCl2 4H2O, 0.7 μM ZnCl2, 0.8 μM CuSO4 5H2O, 2 μM 

H3BO3. To avoid EDTA poisoning, the concentrations of the micronutrients were 

however halved in the first growth week after transfer to the cultivation units. 10 

 

Each cultivation unit was continuously aerated with filtered air and the nutrient solu-

tion was renewed weekly to ensure optimal nutrient availability of all essential nutri-

ents, except phosphorus for the plants where phosphorus deficiency is induced. pH 

was kept constant at 6.0±0.3 using ultrapure HCl. 15 

 

The Control treatment had ample amounts of all nutrients during the whole experi-

ment, and P1, P2, and P3 treatments were supplied with decreasing amounts of P. 

In both experiments, the intention of the P1 level was to estimate the P level, so that 

P1 just fulfilled the P requirement of the plants, while avoiding the luxury uptake 20 

found in Control plants. Based on previous experience, the concentration of phos-

phorus in the P1 units was set at 89 μM (i.e. 89 μM of KH2PO4). The P2 levels were 

set at 50% of the P1 level in both experiments, and the P3-level was set at 10 % 

and 25% of the P1 level in experiment 1 and 2 respectively. Specifically for experi-

ment 2, the potassium removed when reducing the concentration of KH2PO4 was 25 

replaced by adding additional KCl – thereby keeping a constant level of potassium 

throughout the experiment across all four treatments. 

 

Experiment 1 – Climate chamber 

The germinated plants were transferred to 32 cultivation units, each containing 10 30 

plants, and divided into two groups (A and B) with 16 units each (day 1). Group A 

was cultivated in a climate chamber under normal light settings (400 μmol photons 

m-2 s-1) and a constant temperature of 20 oC during the whole experiment. Group B 

was cultivated in a climate chamber with the same initial settings as A, however, 

× ×

×

× × ×
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when the reduced P levels were induced, the settings were changed into high light 

intensity (750 μmol photons m-2 s-1) and a constant temperature at 15 oC. Twice a 

week the positions of the units were randomized within each chamber. 

 

The 16 units in each climate chamber were divided into the four different P treat-5 

ments (Control, P1, P2, and P3). For the first 10 days, P1, P2, and P3 units were all 

supplied with nutrient solution P1, to avoid a luxury uptake of P in the pre-cultivation 

phase but allow the production of healthy biomass. After 10 days, the three limited P 

levels described above were induced. At day 21, all three P-limited treatments were 

replaced by a nutrient solution containing no phosphorus. 10 

 

The plants were sampled twice in each climate chamber during the experimental 

period. The first sampling was conducted at day 21 and the last sampling at day 28 

where the P1-3 plants had been completely deprived of phosphorus for seven days. 

At each sampling, the youngest fully developed leaf from five different plants (which 15 

were subsequently harvested) in each cultivation unit were analysed using the 

Handy PEA, and leaves from each separate cultivation unit were subsequently 

pooled together as one sample and analysed using Inductively Coupled Plasma 

Optical Emission Spectroscopy (ICP-OES). This way, the average phosphorus-

content of the youngest fully mature leaf from each cultivation unit is obtained, and 20 

this was used as a reference value for each of the five chlorophyll a fluorescence 

measurements on individual plants in that cultivation unit. 

 

Experiment 2 – Greenhouse 

The germinated plants were transferred to 16 cultivation units each containing 4 25 

plants (day 1), and were cultivated under the same greenhouse conditions as for the 

germination period. The 16 cultivation units were divided into the four different 

phosphorus treatments (Control, P1, P2, and P3), and their positions were random-

ized twice a week. 

 30 

All four different treatments were given control-level nutrient supply during the first 

ten days. On day 10, the P1, P2, and P3 levels were induced using their respective 

nutrient solutions. On day 21, phosphorus was removed completely from the P1-3 
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treatments. On day 28, all cultivation units were supplied with control-level nutrient 

concentrations to observe a potential effect of phosphorus re-supply. 

 

The plants were sampled four times during the experimental period, at day 21, day 

23, day 28, and day 30. One plant from each cultivation unit was harvested, and 5 

chlorophyll a measurements were performed on both the youngest fully developed 

leaf and the second youngest fully developed leaf. Unlike experiment 1, each leaf 

was subsequently analysed separately using ICP-OES, thereby giving a specific 

reference value for each chlorophyll a fluorescence measurement. 

 10 

Data-processing 

One of the central merits of the present invention rests in the insight that an appro-

priate analysis of shape-related features of the progression of the fluorescence in-

duction transient, and in particular of the rising portion, yields nutrient-specific infor-

mation about the state of deficiency with respect to a specific nutrient. To that end, 15 

changes in the shape-related features as compared to the unstressed state with 

respect to the specific nutrient are detected and analysed. According to the present 

invention, the nutritional state is determined from these changes by constructing an 

empirical model, which on the basis of reference data relates specific reference nu-

tritional states to shape-related features in the fluorescence induction transients and 20 

applying this empirical model to the signal data obtained from a plant under test. 

The reference data is pre-recorded fluorescence induction time series obtained from 

reference plants, i.e. plants that are prepared to be in a particular nutritional state 

with respect to the specific nutrient as described above. The signal data are fluores-

cence induction time series obtained from a plant under test. The empirical model is 25 

constructed using multivariate analysis techniques. 

 

Pre-processing 

Pre-processing was applied to the fluorescence induction data in order to enhance 

shape-related features. For a given analysis, both signal data and the corresponding 30 

reference data used to construct the empirical model were pre-processed using the 

same pre-processing technique. A number of different pre-processing techniques 

may be employed. Two of these pre-processing techniques are presented here. In 

one analysis the same algorithm as commonly used for multiplicative scatter correc-
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tion of infrared spectra was applied to a sub-set of time-dependent fluorescence 

induction data selected from a time-range around the I-step (between 2.6ms and 

100ms). The multiplicative scatter correction algorithm turned out to work surpris-

ingly well as pre-processing for the purpose of enhancing shape-related features in 

the progression of the fluorescence induction data. In a further analysis, numerical 5 

differentiation was applied by taking the difference in fluorescence signal of two 

subsequent data points. The differentiation is done section wise for each of the 

above-mentioned time windows A-F. 

 

Fig.1 and Fig.2 illustrate the enhancement of the shape-related features by differen-10 

tiation for different bioactive concentrations of a particular nutrient, here phosphorus. 

Fig.1 shows the recorded fluorescence induction signal as a function of time for four 

tissue samples with different phosphorus concentration on a log/linear scale. The 

data covers the OJIP rise and the beginning of the subsequent decline in the time 

interval between 0s–10s. Fig.2 shows the corresponding data after pre-processing 15 

by section wise differentiation applied to the fluorescence induction signal in each of 

the time windows A-F. Note for example, the pronounced change in the shape-

related feature around the I-step at about 50ms for phosphorus deficient plants 

(treatments P1-P3) as compared to the healthy state (treatment P0). 

 20 

Fig.3 and Fig.4 illustrate the enhancement of the shape-related features by differen-

tiation for different nutrient species. Fig.3 shows the fluorescence induction signal as 

a function of time from tissue samples with a nutrient specific deficiency on a 

log/linear scale. The data covers the OJIP rise up to and including the peak at ‘P’ in 

the time interval between 0s–3s. Three of the fluorescence induction traces shown 25 

are from a plurality of tissue samples in nutrient deficient states with respect to 

phosphorus, sulphur, and copper, respectively. The fourth fluorescence induction 

trace is from healthy tissue samples. Fig.4 shows the corresponding data after pre-

processing by section wise differentiation applied to the fluorescence induction sig-

nal in each of the time windows A-E. Clear nutrient-specific differences in shape are 30 

observed for different tissue samples. 
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Empirical model 

In one analysis, an empirical model is constructed from fluorescence induction tran-

sients recorded in the time-range between 0s–10s for the set of reference nutritional 

states of Experiment 1 and Experiment 2, pre-processed by differentiation. The dif-

ferentiation is obtained section wise as described above. The empirical model is 5 

constructed by Partial Least Squares Regression. A phosphorus concentration of 

about 3000ppm–4000ppm is the threshold commonly used in practical agriculture 

for when a plant is considered ‘healthy’. A higher phosphorus concentration is thus 

not ‘bioactive’ in the plant, and this ‘luxury uptake’ will instead be stored as a reserve 

for potential later needs. The empirical model is therefore constructed for all those 10 

plants that have an independently measured phosphorus concentration of below 

4000ppm. Fig.5 shows a graph of the cross-validated predicted phosphorus concen-

tration (ppm) against measured phosphorus concentration (ppm) for Experiment 1 

and Experiment 2. The diagonal line indicates the desired 1:1 relation of perfect 

prediction. Cross-validation was performed using four randomly selected subsets, 15 

and the number of latent variables was chosen to minimize the difference between 

the root mean squared error of calibration (RMSEC) and the RMSE of cross-

validation (RMSECV). Outliers were removed based on Hotelling’s T2 vs. residual 

plots. The reliability of the prediction is characterized by an R2-value of about 0.8 

indicating a good correlation between measured and predicted phosphorus concen-20 

tration. Furthermore, the phosphorus concentrations above 3000 ppm (measured) 

are seen to be slightly under-predicted. This ‘cut-off’ of the phosphorus concentra-

tion predicted on the basis of fluorescence induction data as compared to the total 

phosphorus concentration in the plant as measured by an independent method, is in 

agreement with the fact that the fluorescence induction is sensitive to the bioactive 25 

fraction of the nutrients contained in the plant rather than the total concentration. As 

the threshold for barley is between 3000-4000 ppm, it is in full agreement with the-

ory that samples should tend to be underestimated when the phosphorus concentra-

tion is above 3000ppm. 

 30 

In a further analysis, an empirical model is constructed from a collection of fluores-

cence induction transients recorded for the set of reference nutritional states of Ex-

periment 1 and Experiment 2 with respect to phosphorus and from a library of fluo-

rescence induction transients recorded for deficient nutritional states with respect to 
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nutrients from the group of phosphorus (P), manganese (Mn), boron (B), nitrogen 

(N), potassium (K), calcium (Ca), sulphur (S), magnesium (Mg), iron (Fe), zinc (Zn), 

and copper (Cu). A sub-set of the data in the collection is selected by only taking 

into account fluorescence induction signals around the I-step, in the time interval 

between 2.6ms and 100ms. The empirical model is constructed using principal 5 

component analysis (PCA). Prior to performing the PCA and constructing the em-

pirical model, the fluorescence induction transients were pre-processed by applying 

the Multiplicative Scatter Correction (MSC) algorithm, which is commonly used for 

pre-processing of infrared spectra. Such an algorithm is commercially available, for 

example in the PLS_toolbox 7.3.1 software by Eigenvector Research for Matlab The 10 

algorithm acts surprisingly well to enhance shape-related features of the fluores-

cence induction transients by suppressing lower order artefacts in the time-

dependent fluorescence induction signal. PCA is an unsupervised multivariate 

analysis method. Any pattern detected in the data can therefore give a reliable indi-

cation of the presence of systematic dependencies in the data. Fig.6 shows a PCA 15 

score plot for the first two principal components PC1 and PC2, wherein PC1 ex-

plains 74.5% of the variance in the above mentioned ensemble of data, and PC2 

explains 18.7% in this data. Together, PC1 and PC2 thus explain more than 90% of 

the variance in the data. The plot shows a large number of individual fluorescence 

induction transients in the ensemble, each represented by a point with the PC1 and 20 

PC2 coefficients as the x- and y-coordinates, respectively. Each point thus repre-

sents a particular nutritional state with respect to a particular nutrient. Different sym-

bols represent fluorescence induction transients for different nutrients. A clear clus-

tering of phosphorus deficient states is observed in the lower right portion of the 

graph (hollow triangles). Furthermore, Sulphur deficient states cluster in a region at 25 

the top of the graph (hollow squares), and Copper deficient states appear to ag-

glomerate to the left (hollow circles). This plot underlines the capability of the 

method according to the invention, at least for some nutrients, to uniquely identify a 

state of nutritional deficiency, and possibly even quantify the level of deficiency. 

 30 

In yet a further analysis, a partial least squares discriminant analysis (PLSDA) re-

gression is made on the same library of fluorescence induction transients as used 

for the PCA above. Unlike above however, the entire of fluorescence induction tran-

sients in the time interval from 0s–3s is pre-processed by section-wise differentia-
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tion. As PLSDA is a supervised method unlike PCA, the results are cross validated 

by dividing the data into ten random subsets. After removing outliers a PLSDA 

model is made using 9 latent variables; giving the confusion matrix shown in Table 

2, and the confusion table shown in Table 3. These results further corroborate the 

ability of this method to provide nutrient specific predictions based on shape-related 5 

features in the fluorescence induction transients. 

 

Table 2 

Class: TP FP TN FN 

Ctrl 0.53     0.14 0.86 0.47 

Ca 0.27 0.03 0.97 0.73 

Cu 0.82 0.04 0.96 0.18 

Fe 0.15 0.04 0.96 0.85 

K 0.19 0.01 0.99 0.81 

Mg 0.13 0.01 0.99 0.87 

Mn 0.76 0.01 0.98 0.24 

N 0.40 0.04 0.96 0.60 

P 0.74 0.04 0.96 0.26 

Zn 0.29 0.04 0.96 0.71 

S 0.75 0.10 0.90 0.25 

B 0.69 0.04 0.96 0.31 

 

Table 2 shows the cross-validated confusion matrix for the PLSDA model (9 latent 10 

variables) showing the relative number of true positive (TP), false positive (FP), true 

negative (TN) and false negative (FN) for each class/nutrient. The nutrients that 

show promise in terms of specificity are highlighted as bold. 

 

Table 3 15 

Predicted vs. Actual Ctrl Ca Cu Fe K Mg Mn N P Zn S B 

Predicted as Ctrl 204 0 7 56 8 54 3 0 25 9 17 0 

Predicted as Ca 2 13 6 5 3 14 1 10 7 1 1 0 

Predicted as Cu 26 7 129 10 4 2 4 1 4 2 1 0 



 

22 

Predicted vs. Actual Ctrl Ca Cu Fe K Mg Mn N P Zn S B 

Predicted as Fe 17 1 7 29 2 9 0 3 10 2 6 0 

Predicted as K 5 2 0 1 9 5 0 0 2 1 1 2 

Predicted as Mg 9 0 0 4 0 28 0 0 4 0 3 0 

Predicted as Mn 7 3 0 4 0 3 55 0 6 0 0 0 

Predicted as N 0 9 0 28 2 22 0 19 3 2 1 1 

Predicted as P 9 8 1 9 0 13 5 8 213 4 2 0 

Predicted as Zn 29 4 1 1 13 8 0 4 7 14 0 2 

Predicted as S 58 0 7 39 0 48 2 0 1 0 95 0 

Predicted as B 16 1 0 8 7 3 6 2 6 13 0 11 

 

Table 3: Confusion table showing the cross validated most probable predicted 

classes versus the reference classes. The nutrients that show promise in terms of 

specificity are highlighted. The PLSDA further supports the capability of the method 

according to the invention to provide nutrient specific information on the nutritional 5 

state of a plant, which at least for some nutrients may even be a unique identifica-

tion of one or more nutrients related to a deficiency state with a high degree of reli-

ability. 
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CLAIMS 
 

1. Method of determining a nutritional state of a plant with respect to one or more 

nutrients, the method comprising the steps of  

- recording a time series of a fluorescence induction signal of a tissue sample 5 

of the plant using a fluorometer device to obtain signal data, wherein the time 

series at least comprises signal data within the rising portion of the fluores-

cence induction signal, and  

- determining the nutritional state from an empirical model applied to the signal 

data, wherein the empirical model is based on pre-recorded reference data 10 

and relates nutritional states to shape-related features in the time-dependent 

progression of the fluorescence induction signal. 

 

2. Method according to claim 1, further comprising the step of pre-processing the 

signal data to enhance non-linear features thereof. 15 

 

3. Method according to claim 2, wherein pre-processing comprises normalisation 

and/or differentiation. 

 

4. Method according to any of the preceding claims, wherein determining the nutri-20 

tional state comprises classifying the sample in a classification scheme with re-

spect to the one or more nutrients on the basis of the empirical model. 

 

5. Method according to any of the preceding claims, wherein determining the nutri-

tional state comprises providing a quantitative prediction representative of a bio-25 

active concentration of the one or more nutrients in the plant on the basis of the 

empirical model. 

 

6. Method according to claim 4 or claim 5, wherein the empirical model is con-

structed from the reference data using a multivariate analysis technique selected 30 

from the group of partial least squares regression (PLS), or principal component 

analysis (PCA). 
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7. Method according to any of the preceding claims, further comprising the step of 

selecting a sub-set of the recorded reference and signal data from one or more 

time intervals. 

 

8. Method according to claim 7, wherein the reference and signal data is selected 5 

in the range between 10ms and 1s, alternatively between 15ms and 100ms, or 

between 20ms and 50ms. 

 

9. Method according to any of the preceding claims, wherein the one or more nutri-

ents are selected from the group of nitrogen (N), phosphorus (P), potassium (K), 10 

calcium (Ca), sulphur (S), magnesium (Mg), boron (B), manganese (Mn), iron 

(Fe), zinc (Zn), copper (Cu). 

 

10. Method according to claim 9, wherein the one or more nutrient is selected from 

the group of phosphorus (P), copper (Cu), manganese (Mn) and sulphur (S). 15 

 

11. Instrument for determining a nutritional state of a plant with respect to one or 

more nutrients, the instrument comprising  

- a fluorometer device configured for recording a time series of a fluorescence 

induction signal of a tissue sample of the plant to obtain signal data, wherein 20 

the time series at least comprises signal data within the rising portion of the 

fluorescence induction signal, and  

- an analysis device configured for determining the nutritional state of the plant 

by applying an empirical model to the signal data, wherein the empirical 

model is based on pre-recorded reference data and relates nutritional states 25 

to shape-related features in the time-dependent progression of the fluores-

cence induction signal. 

 

12. Instrument according to claim 11, wherein the analysis device generates an out-

put representative of the nutritional state of the plant. 30 

 

13. Instrument according to claim 12, wherein the output is a classification according 

to a classification scheme, wherein the classification is based on the empirical 

model. 
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14. Instrument according to claim 12, wherein the output is a quantitative prediction 

representative of a bioactive concentration of the one or more nutrients in the 

plant on the basis of the empirical model. 

 5 

15. Instrument according to any one of claims 12–14, wherein the one or more nu-

trients are selected from the group of nitrogen (N), phosphorus (P), potassium 

(K), calcium (Ca), sulphur (S), magnesium (Mg), boron (B), manganese (Mn), 

iron (Fe), zinc (Zn), and copper (Cu). 



 

26 

ABSTRACT  

 

A method and an instrument for determining a nutritional state of a plant with re-

spect to one or more nutrients is provided. The method comprises the steps of re-

cording a time series of a fluorescence induction signal of a tissue sample of the 5 

plant using a fluorometer device to obtain signal data, wherein the time series at 

least comprises signal data within the rising portion of the fluorescence induction 

signal, and determining the nutritional state from an empirical model applied to the 

signal data, wherein the empirical model is based on pre-recorded reference data 

and relates nutritional states to shape-related features in the progression of the fluo-10 

rescence induction signal. 

 

Fig. 1 
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