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Summary 

Summary 

The use of fluorescence and low-field nuclear magnetic resonance (LF-NMR) 

measurements in both research and industries such as food, petrochemical and 

pharmaceutics production, is increasing. The interest for and application of 

chemometrics to these fields has grown, and the need for more and refined 

applications to evaluate the data is apparent. 

 

This thesis focuses on chemometrics, mainly applied to fluorescence and LF-NMR, 

to increase the informational output from spectroscopic methods. Part of the 

research was on food products, but the conclusions on the developed models are 

more general and applicable to any field where fluorescence and/ or LF-NMR 

might be used.  

 

The thesis consists of 9 papers, four of which already are published in international 

peer-reviewed journals. The first paper establishes an automatic way to estimate 

the number of components in fluorescence. This work is the basis for creating a 

generalized method for estimation of the right number of components. Papers II 

and III investigate existing and new methodologies to handle the unwanted 

Rayleigh scatter effect in fluorescence. They are followed by a practical solution 

for the analyses of real samples by parallel factor analysis (PARAFAC) in order to 

improve convergence time and decomposition accuracy. The subsequent two 

papers focus on the application of PARAFAC on the decomposition of LF-NMR 

relaxation curves of two different food products, namely fish (Paper V) and 

potatoes (Paper VI). In both of these papers predictions based on the scores from 

PARAFAC were performed. Predictions for these two products, together with 

predictions on a third product (rape seeds) were compared with the more traditional 

two-way method partial least squares (PLS) in Paper VII. Prediction on the scores 

from PARAFAC is a second-order prediction, which is the focus of Paper VIII. 

This is an investigation into optimal performance of second order prediction on 
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simulated data sets. The last Paper (IX) introduces a better method to uncertainty 

estimates in regression models compared to conventional methods on three-way 

data. 
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Oppsummering 

Oppsummering 

Fluoressens og lav-felts kjernemagnetisk ressonans (LF-NMR) målinger blir brukt 

i økende grad innen forskning og industri, f.eks fødevarer, petrokjemi og farmasi. 

Interessen for og anvendelsen av kjemometri på disse feltene har steget, og det er 

nødvendig med mer og bedre applikasjoner for å evaluere dataene. 

 

Denne avhandlingen fokuserer på kjemometri, hovedsakelig brukt på fluoressens 

og LF-NMR, for å øke informasjonsutbytte fra spektroskopiske metodene. Deler av 

forskningen var på fødevarer, men konklusjonene til de utviklede modellene er 

generell og brukbar til andre områder hvor fluoressens og / eller LF-NMR 

anvendes. 

 

Oppgaven inneholder 9 artikler, hvorav fire allerede er utgitt i internasjonale 

journaler. Den første artikkelen etablerer en modell for automatisk estimasjon av 

antall komponenter i fluoressens. Dette arbeidet er grunnlaget for utarbeidelsen av 

en generell metode for estimering av antall komponenter. Artikkel II og III 

undersøker eksisterende og nye metoder for håndtering av uønsket Rayleigh 

lysspredning i fluoressens. De er fulgt opp av en praktisk løsning for analysering av 

prøver fra industrien ved bruk av parallel faktor analyse (PARAFAC) for å forkorte 

konvergenstiden og øke nøyaktigheten av dekomponeringen. De to neste artiklene 

fokuserer på bruken av PARAFAC til dekomponeringen av LF-NMR 

relaksasjonskurver på to forskjellige fødevarer, nærmere bestemt fisk (Artikkel V) 

og poteter (Artikkel VI). I begge disse artiklene brukes skårene fra PARAFAC i 

regresjon. Disse to datasettene pluss et nytt datasett brukes i sammenlikningen av 

denne typen regresjon med den mer tradisjonelle to-veis metoden partiell lineær 

regresjon (PLS) i Artikkel VII. Prediksjon på skårene fra PARAFAC er en andre-

ordens prediksjons metode, som er fokuset i Artikkel VIII. Dette er en 

undersøkelse i optimal bruk av andre-ordens prediksjon på simulerte datasett. Den 

siste Artikkelen (IX) introduserer en bedre metode for usikkerhetsestimering for 
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tre-veis PLS sammenliknet med konvensjonelle metoder brukt på 

fluoressensspektra. 
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Notation 

x Scalar 

x Vector 

X Matrix 

X Three mode array 

 

a A-scores in PARAFAC 

b B-loadings in PARAFAC 

B0 Applied magnetic field in NMR 

c C-loadings in PARAFAC 

D Nuclear spin 

e, E Residual or error 

f One component in PCA/ PARAFAC 

F Total number of components in PCA/ PARAFAC 

i, j, k, n Index 

I, J, K, L, N Max value of index 

m(t) Relaxation curve 

M0 Amplitude of an LF-NMR signal  

o Estimated value for jack-knifing or bootstrapping 

o  Mean estimated value for jack-knifing or bootstrapping 

p Loading in PCA 

s Estimate of uncertainty 

S Electron excitation state 

τ LF-NMR – time between the initial 90º pulse and the first 180º pulse 

t Score in PCA or time 

T2 LF-NMR – Transverse or spin-spin relaxation time constant 

y True value 

ŷ  Predicted value 
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Abbreviations 

CMPG Carr-Purcell-Meiboom-Gill 

DECRA Direct Exponential Curve Resolution Algorithm 

DTLD Direct Tri-Linear Decomposition 

EEM Excitation-emission-matrix 

GRAM General Rank Annihilation Method 

LF-NMR Low Field NMR 

MLR Multi-linear regression 

NMR Nuclear Magnetic Resonance 

NPLS Multi-linear PLS 

OLS Ordinary least squares 

PARAFAC Parallel Factor Analysis 

PCA Principal Component Analysis 

PCR Principal Component Regression 

PLS Partial Least Squares 

RMSECV Root Mean Square Error of Cross Validation 
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1 Introduction 

This thesis is divided into five main parts. The first Chapter gives a short 

introduction on the overall contents of the thesis. Chapter 2 concerns basic theory 

of fluorescence spectroscopy, while Chapter 3 describes the basic principals of LF-

NMR. Chapter 4 explains the basis of the chemometric tools used throughout the 

thesis and presents the major results. In the last chapter the importance of this 

thesis is placed into a more holistic perspective.  

 

During the last decades, the use of spectroscopic measurements has grown 

considerably. There are two main reasons for this trend. First of all, the general 

knowledge of spectroscopy has increased as the amount of research on the 

techniques has developed both through thorough understanding of the 

spectroscopic methods and by applying mathematics. This has led to an increase in 

applications of spectroscopic methods, both in industry and in new research areas. 

The subsequent demand for more precise and affordable instruments has again 

called for more research and better methods to handle the data of varying quality. 

Secondly, spectroscopic methods are in general fast and have the potential to be 

non-invasive, and thus they have a broader use than the slower traditional methods 

(e.g. extraction and titration), that often are invasive. The replacement of (or 

addition to) these older methods has shown valuable in many fields, e.g. process 

industry [He et al. 2003], pharmaceutical research [Kauppinen et al. 1993], food 

science [Munck et al. 1998], environmental science [Silverman 1993] and 

biochemistry [Plugge and van der Vlies 1993]. 

 

Historically, spectroscopy was mainly used for establishing the chemical features 

of pure samples. It was early realized that there was a linear trend between the 

spectroscopic signal of the sample and the concentration of the dissolved analytes. 

This observation made it possible to make prediction models based on the change 

in amplitude of the signal from one single wavelength/-number. However, 
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recording the amplitude change only at one point in the spectrum will not give any 

insight into the underlying complexity of the signal, and hence it will result in bad 

predictions if there are several phenomena contributing to the signal. The technique 

can be extended into recording the height of several peaks, which increases the 

amount of extracted information. Further increasing this to include all the data 

from the spectroscopic measurement is an obvious extension. The development in 

spectroscopic methods has also been to separate and identify the different analytes 

in a mixture. This has partly been achieved through the use of hyphenated systems 

(combing methods like gas chromatography and infrared spectroscopy). The aim is 

to separate the analytes in the first step (often chromatography) and subsequently 

identify them by a spectroscopic method (e.g. infrared). An approach which has 

proven to be a robust visualizing and modeling tool, and which includes most 

information available in the data, is chemometric methods. Chemometric methods 

are capable of e.g. performing predictions, curve resolution (separating the signal 

of each analyte in the solution), handling large datasets and exploring the space the 

data spans [Martens and Næs 1989, Grung and Kvalheim 1995].  

 

In spectroscopy the energetic level of a sample is increased by the absorption of 

some external enforced energy beam. The spectroscopic methods are divided into 

categories depending on the wavelength range used for the energy beam, e.g. 

infrared (IR, ca. 2.5-15µm), ultraviolet/visible (UV-VIS, ca. 200-1000nm), and X-

ray (ca. 10-250pm). Most spectroscopic methods measure the amount of energy 

absorbed by the sample. However, in fluorescence spectroscopy, not only the 

amount of absorbed energy, but also the amount of energy subsequently released 

from the sample is recorded.  

 

In this thesis two spectroscopic techniques were studied: fluorescence 

spectroscopy, and low-field nuclear magnetic resonance (LF-NMR). In 

fluorescence spectroscopy the sample is excited by visible and near-visible light, 

and in LF-NMR by a radio frequency signal. Fluorescence spectroscopy is a 
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sensitive technique, and can measure concentrations at ppb or even at ppt levels [Li 

et al. 2003]. It has been used in various scientific fields, e.g. archaeology [Lyons et 

al. 2003], chemistry [Greetham and Ellis 2003] , food science [Moshou et al. 

2003], environmental science [Claret et al. 2003], and psychology [Dmitrieva et al. 

2004]. LF-NMR is a valuable spectroscopic technique thanks to its rapid 

measurements and the availability of small portable instruments. It has proven 

useful and reliable especially in the analysis of food products [Hills and Floc'h 

1994, Micklander et al. 2002, Paper V, Paper VI], but also in other areas like the 

petrochemical industry [Nordon et al. 2002] and material sciences [Sharma et al. 

2003]. 

 

This thesis focuses on the decomposition of fluorescence data and data from LF-

NMR instruments. Recording one sample by fluorescence spectroscopy naturally 

produces two-way data for each sample; several emission spectra are recorded at 

several excitation wavelengths. Data from LF-NMR is normally one-way data; 

intensity of the signal is recorded at different times. There is, however, a method to 

rearrange this data into two-way data called DECRA/SLICING [Windig and 

Antalek 1997, Pedersen et al. 2002]. Stacking several two-way samples will form a 

three mode data array. This rearranged data can be handled well by parallel factor 

analysis (PARAFAC) [Carrol and Chang 1970, Harshman 1970, Bro 1997]. This 

work has sought to solve some practical aspects related to problems in the use of 

PARAFAC on data from fluorescence spectroscopy. These challenges include e.g. 

right number of components, light scattering effects (unwanted effects overlapping 

the signal of the analytes) [Lakowicz 1999, p. 39] and quenching (causing non-

linearity in the signal with respect to concentrations) [Ingle and Crouch 1988]. The 

emphasis of the work with LF-NMR data has been on the application of 

PARAFAC in analysis of different food samples. In addition to these studies of 

fluorescence and LF-NMR data, the attributes of so-called second order prediction 

[Booksh and Kowalski 1994] have been investigated.  
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2 Fluorescence spectroscopy 

The theory in this chapter does not intend to give the reader detailed knowledge in 

the field of fluorescence spectroscopy, but rather an introduction to the subject. A 

more detailed description can be found in the textbooks by Lakowicz (1999) and 

Ingle and Crouch (1988). 

 

Fluorescence is one of the three luminescence methods used in spectroscopy 

[Skoog and Leary 1992, p. 174]. The other methods are phosphorescence and 

chemiluminescence. The difference between fluorescence and phosphorescence is 

found at the electronic level of the molecule. A paired electron in the ground state 

has two possible excitation levels (see Figure 2.1). In fluorescence the excited 

electron is paired to the second electron in the ground state, and thus the return to 

the ground state is spin-allowed and occurs rapidly (typically in 10-8s). In 

phosphorescence the excited electron has the same spin as the electron in the 

ground state. In this configuration the transition to the ground state is said to be 

forbidden, and it thus occurs slowly (typically in the range of 1ms-1s).  

 

 

Figure 2.1: The ground state, and the two possible excitation states. The only one 

giving fluorescence is the excited single state. 

 

In fluorescence and phosphorescence an electron is excited by absorbing energy in 

the form of light in the UV-VIS range. On the other hand, in chemiluminescence, 

the electron is excited through a chemical reaction. In all luminescence methods, 

after the excitation, the electron is relaxed through internal conversion and 
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vibrational relaxation to the lowest relaxational level of the excited state (S1). The 

molecule will then emit energy and the electron will return to the non-excited state 

(S0). Subsequently it will return to its ground single state through a series of 

vibrational relaxations. The only energy transfer that is of high enough intensity to 

be detected in fluorescence spectroscopy is the transfer between the excited and the 

non-excited state. The whole process is shown in a so called Jabłoński diagram in 

Figure 2.2. 

 

 

Figure 2.2: Jabłoński diagram of fluorescence. 

 

Not all chemical components are fluorophores (molecules that are fluorescent). To 

be fluorescent a molecule needs to have double bonds or nucleophilic parts. The 

most intense fluorophores are aromatic rings and highly conjugated systems. 

Fluorophores are present in sources as different as food products (e.g. vitamins and 

proteins [Karoui et al. 2003]), pollution (e.g. polyaromatic hydrocarbons - PAH’s 

[Fabbri et al. 2003]), and mining industry yields (e.g. uranium [Rathore and Kumar 

2004]). Fluorophores behave differently by absorbing and emitting light at 

characteristic wavelengths. It is therefore possible to separate fluorophores based 
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on their spectral landscapes. However, the exact maximum for both absorption and 

emission is dependent on the temperature, pH and the solute of the sample.  

2.1 Detection range 

Fluorescence spectroscopy has low detection ranges compared to many other 

spectroscopic techniques. This makes it a valuable tool for measuring trace 

concentrations in products. In low concentrations, there is a linear relationship 

between the measured signal and the concentration of the fluorophore [Skoog and 

Leary 1992, p. 183]. Deviations from this linear relationship may be caused by too 

high concentrations of the fluorophore itself, causing inner filter effect, and/or by 

quenching [Ingle and Crouch 1988, p. 456 and 343-344], see Chapter 2.1.1. It may 

therefore be necessary to dilute the sample, measure in a smaller cuvette, or only 

measure the surface of the sample. If only the surface is to be measured, the 

representability of the information in the spectra is highly dependent on the 

homogeneity of the sample. Concentration determinations as low as the ppb-level 

are feasible for fluorescence spectroscopy, and measurement of concentrations 

even down to ppt have been reported [Li et al. 2003].  

2.1.1 Quenching and inner filter effect 

Quenching is the common term for the decrease of intensity caused by the sample 

itself. There are different types of quenching [Ingle and Crouch 1988, p. 343-344], 

the most common  being mentioned below, together with the inner filter effect 

[Ingle and Crouch 1988, p456]: 

1. Dynamic quenching: the excited-state fluorophore is deactivated on contact 

with other molecules in the sample. Its contribution dependents on the 

temperature of the sample. The higher temperature, the stronger is the 

effect of dynamic quenching is. 

2. Static quenching: caused by the fluorescent forming non-fluorescent 

complexes with the quencher molecule. 

3. Inner filter effect: the fluorophore itself or another molecule is absorbing 

some of the emitted light. 
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These different ways of quenching and the inner filter effect are visualized in 

Figure 2.3. 

 

(a) (b) 

 

 
(c) (d) 

  

Figure 2.3: The fluorophore is first excited (a). Three ways of a decrease in the 

fluorescence intensity follow next: (b) Dynamic quenching, (c) static quenching, where 

the excitation energy is used in the formation, and (d) inner filter effect. ‘F’ denotes 

the fluorophore, and the ‘Q’ denotes the quencher. 

2.2 Excitation-emission matrix 

A common way to measure a fluorescence spectrum is exciting a sample at a 

certain wavelength, and detecting the emitted light in a range of wavelengths. It is 

also possible to excite the sample at different wavelengths, and then only measure 

the emission at one single wavelength [Karoui et al. 2003, Lakowicz 1999, p. 25]. 
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This way of measurement makes it easier to visually inspect a group of samples, 

but by doing so all the available information is not recorded. Another way of 

collecting data from a fluorescence instrument is to collect several emission spectra 

at different excitation wavelengths [Matthews et al. 1996]. From this procedure the 

emission spectra can be set side-by-side thus creating a fluorescence landscape, 

with the excitation wavelength along the x-axis, the emission along the y-axis and 

the intensity of the signal along the z-axis. This landscape is also known as the 

excitation-emission-matrix, abbreviated EEM, see Figure 2.4. All the work in this 

thesis is performed on this type of fluorescence data. 

 

 

Figure 2.4: A typical EEM of a mixture of fluorophores in de-ionized water. 

2.3 Scatter effects 

An EEM will typically have areas with Rayleigh and Raman scatter [Lakowicz 

199, p. 39-40, Ingle and Crouch, p. 462-463]. These two types of scatter can 

readily be seen in an EEM of a (non-fluorescing) water sample, as shown in Figure 
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2.5. In modeling the chemical information in fluorescence data, scatter effects are 

considered undesirable, because they do not hold any information about the 

fluorophores in the solution, and they can disturb the mathematical modeling of the 

fluorophores. Both of these scatter effects mainly originate from the solute. 

 

 

Figure 2.5: An EEM of de-ionized water showing three diagonal peaks: two Rayleigh 

peaks (1st and 2nd order) and one Raman peak.  

2.3.1 Rayleigh scatter 

Rayleigh scatter is predominantly caused by the solute, but may also originate from 

the fluorophores themselves [Ingle and Crouch 1988, p. 495-497]. Electrons in the 

molecules start to oscillate at the same frequency as the incident light, thus 

absorbing and emitting light at the same wavelength. Scatter lines at an integer-

multiple of the absorbing wavelength will also occur. Therefore Rayleigh scatter is 

prenoted by a number, e.g. 1st order Rayleigh, 3rd order Rayleigh etc. Only the 1st 

and 2nd order Rayleigh scatters occurs in the EEM’s in this thesis. Since there is no 

loss of energy in Rayleigh scattering it is a type of elastic scatter. 

 

In fluorescence spectroscopy, one often only refers to Rayleigh scatter, and not to 

any other elastic scatter effects, although this is not always the correct term. 
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Rayleigh scatter requires that the dimension of the scatterer is much smaller than 

the wavelength of the incident light. Often this is the case in fluorescence EEM of 

solutions where water, methanol or other small solving agents are used. However, 

in the measurement of solids, or semi-solids, there may be other larger particles 

causing the scatter. If the size of the scatterer is close to the incident wavelength, 

the scattering is called Debye scatter. If the size of the scatterer is larger than the 

incident wavelength, the correct term to use is Mie scatter. However, in this work, 

the elastic scatter will only be referred to as Rayleigh scatter. 

2.3.2 Raman scatter 

While Rayleigh scatter is perfectly elastic, Raman is inelastic [Ingle and Crouch 

1988, p. 497-499]. It is caused by the molecules of the solute absorbing some of the 

incident light, followed by the emission of a photon. However, the energy in this 

photon is less than the energy absorbed. Thus the molecule will be in an excited 

state (higher vibrational energy level). This is a semi stable state, from where the 

molecule finally will relax back to its ground state through small vibrational 

relaxations (not visible in fluorescence spectroscopy). This energy difference is 

constant and the Raman scatter line will be at a constant energy loss from the 

elastic Rayleigh scatter line. It is important to notice that a constant energy loss 

means a constant wavenumber shift – increasing the wavelength shift by increasing 

excitation wavelengths. The energy loss is dependent on the solute, e.g. for water it 

is 3600 cm-1. An estimate of the specific energy loss of a solute can be calculated 

by recording an EEM of the solute, and then finding the mean energy difference 

between the 1st order Rayleigh and the Raman throughout the spectra. This 

information can be used under the analysis of the fluorescence spectra in order to 

separate the Raman scatter line from the signal of the fluorophores. 
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3 LF-NMR 

Nuclear magnetic resonance (NMR) spectroscopy and relaxometry are widely used 

as analytical techniques in research and industry of e.g. food [Rutledge 2001, 

Zhen-Yi et al. 1996], pharmaceuticals [Fardella et al. 1995], biochemistry [Romão 

et al. 2000] and petrochemicals [Ahmad et al. 2002]. In the beginning, the focus 

was aimed towards obtaining higher resolution spectra. The only way to reach this 

goal was to build bigger and stronger superconductor magnetic fields. Strong 

magnetic fields require a lot of space, making it unsuitable for anything but 

laboratory work. However, it was realized that the high resolution these 

instruments give was not essential for all scientific and industrial applications. The 

development of smaller, lighter bench-top NMR instruments was a result. A bench-

top NMR typically has a magnetic field-strength of 0.23 to 0.70 Tesla equal to 10 

to 30 MHz for protons [Rutledge 1992]. Whereas high-field NMR has magnetic 

fields from 4.7 Tesla up to 21 Tesla equal to 900 MHz. Bench-top NMR 

instruments are typically used for obtaining relaxation curves, which is sample 

magnetization as a function of time. This is in contrast to high-field NMR where a 

spectrum is in the frequency domain is obtained (Figure 3.1). 

 

(a) 

 

(b) 

 

Figure 3.1: (a) LF-NMR spectra of fish meat, (b) a HF-NMR of apple-juice. 
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Relaxation curves primarily give information about water or fat content in the 

sample. It can further reveal whether the water is in a tightly bound, 

compartmentalized or in free state [Paper V and Paper VI]. 

 

This chapter deals with the basic theory of LF-NMR. If the reader is interested in a 

more detailed theoretical description, I would like to refer to special textbooks on 

the topic [Callaghan 1995, Williams and Fleming 1995, p. 63-169]. 

3.1 Basic NMR Theory 

Some atomic nuclei have a nuclear spin (D), and the presence of the spin makes 

these nuclei behave like bar magnets [Callaghan 1995, Skoog and Leary 1992, 

Williams and Fleming 1995]. In the presence of an external magnetic field the 

nuclear magnets can orient themselves in 2D+1 ways. Those nuclei with an odd 

mass number have nuclear spins of 1/2, 3/2 etc. Some of the most common nuclei 

of this type are: 1H, 13C, 19F and 31P. Of these hydrogen is the most frequently used 

in NMR, because it is the most abundant nucleic species and the 1H isotope is the 

most common isotope of hydrogen (99.984%). 1H has a nuclear spin of 1/2 and can 

therefore orient itself in two ways in the magnetic field, either being parallel or 

anti-parallel. The energy difference between these two states depends on the 

applied field strength. 

 

In NMR experiments, the sample is exposed to an external magnetic field (B0). 

This will force the majority of the nuclei in the sample to rotate in a manner such 

that their magnetic field is in accordance to the externally set field. If one applies a 

radio frequency signal orthogonal to the external magnetic field, the magnetic field 

of the nuclei begins to rotate thus changing the net magnetic field in a direction 

orthogonal to both the external magnetic field and to the radio frequency signal. 

This net magnetic field is recorded by a detector. Assigning axes to the system 

containing the nuclei, the external magnetic field, the radio frequency signal and 

the detector, may help in understanding how a signal is induced (Figure 3.2). The 



LF-NMR 

Page 29 

external magnetic field (B0) is along the z-axis. The radio frequency signal is sent 

through the sample along the x-axis, so that the magnetic field of the nuclei, and 

thus the nuclei itself is rotated around the x-axis. The net magnetic field along the 

y-axis is then recorded as the signal. 

 

 

Figure 3.2: Diagram of the coordinates ascribed to the NMR instrument including the 

magnetic field (B0), radio signal and the detector. The drawing also shows a 90° 

flipping of the net magnetic signal at equilibrium. 

 

If the radio pulse is a 90°-pulse, the magnetic field of the nuclei will rotate from the 

z-axis in the direction of the y-axis. After this initial pulse, the nuclei will slowly 

rotate back into its equilibrium position aligned with the z-axis. This increase in the 

net-signal along the z-axis is described by a time constant – T1 – known as the spin-

lattice relaxation time. However, another mechanism that is faster than the above 

described phenomena is the dispersion of the signal in the xy-plane, which causes 

the net signal along the y-axis to decrease. After the frequency pulse is given along 

the x-axis, the magnetic field of the nuclei will be along the y-axis. Then, before it 

starts going back to equilibrium along the z-axis, it will completely disperse in the 
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xy-plane. This means that the net signal in y (and x) will eventually be 0. The 

decrease in this net signal is described by another time constant – T2 – known as 

the spin-spin or transverse relaxation time. These T2-values are of interest in this 

work. 

3.2 Carr-Purcell-Meiboom-Gill (CPMG) 

The time before the net-signal along the y-axis reaches zero is short and there is 

also some unwanted dispersion in this signal. It is of interest to correct for these 

effects to get more reliable measurements. Hahn introduced such an idea in 1950. 

Hahn realized that an additional pulse of 180° would refocus the net-signal and 

eliminate the dispersion, thereby also extending the time for which the relaxation 

can be measured. This idea was extended further by Carr and Purcell, and 

Meiboom and Gill  in 1958, suggesting that a series of these 180° pulses should be 

added, all with a specific time, 2τ, between them. The time between the original 

90° pulse and the first 180° is τ. The summit is defined as the maximum net-signal 

between each 180° pulse. Only every second spin-echo summit is recorded to 

correct for a small imprecision in the 180°-pulse. This can best be explained by an 

example: 

If the 180°-refocusing pulse in reality is a 185°-pulse, the maximum 

net signal would be 5° away from the y-axis. This means that the 

signal measured along the y-axis would be cos(5°)×true net signal and 

not the exact net signal. However, on the next pulse, which would be 

exactly the opposite of the first, -185°, the signal would be refocused 

at 0° and the signal recorded would be the exact net-signal. If the net 

signal is recorded for every refocusing pulse, an error will be present 

in the relaxation curve. 

Thus the signal is measured at the times 4n*τ (n = 1, 2, … N), as shown in Figure 

3.3.  
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Figure 3.3: Signal from a Carr-Purcell-Meiboom-Gill measurement. ‘M’ indicates a 

measurement point. First a 90° pulse is given, then several subsequent 180° pulses. 

 

Plotting these measurement points yields the relaxation curve (Figure 3.4). 

 

 

Figure 3.4: A typical CPMG relaxation curve without noise. ‘o’ are the measurement 

points in Figure 3.3. 
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The relaxation curve can mathematically be described as: 

Equation 3.1 ( ) E
T

tMtm
N

n n
n +⎟

⎟
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,0 exp  

where m(t) is the total relaxation signal, N is the number of underlying pure mono-

exponential relaxation curves present in the raw data, M0 is the magnitude of the 

relaxation curve, t is the time, T2 is the characteristic transverse relaxation time, 

and E is the unmodeled part of the data (the noise). This equation is trivial to solve 

when N = 1. However, when N > 1, there are several ways of treating the data, 

some of which are specific to each sample, and others that take into account that 

similar samples should have equal T2-values, see Chapter 4.3. 



Chemometrics theory and major results 

Page 33 

4 Chemometrics theory and major results 

An essential part of chemometrics is, as the name indicates, chemistry. 

Chemometrics is the use of mathematics, statistics and computers to solve chemical 

problems. It is a field that expands as the speed of computers increases, the cost of 

spectroscopic instruments decreases and the general awareness of chemometrics 

increases. 

 

This thesis mainly focuses on the analysis of three-way data from fluorescence 

spectroscopy and low-field NMR. Basic chemometric tools like principal 

component analysis (PCA), principal component regression (PCR) and partial least 

squares (PLS) regression are tools which are relevant for the understanding of the 

thesis, but will not be explained here. If the reader is unfamiliar with these tools, 

he/she can refer to Martens and Næs (1989) for a thorough explanation of the 

methods. 

4.1 PARAFAC 

Parallel factor analysis, or short PARAFAC [Carrol and Chang 1970, Harshman 

1970, Bro 1997], is the main chemometric tool used throughout this thesis. In 

chemometrics, dimension is used for two related things describing the data. In 

order to prevent any confusion when dimension is used in this thesis, dimension 

will only refer to the size of the data, while modes will refer to the number of 

directions in the data: e.g. a matrix of the size I×J×K has three modes, with 

dimension I×J×K. PARAFAC can be seen as an extension of the two mode PCA to 

the multi-mode system. While PCA only has a score and a loading matrix, 

PARAFAC has as many loading matrices as there are modes in the raw data. Often 

the first of these loading matrices is named scores and holds information about 

samples. In this thesis the highest number of modes of data analyzed was three, and 

therefore the explanation of PARAFAC will be in the three mode case, but the 

expansion to higher mode systems is straight forward. 
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A schematic explanation of the expansion from PCA to PARAFAC is shown in 

Figure 4.1. 

 

(a) 

 
(b) 

 

Figure 4.1: The expansion from (a) PCA to (b) PARAFAC. 

 

This can also be shown with equations. The PCA in equation form can be written: 

Equation 4.1   (i = 1,…,I; j = 1,…,J) ij

F

f
jfifij eptx += ∑

=1

where xij is the original value in the position given by indices i and j; t and p denote 

the scores and loadings respectively, while eij is the unmodeled part of the data.  

PARAFAC can be written as follows 

Equation 4.2  (i = 1,..,I; j = 1,..,J; k = 1,..,K) ijk

F

f
kfjfifijk ecbax += ∑

=1

where xijk is the original value in the position given by indices i, j and k, while a, b 

and c are the scores and loadings and eijk is the unmodeled part of the data. For 

Equation 4.1 and Equation 4.2 f denote one factor and F is the total number of 

factors in the model. Both for PCA and PARAFAC the unmodeled part should 

optimally only contain noise. As can be seen from Figure 4.1, Equation 4.1 and 
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Equation 4.2, PARAFAC adds one more set of loadings to the decomposition, 

where this “extra” loading matrix explains the variance in the third or “extra” 

mode. Applying PARAFAC for parameter estimation (e.g. curve resolution), 

requires the data to be low-rank tri-linear, just as the data in the PCA case should 

be low-rank bi-linear. Low-rank bi-linear data means that the individual basic 

phenomena in the data can be explained by a small set of vectors in each of the 

modes of the original data. I.e. a diagonal variation in the data can not be explained 

by one vector in each of the directions in the original data (Figure 4.2). The 

extension from this example to low-rank tri-linearity is straight forward, just 

adding one more mode to the data and one vector in this new mode. 

 

(a) 

 

(b) 

 

Figure 4.2: (a) Rank-one bi-linear data: The landscape can be described by one vector 

in each of the modes. (b) High-rank bi-linear data: The landscape can not be 

explained by one vector in each mode. 

 

Not only does PARAFAC include another mode, but it also differs from PCA in 

how the decomposition is performed. While PCA can be calculated one factor at a 

time, PARAFAC necessarily computes them all simultaneously [Bro 1997]. 

Furthermore, the bi-linear PCA model has rotational freedom, while the tri-linear  

PARAFAC model, without any further constraints, is unique [Bro 1997]. This is a 

powerful feature of PARAFAC, making it an excellent tool for curve-resolution. 
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The advantage of PARAFAC compared to PCA in curve resolution can further be 

visualized by an example:  

A data set of nine samples containing two fluorophores (indole and 

tryptophane) is decomposed by PARAFAC and PCA, Figure 4.3. In 

the case of PCA, the three-way array is unfolded into a two-mode 

matrix. The PCA loadings (Figure 4.3a-b) have been reshaped into the 

fluorescent landscapes for easier comparison. The PCA gives one 

component which closely resembles a fluorophore (Figure 4.3a), while 

the second component does not give any explicit physical or chemical 

meaning (Figure 4.3b). PARAFAC on the other hand, estimates two 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.3: The decomposition of a system of two fluorophores – indole and 

tryptophane, by PCA (a and b), and PARAFAC (c and d). (a) and (c) are the first 

component, while (b) and (d) are the second component. 
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EEM’s that closely resemble the EEM of indole (Figure 4.3c) and 

tryptophane (Figure 4.3d). As can be seen from Figure 4.3, if the 

original data are of a tri-linear structure, modeling it as only bi-linear 

may cause a less informative decomposition. 

 

Not only can PARAFAC be used as a decomposition tool for qualitative analysis, 

but the score extracted may further be used in prediction [Bro 1997]. This type of 

prediction is called second order prediction [Booksh and Kowalski 1994], since a 

landscape of data (two-mode) is used for predicting one single number. 

4.2 Chemometrics and Fluorescence Spectroscopy 

PARAFAC has proven to be a valuable tool on the analysis of fluorescence spectra 

as a curve resolution method (Figure 4.3) [Booksh et al. 1996, Bro 1997, Bro 1999, 

Jiji et al. 2000, Lee et al. 1991, McKnight et al. 2001, Moberg et al. 2001, 

Wentzell et al. 2001]. 

 

Throughout this work, the fluorescence data has been arranged in a specific 

manner, with samples along the first mode, emissions along the second mode, and 

excitations along the third mode. Therefore the scores (A in Figure 4.1b and 

Equation 4.2) from PARAFAC are (ideally) proportional to the concentrations of 

the fluorophores in the samples, the second mode loadings (B’s) are the estimated 

emission spectra, while the third mode loadings (C’s) are the corresponding 

excitation spectra.  

4.2.1 Number of components 

The most important step in using PARAFAC (and for any chemometric tool in 

general) is to estimate the appropriate number of components in the data set. Bro 

and Kiers (2003) introduced the analytical tool core consistency diagnostics 

(CORCONDIA) for deciding the number of components. CORCONDIA is a 

method, which gives good estimates of the number of components on both 

fluorescence and other data [Bro 1998, Trevisan and Poppi 2003]. Other methods 
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to estimate the number of components are to assess the stability of the estimated 

loadings by jack-knifing [Martens and Martens 2001], split-half analysis 

[Harshman and de Sarboe 1994] or similar methods to estimate parameter 

uncertainty. The above mentioned methods all require visual inspection from the 

analyst and sometimes also include a-priori knowledge about the system. There are 

cases in which each of these methods fail, and thus relying on only one method can 

be fatal.  

 

It is therefore of interest to have an automatic way to get a reliable estimate of the 

number of fluorophores in fluorescence data. In Paper I an automatic method of 

finding a good estimate of the number of components is investigated by looking at 

more than 80 different diagnostics, e.g. CORCONDIA, number of iterations, 

results from split-half analysis and jack-knifing. So far, the results indicate that this 

method and the diagnostics investigated are capable of estimating the right number 

of factors for fluorescence data. For nine of the twelve data sets, which were 

investigated, the estimated number of factors was equal to a-priori knowledge of 

the data sets. However, for three out of the twelve data sets, the estimated number 

of factors was uncertain, indicating a possible unstable additional factor. These 

data sets all contained catechol, which had a small impurity, giving rise to another 

weak PARAFAC component. This component, however, was of low intensity, and 

it did not disturb the decomposition of the other fluorophores; i.e. in an F+1 factor 

model where the extra factor was the impurity, the F first factors were equal to the 

F factor model. More work is needed to conclude this project. Different ways of 

analyzing the diagnostic tools will be tested in order to optimize the method for 

estimating the number of factors. 

4.2.2 Light scatter 

Light scattering, as described in Chapter 2.3, is a phenomenon having an unwanted 

bias effect in the decomposition step. Scatter cannot be described by a few 

PARAFAC factors, because it does not conform to the tri-linear structure which is 

necessary for PARAFAC to be able to model them. The Rayleigh and Raman 
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scatter lines, as seen in Figure 2.5, are diagonal and thus cannot be explained by 

one vector in the emission mode, and one in the excitation mode. The Rayleigh 

scatter line is of most concern since the intensity of this is higher than for Raman 

scatter [Skoog and Leary 1992, p. 298-299], thus affecting the decomposition to a 

larger extent. Sometimes the signal of the fluorophores lies away from the 1st order 

Rayleigh peak, and cutting away the area containing the scatter is sufficient 

[Moberg et al. 2001, Beltrán et al. 1998]. However, in several natural samples, the 

1st order Rayleigh peak is partly overlapping the signal from one or more of the 

fluorophores. By removing this area with the scatter, one would also remove some 

of the information of the fluorophore(s). Therefore it is of interest to find a method 

to either remove exclusively the Rayleigh scatter, or to not let the Rayleigh scatter 

influence the decomposition. 

4.2.2.1 Ways of removing Rayleigh 

There are several ways of removing the Rayleigh scatter or enforcing PARAFAC 

not to take the Rayleigh scatter into account. The easiest way is by replacing the 

Rayleigh scatter and the area below and above these scatters by missing values 

[Munck et al. 1998], possibly using additional constraints [Andersen and Bro 2003, 

Bro 1999]. As explained above, this may lead to the loss of information, and as 

such is not generally recommended. Another solution is to subtract the spectrum of 

a standard from all the samples [Ho et al. 1978], which at the same time will 

reduce or remove the Raman scatter. This requires that such a standard is available, 

which is not always possible, especially for food, process or environmental 

samples. Further, this method would normally only reduce – not eliminate - the 

Rayleigh, and may introduce negative values to the EEM. Introducing negative 

values is not a problem in the decomposition step, but it indicates that more than 

the Rayleigh scatter in the sample has been removed, i.e. some information may 

have been lost. Inserting missing values [Christensen et al. 2003, Rodriguez-Cuesta 

et al. 2003, Trevisan and Poppi 2003, Jiji et al. 1999, Bro 1998, p. 235], and 

subtraction of a standard [Ho et al. 1980, McKnight et al. 2001] are the most 

common techniques for handling Rayleigh found in  literature. It does not, 
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however, mean that these are the best methods for handling the scatter effect. Two 

different methods taking into account the shape and the position of the Rayleigh 

scatter are the use of weights (which also can take into account the Raman scatter), 

or modelling the Rayleigh scatter line separately. 

Weights 

Weights are used during the decomposition to focus the modelling on the 

fluorophores and not on the areas with the Rayleigh scatter (and possibly Raman). 

The areas containing the scatter will be weighted down, either decreasing steadily 

towards the peak of the scatter or plainly setting the weight to a fixed value as long 

as the scatter is present [Bro et al. 2002, Jiji and Booksh 2000], see Figure 4.4. 

  

 (a) 

 

(b) 

 

Figure 4.4: (a) Hard weights and (b) soft weights for the same data. Black means a 

high weight, while the lighter the area, the smaller weight. The lighter diagonal in (b) 

is the Raman scatter line. 

 

Different ways of treating the 1st order Rayleigh through weighting and constraints 

are discussed in Paper II, where also the work from Paper IV (see below) is 

included. It is shown that using soft weights and introducing zeros to the area 

below the 1st order Rayleigh is the optimal existing method. 
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Modelling 

A different approach to the problem is to model the light scatter as a separate part 

of the decomposition. In this work, the focus has been on modelling the 1st order 

Rayleigh scatter, as this is the most intense of the light scatters. The method 

proposed is shifting or rotating the original data, which makes the Rayleigh bi-

linear in the new coordinate system, and then modelling this by PCA or 

PARAFAC. The modelled Rayleigh is then transformed back into the original 

coordinate of the EEM and subtracted from the original data. A PARAFAC of the 

fluorophores is then made on the residual. This model is subtracted from the raw 

data, and the Rayleigh scatter is modelled again and subsequently this model is 

subtracted from the raw data, etc. The complete model is then found through an 

iterative process swapping between modelling the Rayleigh scatter and the 

fluorophores until convergence. 

 

This method is described and discussed in detail in Paper III. Modeling the 

Rayleigh scatter by PCA or PARAFAC assumes that this scatter is equal in shape 

for all excitation wavelengths, and that it only differs in magnitude. This 

assumption is theoretically valid, and is also confirmed in the paper. The modeling 

of the Rayleigh scatter was so successful on one of the data sets that the Raman 

scatter, which did not influence the decomposition prior to the modeling of the 

Rayleigh scatter, influenced the PARAFAC decomposition on removal of the 

Rayleigh scatter (Figure 4.5). The next logical step would therefore be to model the 

Raman scatter as well, unless one has a standard and can hence subtract that from 

the samples. A natural extension of the 1st order Rayleigh results would also be to 

model the higher order Rayleigh scatter in the same way as the first order Rayleigh 

has been modeled. 
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(a) 

 

(b) 

 

Figure 4.5: A five component system modeled without taking the Rayleigh into 

account (a), and with the Rayleigh as a separate component (b). 

 

One of the advantages of modeling the Rayleigh scatter versus using weights is that 

the modeling is more automatic than the weighting scheme. On the other hand, 

weights can handle Raman scatter, which is not the case for the Rayleigh scatter 

model in its present form. 

4.2.3 Stabilizing the PARAFAC decomposition 

In some practical applications of fluorescence spectroscopy, the emission is only 

recorded at wavelengths higher than the incident excitation light. The missing part 

of the spectra is then filled with missing values [Christensen et al. 2003, Møller et 

al. 2003]. This, however, may cause the PARAFAC solution to include unwanted 

artefacts. Inserting zeros far below the 1st order Rayleigh scatter line (excitation 

wavelength larger than emission wavelength) to avoid these artefacts has been 

described earlier [Matthews et al. 1996, Stedmon et al. 2003]. It should be noted 

that on most datasets, inserting zeros all up to the Rayleigh scatter is not a good 

idea, since this can destroy the tri-linearity of the data, as explained by Andersen 

and Bro (2003). However, there has not been any thorough discussion on how 

inserting zeros affects the resolved spectra. In Paper IV several methods of 

inserting zeros and the effects on the resolved spectra are discussed. By inserting 

zeros the PARAFAC solution will be forced towards zero in these areas, and thus 
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removing large artefacts outside the data area (data area is between 1st and 2nd order 

Rayleigh scatter), see Figure 4.6. Further, it helps PARAFAC to converge faster 

(14650 iterations for the decomposition shown in Figure 4.6a compared to 398 

iterations for the decomposition shown in Figure 4.6b).  More work is still 

necessary in optimizing the amount of zeros to insert, and where to insert them.  

 

(a) 

 

(b) 

 

Figure 4.6: Decomposition by PARAFAC of a set of fluorescence EEM samples 

without (a) and with (b) the insertion of zeros some nm away from the 1st order 

Rayleigh scatter line. (Paper IV, Figure 5a and 5c) 

4.3 Chemometrics and LF-NMR 

The relaxation curves from LF-NMR are normally evaluated in one of four ways: 

1. Exponential fitting 

2. Distributional fitting 

3. Matrix fitting 

4. SLICING 

The two first ones are both performed sample wise (one sample at a time), while 

the two last ones are performed at the whole data set at once. The three first 

methods will be explained shortly, while SLICING will be described more in 

detail. 
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4.3.1 Exponential fitting 

In exponential fitting the summation of a low number of exponentials is fitted to 

the measurement profile in accordance with Equation 3.1 [Istratov and Vyvenko 

1999]. The number of exponentials can e.g. be determined from the failure of a set 

of fewer exponentials to adequately model the curve. One of the main problems 

with this method is deciding the correct number of exponentials, because the fit of 

the curve will inherently improve with increasing number of exponentials, but 

using too many exponentials will lead to overfitting (starting to fit the noise in the 

data) [Pedersen et al. 2000]. As for matrix fit and SLICING, validation of the 

model is possible but not as straight forward as for these two methods [Pedersen et 

al. 2000]. Another problem is that it may not be a correct assumption that the 

relaxation curve only contains a few exponentials. A related method with the 

assumption that the number of exponentials should be large is distributed 

exponential fitting. 

4.3.2 Distributed exponential fitting 

In distributed exponential fitting, instead of trying to find a few specific T2-values, 

the relaxation curve is described as a distribution of a set of (many) uni-

exponentials [Butler et al. 1981, Provencher 1982a, Provencher 1982b]. This set of 

exponentials is defined prior to the analysis. The set of exponentials is typically 

large – e.g. 256 T2-values - and distributed over a predetermined time window, 

which is based on a-priori knowledge on the system. A set of M0’s are then found, 

typically constrained to being smooth and positive. The major problem with this 

fitting procedure is that there are several distributions in the same time window that 

in practice give the same fit. Hence the problem is mathematically ill-defined. 

Further, the distribution curve is dependent on the number of uni-exponentials 

defined in the set and the range of T2. 
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4.3.3 Matrix fit 

Matrix fit is somewhat similar to exponential fitting. A set of sample relaxation 

curves are fitted with the same number of exponentials, and the T2-values are set 

equal for all the samples [Pedersen et al. 2002]. The difference among the samples 

is the magnitude component (M0-values in Equation 3.1). The advantage of this 2D 

method is that it is less sensitive to overfitting compared to the two previous 

methods. Moreover it is possible to evaluate the correctness of the model by 

techniques like split-half, jack-knifing or similar validation methods (explained in 

Chapter 4.5). The disadvantage is that it fits a discrete number of exponentials and 

all the exponentials are equal in all samples. First of all, natural samples may more 

correctly be described by a distribution of relaxation curves. Further, only similar 

samples can be expected to contain the same relaxation curves. The problem is to 

define when two samples are similar enough to be included in the same data set. In 

addition the T2-value is highly dependent on the whole system under investigation, 

which might be a problem as for example the T2-value will change with 

temperature [Micklander et al. 2002].  

4.3.4 SLICING 

The idea to use PARAFAC on LF-NMR data started from the direct exponential 

curve resolution algorithm (DECRA), a method introduced by Antalek and Windig 

(1997). This method was further developed into SLICING by Pedersen, Bro and 

Engelsen (2001). DECRA (and SLICING) takes into account the nature of the 

relaxation data. Since the data are exponentials, the different exponential 

contributions to the sum of exponentials (the different n’s in Equation 3.1) have a 

different ratio along the relaxation curve. If one copies a part of the relaxation 

curve, and puts it behind the other, the same group of relaxation curves will be 

present in both slabs, but the ratio between the different T2-times will differ in the 

two slabs. The faster relaxing components will have a larger part of the signal in 

the first slab, while the latter slab(s) will be dominated by the slower relaxing 

components. The terms used in SLICING for this reorganization of the data are 
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slabs for the number of copies in total, and lag for the difference in starting point 

of each slab from the original (Figure 4.7). In other words, if one makes three 

copies in total, starting from time-point 1, 2 and 5, there are three slabs, with lags 

0, 1 and 4. The dimensionality of the data is thus decreased by four in the time-

domain and increased by two in the new slab direction. This is because in the first 

slab, the four last time-points are removed, in the second, the first and the three last 

ones are removed, and in the third slab, the four first time-points are removed. 

 

 

Figure 4.7: The idea behind SLICING. Only two slabs shown, but the number of slabs 

can be larger. 

 

The dimensionality of the matrix will then increase from I (samples)×L 

(measurement points) to I×(L-maximum lag)×number of slabs (K). Below this will 

simply be shortened to I×J×K. 

The three mode array (X) has the size I×J×K and it contains the elements xijk, where 

the first index (i) refers to the samples, the second (j) refers to the time and the 

third (k) refers to the slab number. The rearranged three mode data follow a 

PARAFAC model (Equation 4.2). In the case of LF-NMR, the scores (A’s) from 

the PARAFAC are proportional to the M0-value in Equation 3.1, while the second 

mode loadings (B’s) are the estimated decay curves. The third mode loadings (C’s) 
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hold the same information as the second mode loadings, but with a smaller 

dimension and as such are not of any interest.  

 

In the original work by Windig and Antalek (1997), the three mode array  was 

treated by general rank annihilation method (GRAM) [Sanchez and Kowalski 

1986], but because of that it was also limited to only include two slabs (or two 

samples). Pedersen, Bro and Engelsen (2001) extended this by using direct trilinear 

decomposition (DTLD) [Sanchez and Kowalski 1990], instead of GRAM, thus 

allowing the use of several slabs (and samples). The idea behind using several slabs 

instead of only two is that when using some slabs with small lags, the fast relaxing 

components contribute most to the total signal. The slower relaxing components 

are the major constituents in the slabs with larger lags. Including several slabs 

should then make it possible to extract the components more accurately. The 

problem with this, however, is that the number of possibilities for reorganizing the 

data is vast, and thus finding the optimal number of slabs and lags is, if not 

impossible, at least time consuming. This problem was realized by Engelsen and 

Bro (2003), who introduced power-slicing, a specific manner to define the lags to 

be used. However, by the time the work in this thesis was performed the work by 

Engelsen and Bro (2003) was not completed, and thus the more time consuming 

search for optimal numbers was used. Further, instead of using DTLD, the 

decomposition was optimized through the use of PARAFAC, with the DTLD 

solution as a starting point. Often the DTLD solution was the optimal solution, but 

in some cases refinement of the model was obtained through the use of PARAFAC. 

This is especially the case where one or more of the factors are small compared to 

the others [Paper V-VII]. 

 

If the model is adequate, each second mode loading (B) should be uni-exponential 

because the PARAFAC model can be shown to uniquely recover the underlying 

model when correctly specified [Windig and Antalek 1997]. If too many 

components are extracted, the curves will reflect this by one or more of them being 
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non-exponential. The number of factors can further be validated by the use of 

bootstrapping [Wehrens et al. 2000], jack-knifing [Martens and Martens 2001] 

and/or split-half analyses [Harshman and de Sarboe 1994] (see Chapter 4.5). In 

addition, the shape and distribution of the residuals of a model indicate whether 

there is information left in the data to model or not. The residuals should, in the 

perfect case, be randomly distributed with a zero mean. For an adequate model, the 

B’s, being uni-exponentials, can be fitted to Equation 3.1, and thus the T2-values 

can be estimated. The M0-value found in this fitting is dependent on the T2-value of 

the curve, because in PARAFAC the B-loadings are normalized. The sample 

specific M0-values are found by multiplying the M0-values found in the exponential 

fitting with the corresponding A-scores from PARAFAC. 

 

SLICING is in essence an alternative method to perform matrix-fitting, and thus 

also have the same advantages and disadvantages as mentioned under matrix fit, 

Chapter 4.3.3. The main difference between the two methods is that in SLICING 

the number of modes in the data is increased by one.  

4.3.5 Applications of SLICING 

In spite of the disadvantages mentioned in Chapter 4.3.3 SLICING was found to be 

useful in the study of two different types of food products. Paper V shows how 

SLICING successfully is used to separate five different potato tubers. In Paper VI 

good predictions of the water holding capacity in fish are shown. In both papers, 

the results from SLICING are compared with the above mentioned methods. They 

show that the use of distribution analysis does not contain the same information as 

SLICING, exponential fitting or matrix-fit. Furthermore, in Paper VI bootstrapping 

and split-half analysis was used to determine the number of components and 

investigating the effect of a baseline correction (Table 4.1). This investigation 

concluded that the baseline correction gave more stable results than modeling 

without any correction. In addition, the third factor in both cases is unstable, and 

thus two components were chosen. 
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Table 4.1: Mean relaxation times (in ms) and the standard error (in brackets) of 

second mode loadings obtained from two and three factor bootstrapping on 100 split-

half models on raw and baseline corrected data. (Paper VI, Table 1) 

  Uncorrected data  Corrected data 

  2 factors  3 factors  2 factors  3 factors 

T2,1  49.8 (0.6)  49.5 (0.6)  49.6 (0.4)  46.5 (1.8) 

T2,2  104.3 (2.8)  81.5 (1.7)  93.7 (1.2)  82.6 (5.7) 

T2,3     467.7 (100.8)     203.1 (73.6) 

 

4.3.6 Regression analysis on LF-NMR data 

In Paper VII there is a comparison of first-order prediction and semi-second order 

prediction (described in Chapter 4.4). The data inspected are LF-NMR spectra 

from three different food products, predicting from one to three different 

parameters through the use of PLS or OLS on the scores from SLICING compared 

to PLS on the raw data. There were no new interferents in any of these samples, 

and thus the second-order advantage (mentioned below) was not of any 

significance to the results. This study shows that both methods give similar 

prediction results. The decision on using one prior to the other depends on the 

focus of the analysis, PLS being faster while SLICING gives more qualitative 

information. 

4.4 Second order prediction 

The development and usage of PARAFAC has led to using this decomposition 

method also as a calibration tool. Regression based on the scores from PARAFAC 

is a so-called second order prediction. For better understanding about second order 

prediction, it may be of help to overview what zero to third order calibration is. 

Booksh and Kowalski (1994) gave such an overview. Multi-linear PLS (NPLS) 

was introduced by Bro (1996) as a regression method for multi-mode data. 
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However, there has not been any discussion in the literature to which type of 

calibration method it belongs. I have chosen to define NPLS as a 2nd order 

calibration method, focusing on the order of the data going into the calibration, 

thus 2nd order data lead to 2nd order calibration. Taking this definition into account, 

the overview by Booksh and Kowalski (1994) would be as follows: 

• 0th order: calibration between two vectors – e.g. ordinary least squares 

(OLS). 

• 1st order: calibration between a matrix and one (or more) vector(s) – e.g. 

PLS, PCR, or multi-linear regression (MLR).  

• 2nd order: calibration between a set of matrices (forming a three mode 

array) and one (or more) vector(s) – e.g. OLS/MLR on PARAFAC scores 

and multi-linear PLS (NPLS). 

• 3rd and higher order: calibration between sets of three or higher mode data 

and one (or more) vector(s) – e.g. OLS/MLR on PARAFAC scores and 

NPLS. 

 

Booksh and Kowalski (1994) further discussed the second-order advantage, models 

capable of giving accurate predictions even in the presence of new and un-

calibrated interferents in future samples. A method like PLS builds a model based 

on the calibration samples, and cannot handle any uncalibrated interferents. PLS 

can still give accurate predictions if the interferents do not overlap with the signal 

of the components in the calibration set, but if the overlap is extensive the 

predictions will be inaccurate. 

 

In order for a method to posses the second-order advantage the sample data must 

be 2nd order (have three modes) and the decomposition should only be based on the 

X-data, and not on the Y-data. The reason is that the new samples with new 

interferents need more factors than the calibration model. There are no difficulties 

in adding more factors in a decomposition method like PARAFAC; one adds more 

components to the decomposition in Equation 4.2. However, a regression method 
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such as NPLS is built on a specific number of factors, and new unknown effects 

cannot be taken into account. Hence, a method such as NPLS, despite being a 2nd 

order calibration method, does not have the second-order advantage. PARAFAC on 

the other hand is a method which can be used in a way that maintains the second 

order advantage. Using PARAFAC as a calibration method, the scores from the 

decomposition would be used in an OLS/MLR setting with the concentration 

profiles. In the ideal case for spectroscopic data, an OLS without off-set should be 

used, as each factor in PARAFAC is an estimate of each of the components in the 

raw data. However, if there is any interaction between the components, or there is 

an offset in the raw data, other methods, such as OLS with offset, or even MLR 

would give better predictions. The second order advantage has been used with 

success on several occasions in the literature [Moberg et al. 2001, Saurina and 

Hernández-Cassou 2001, Nørgaard and Ridder 1994, Reis et al. 2000]. 

 

There has not been much discussion on how to perform second order prediction to 

optimize the regression model and the quality of prediction. It is not known how 

large the calibration set needs to be, or what degree of overlap can be handled. 

Other issues that have not been investigated are: whether the calibration set and the 

new sample(s) should be decomposed simultaneously or separately, and whether 

some factors from the decomposition step of the calibration set should be fixed or 

not when decomposing the set containing the new sample(s). Paper VIII discusses 

these and other questions concerning second order prediction. This work concludes 

that separating the new samples with new interferents from the calibration set is not 

a good idea. Instead, building a model on the whole dataset or fixing the loadings 

from the calibration data gives good predictions. During the investigation, the idea 

of fixing the scores from the calibration set also emerged, but there were problems 

in the computational step, and therefore these ideas had to be left out of the 

investigation. The cause of this problem should be investigated. Moreover, only 

simulated data was studied in this work, and therefore an extended study on real 

data should be performed in the future. 
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4.4.1 Uncertainty estimates in second-order prediction 

In 0th order prediction, a constant error variance is not accepted as good estimates 

for the uncertainty in the prediction models. On the contrary, the prediction error is 

smallest at the center of the data and increases towards the edges of the prediction 

line, as shown in Figure 4.8a. However, for some reason, uncertainty estimates in 

1st or 2nd order prediction are normally given as constant values regardless of the 

actual sample (Figure 4.8b). These have been used and widely accepted. Faber and 

Bro (2002) established an easy and straightforward method to estimate the 

uncertainty sample-wise. This method is based on a-priori knowledge concerning 

the uncertainty in the reference measurements, and parameters from the regression. 

Paper IX shows an application of this method used on fluorescence data. The 

fluorescence data used in this work is a set of laboratory-made samples, and future 

work would be to apply the theory to even more complex data, e.g. food samples. 

 

(a) 

 

(b) 

 

Figure 4.8: Confidence intervals in standard linear regression (a), and PLS (b). 

4.5 Validation 

Validation of a chemometric model is important in building the total model for 

reasons such as outlier detection, estimation of the right number of components 

and/or variable selection. There are several validation methods, each of which has 

specific properties and usages. A few of these methods are preferred over others 

because they are easy to understand, not cumbersome regarding computer-time, 
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and they give satisfying results. The focus is not to explain the mathematical 

background of the validation methods, but to give an introduction as to what the 

specific validation method does, and when or where it can be used. If a more 

mathematical explanation of these methods is sought I would like to refer to 

Martens and Næs (1989) or Martens and Martens (2001). 

 

Detecting outliers is of vital importance when building a good model in order to 

prevent the model from focusing on the outliers. Even though the outlying samples 

might only be extreme cases of the other samples, this may cause the differences 

between the remaining samples to be drowned by this one (or possibly several) 

outlier(s). Note that extreme samples may stabilize a regression model, and thus it 

is important to know whether the outlier is an extreme sample of similar behavior 

as the others, or if it is different in behavior to the rest. 

 

Estimating the right number of components can be done by using one or several 

validation methods. If they all point towards the same number of components, the 

rank of the system can be considered established. However, if there is some 

inconsistency in the results, the complexity of the model cannot be established, and 

caution should be maintained in the evaluation of the results. This inconsistency 

can both come from a vague definition of the problem, the diagnostic tools used to 

estimate the number of components and the data itself. 

 

Variable selection may be appropriate in e.g. regression methods such as PCR, PLS 

and multi-linear PLS (NPLS), to achieve a better and more stable predictions for 

the future. It may also be necessary to use it prior to the final PARAFAC 

decomposition e.g. due to eliminating noisy measurement points.  

 

There are several different ways of validation discussed in literature. Four of them 

will be discussed here: split-half analysis [Harshman and de Sarboe 1994], cross-

validation [Martens and Martens 2001], jack-knifing [Martens and Martens 2001] 
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and bootstrapping [Wehrens et al. 2000]. All validations have been on 

decompositions by PARAFAC, and thus only this application of the validation 

schemes will be described and discussed. 

4.5.1 Split-Half 

The reason for performing split-half analysis is to investigate whether a model is 

adequate or not. The idea of the method is to split the dataset into two separate 

parts, and then compute a model with the same complexity on each of these halves. 

Split-half analysis is especially focused on estimating the number of factors in the 

system and for verifying that a postulated model is sensible. If the correct number 

of factors has been chosen and the data is homogenous (all containing the same 

underlying phenomena), the two models would ideally have the same loadings. 

Often this is assessed by visual inspection of the computed loadings, but may also 

be done by the use of qualitative criteria such as the regression coefficients 

between the similar loadings in the two models. 

 

Small data sets may not give two identical sets of loadings due to the existence of a 

few samples having only one unique component. One should therefore show 

caution in the splitting, as this will affect the result, and thus the conclusion. 

Similar samples should be put in different splits. Thus for example in a process, the 

split should not be between early and late time-points, but as a random collection 

of half of the samples in one group, and the rest in another. However, if there are 

any replicates, these should be kept in the same group and not split up, because the 

interest lies in investigating the uncertainty of the model, and not the uncertainty 

between the replicates. If the dataset is large enough, splitting the data into three or 

more parts is a good idea. 

4.5.2 Cross-validation 

Cross-validation is a much used tool for estimating the right number of components 

in a regression model, as well as for determining the future uncertainty of the 

prediction of new samples. Cross-validation is a method that uses the variation 
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present in the data set available to the analyst. It is preferred instead of test-set 

validation when the data set is small and when an independent test set is infeasible. 

 

In cross-validation a (small) number of samples is taken out from the data set and 

used as a test set. Then a model is built from the remaining samples in the dataset. 

The left-out samples are then predicted from this model. The left-out sample(s) is/ 

are then included in the data set again, and a new set of samples are taken out, and 

a model is built on the remaining samples. The left-out samples are predicted using 

the new model. This procedure is repeated until every sample has been left out 

once. The error of the prediction of each of the samples is calculated, and the 

average error term is found as: 

Equation 4.3 ( )∑
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where is the predicted value for the nth sample, ynŷ n is the true value known from 

before and N is the total number of samples. The RMSECV is an approximation for 

the error of future (similar) samples. Systematically increasing the number of 

components in the model, the optimal number of components can be found at the 

(local) minimum of the RMSECV curve. For the RMSECV to be a good estimate 

for the uncertainty in future prediction, the data set should be built up of samples 

closely resembling future samples, and they should span out the variance and 

concentration levels (or other qualitative measurement) of future samples.  

 

The number of samples taken out at a time can vary from one sample, so-called 

leave-one-out cross-validation, to a set of samples, so-called segmented cross-

validation. The leave-one-out cross validation is a time-consuming approach, and 

may give a too optimistic estimate for future errors [Esbensen et al. 2000, p. 167], 

but is a good method if the number of samples is low. Segmented cross-validation, 

on the other hand, may be difficult if the number of samples is low, making the 

results from the sub-models too unstable. 
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Cross-validation has been used in Paper V and VI in order to estimate the model 

complexity for PLS models. 

4.5.3 Jack-Knifing 

Jack-knifing is closely related to cross-validation. However, while cross-validation 

only is used in the assessment of future prediction errors and estimating the right 

number of components, jack-knifing is used for investigating the uncertainty of 

estimated parameters, such as the regression vector, loadings, or scores. These 

uncertainties can further be used for variable selection. 

 

As for cross-validation, a number of objects are taken out, and a model is built up 

on the remaining data. This procedure is repeated until all the objects have been 

left out once. Thus there will be as many regression vectors, loadings, and scores as 

there are models built. One of the parameter values is from when the object is 

predicted, while the rest of the parameter values are from when the object itself is 

included in the model building. By studying the uncertainty of the regression 

vector, unreliable variables and variables containing important information in the 

regression can be found. Uncertainty estimates of the loadings can be used to study 

how stable the model is concerning the shape of the loadings. For the model to be 

reliable, all the extracted loadings from all the models should be similar, or it is 

necessary to investigate why they are not similar. If the loadings vary considerably, 

the number of components may be wrong, and changing the number of components 

followed by another jack-knifing procedure can be helpful.  

 

The uncertainty estimate of one parameter can mathematically be described by: 

Equation 4.4: ( )∑
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where on is the estimated value when fitting the model on the data excluding 

sample n, o is the mean value of the n estimated models, and N is the total number 

of samples. 
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It is also possible to take out more than one sample at a time from the data, and 

even do several resamplings, meaning that every sample is taken out more than 

once. This will, however, give a different correction factor in Equation 4.4. Instead 

of (N-1)/N it is now needed to use (N-m)/(rN) where m is the number of samples 

removed at a time and r is the number of times each sample has been removed. 

Further, the sum is now over all the estimations (rN/m estimations and not N). This 

is a resampling technique that is more time-consuming than the leave-one-out 

scheme, but may lead to better uncertainty estimates. 

 

This last way of doing jack-knifing was used in Paper III to investigate the stability 

of modelling the Rayleigh scatter line as a separate component in the PARAFAC 

model. 

4.5.4 Bootstrapping 

Bootstrapping is another resampling approach used to estimate the uncertainty of 

model parameters. In this technique many new data sets, called bootstrap samples, 

are built up from the original dataset by sampling with replacement. As for jack-

knifing a model is built on each of these bootstrap samples. This gives a number of 

estimated parameters from which statistical estimates such as mean and standard 

deviation can be obtained. If the number of bootstrap samples is selected large 

enough the bootstrap or so-called Monte Carlo error will be lower than the jack-

knife error. In general the uncertainty estimate from bootstrapping is better than 

jack-knifing, but it requires more computer-time.  

 

The estimate for the standard deviation is given by: 

Equation 4.5: ( )∑
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where on is the estimated value when fitting the model on bootstrap sample n, o  is 

the mean value of the estimated on values, and NBS is the total number of bootstrap 

samples. 
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Bootstrapping was used in Paper V to estimate the number of components in a 

SLICING model. 
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5 Practical perspectives 

Fluorescence spectroscopy and LF-NMR have received considerable attention in 

recent years, also upon applying PARAFAC on the data. The PARAFAC model 

has provided insight into these spectroscopic methods, which is not gained with 

traditional analyses. Most notably this is due to the uniqueness properties of the 

PARAFAC model. However, since PARAFAC is a recently developed technique, 

there are still problems to solve and ties to untangle before widespread use of the 

technique is possible. For example, although PARAFAC is a powerful tool in 

analytical chemistry, traditional chemists do not yet support using it. Some reasons 

for the limited usage can be skepticism to the new technique, lack of a user friendly 

software, and requirement of knowledge of advanced chemometrics. 

 

Fluorescence spectroscopy is a sensitive method, but it lacks the selectivity of other 

spectroscopic methods. However, fluorescence spectroscopy can accomplish its 

sought selectivity through the application of the PARAFAC model to the 

fluorescence data, and thereby splitting the signal into the different contributors. 

The combination of fluorescence spectroscopy and PARAFAC is thus a powerful 

tool in analytical chemistry. Work in this thesis showed that unwanted light scatter 

effects in fluorescence spectroscopy do not pose a problem to the decomposition of 

fluorescence data. It is possible, through the use of the right tools, to focus the 

decomposition of the fluorescence data on the fluorophores and not on the 

unwanted light scatter effects. The PARAFAC model further contains the powerful 

second-order advantage which makes accurate predictions possible even in the 

presence of uncalibrated new interferents in new samples. 

 

Applying PARAFAC to LF-NMR data is a novel way of evaluating the relaxation 

signal, which gives easy access to information about the system at hand. It is an 

excellent tool for predicting the water and the oil content in a set of samples. This 

work also demonstrates that it can be used in classification of food products.  
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The thesis forms the basis of further development of multi-way chemometrics. 

Future research should aim at extending the estimation of the number of 

components, which was accomplished in this thesis with regard to fluorescence 

data, into a general automatic model applicable to any data set. Another remaining 

challenge is modeling all light scatter in fluorescence data as a separate set of 

components. Finally, the optimal method for second-order prediction still merits in-

depth study. 
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1 Abstract 

2 Introduction 

Since the beginning of chemometrics there has always been a discussion of how to 

decide the number of components to use in an analysis. Tools like explained 

variance plots, visual inspection of loadings, cross validation, etc, are all tools used 

to a large extent today. These tools are also used in the estimation of the number of 

components for a set of samples from fluorescence spectroscopy. There are, 

however, no clear rules of when the correct number of factors is reached, and each 

analyst interprets the results differently, and the conclusion may vary for the same 

data set. Also the diagnostic tools used to estimate the number of factors is to a 

degree a subjective choice, dependent upon what tool(s) the analyst trust the most. 

It is therefore of interest to find an automatic way of estimating the right number of 

components in chemometrics. This work focuses on the estimating of number of 

components in a PARAFAC model [Carrol and Chang 1970, Harshman 1970, Bro 

1997] applied on a set of fluorescence landscapes.  

 

In this work a novel automatic method to estimate the correct number of 

components in a PARAFAC model of a set of fluorescence landscapes is 

introduced. Several diagnostic tools are used in a combination to establish a robust 

method. All diagnostic tools fail to estimate the right number of components to a 

certain degree, but a combination may lead to a good estimate. Some diagnostic 

tools are better than others in determining the number of components, and therefore 
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these should be weighted as more important than the diagnostic tools that are 

uncertain in the estimation. Further, some diagnostic tools may be of such bad 

quality that they can be omitted altogether. In building an automatic model, the 

diagnostic tools used should all be digitized, meaning that each diagnostic tool 

should give a one number output. Thus upon finding the correct number of 

components, each PARAFAC model (of increasing complexity) gives a set of 

numbers corresponding to the diagnostic tools used. By analyzing these data, a 

good estimate should be found. Methods applied to these data can be PLS, fuzzy 

logic and setting limit values for each diagnostic tool. 

3 Method 

3.1 Data 

Twelve data sets containing ten samples each, with three to five fluorophores in 

each data set was used as the basic data set. These 120 samples are taken from a 

bigger data set of 405 samples with the fluorophores: catechol, hydroquinone, 

indole, resorcinol, tryptophane and tyrosine. The six fluorophores are highly 

overlapping as can be seen from Figure 1. 

 

a) 

 

b) 

 

Figure 1: a) Excitation and b) emission spectra of the six fluorophores. 
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All the fluorophores were dissolved in de-ionized water, which was also used to 

dilute the final samples to the wanted concentration. The prepared samples were 

measured by a Varian Eclipse Fluorescence Spectrometer. The settings for the 

instrument were: Slit widths 5nm (for both excitation and emission), Emission 

wavelengths 230-500nm (recorded every 2nm), Excitation wavelengths 230-320 

(recorded every 5nm) and scan rate 1920 nm/min. A PMT Detector voltage of 

600V was used. The samples were excited with lowest energy (highest excitation 

wavelength) first, and then up to the highest energy excitation. Every sample was 

left in the instrument for a total of five replicate scans. The total recording time for 

one sample was approximately 15 min. In this paper, only the first replicate was 

used. In Table 1 there is an overview over the fluorophores present in the 12 data 

sets. 

 

Table 1: Fluorophores present in each of the data sets. 

Data set Cat. Hyd. Ind. Res. Try. Tyr. 

1  × × ×  × 

2  × × ×   

3   × × × × 

4  × × ×   

5 × × ×   × 

6  ×  ×  × 

7  × × × ×  

8 × × ×  ×  

9  × ×  × × 

10 × × ×    

11  ×  ×  × 

12  × × × × × 
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3.2 Diagnostic tools 

81 diagnostic tools were used to estimate the number of components. These 

diagnostic tools each give a number to explain e.g. smoothness of loadings, 

degeneracy, uniqueness, and explained variance. They are calculated from 

PARAFAC-models, Jack-Knifed results [Martens and Martens 2001], split-half 

analysis [Harshman and de Sarboe 1994], PCA [Wold et al. 1987], and Tucker3 

[Kroonenberg 1989] to mention some of the methods used. For a total list of all the 

parameters see Appendix I. 

 

All the diagnostic tools were calculated from 1 factor and up to three more than the 

number of fluorophores the specific data set is built up of. I.e. in data set 1 there are 

4 fluorophores, therefore the diagnostic tools are calculated from 1 and up to 7 

factors. The diagnostic tools were studied in order to find possible limits (either 

upper or lower limits, depending on how it behaved) which could be used to define 

the number of factors that diagnostic tool estimates. All the diagnostic tools were 

investigated separately, and the “good” diagnostic tools – able to estimate correct 

of at least half of the data set – were kept and used in a final estimate. 

4 Results 

The first investigations indicated that of the 81 diagnostic tools, only 24 of them 

could give good estimates of the number of components. Of these 24, three are 

directly connected to PCA, two on the ratio between PCA and PARAFAC, and the 

remaining 19 from PARAFAC. The three PCA diagnostic tools are: relative 

eigenvalue, structure of P and maximum decrease in sample residual from jack-

knifed PCA. The two ratios between PCA and PARAFAC are: ratio of residual 

from PCA with the residual from PARAFAC and the minimum ratio of 

eigenvalues from PCA with the norms from the A-scores in PARAFAC. The 19 

diagnostic tools from PARAFAC is as follows: summed change in residual from 

jack-knifed PARAFAC, structure of B and C, minimum congruence between the 

modeled landscapes, median and minimum core consistency from 10 models, the 
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relative decrease in error, maximum percent negative values in B, C and the whole 

modeled cube, amount of modeled signal below 1st order Rayleigh scatter, number 

of unique error terms from 10 models, structure of B and C from a one factor 

PARAFAC model on the residual from PARAFAC, amount of modeled signal 

below 1st order Rayleigh scatter from a one factor PARAFAC model on the 

residual from PARAFAC, the structure in leverage in the B and C and the 

minimum equality in B and C with the known preset loadings from a PARAFAC 

model where two pre-known samples are added. (The structure used is the S3 in 

Appendix I.) 

 

Twelve tables containing only zeros (one for each data set) were made for these 

results, with the 24 diagnostic tools in the columns and the number of factors down 

the rows of the table. The diagnostic tools were then studied one by one, using the 

limits found in the first investigation. The number of factors a diagnostic tool 

estimated was set to 1 in the table. Subsequently each row was summed, and the 

maximum sum was found, see Table 2. If more than 50% of the parameters agreed 

the estimate was defined as a good estimate for the number of factors. 

 

From Table 2 it can be seen that 9 out of the 12 data sets give the right estimate for 

the number of factors. There are, however, three that indicate two possible 

estimates. By investigating data set 5, 8 and 12, it becomes clear that these are the 

only three data sets containing catechol. This was investigated further by applying 

PARAFAC to a data set containing two samples: one pure catechol sample and one 

pure water sample. It was run with both one and two factors. Both the one factor 

and the two factor model converged fast, indicating that the two factor model was 

not overfitting the data. One of the spectra (Figure 2) equals the spectra of catechol, 

but the other is an unknown spectra. The score values for both of these factors were 

very low for the sample containing only water, while higher for the pure catechol 

sample. The factor most similar to catechol had the highest score value, while the  
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Table 2: Summing the results for the 24 diagnostic tools along the rows for each of the 

12 data sets.  Bold numbers indicate 50% or more of the diagnostic tools agree. Bold 

italic numbers indicate the data sets where no clear answer can be given. 

  Number of factors 

Data set True  1 2 3 4 5 6 7 8 

1 4  1 0 7 12 3 0 0 - 

2 3  0 1 20 0 2 0 - - 

3 4  1 0 2 16 3 1 0 - 

4 3  0 2 20 0 2 0 - - 

5 4  3 1 3 8 5 2 0 - 

6 3  1 2 17 2 1 0 - - 

7 4  0 3 2 16 2 1 0 - 

8 4  1 3 2 6 10 0 1 - 

9 4  0 1 1 17 2 2 0 - 

10 3  0 2 9 8 4 0 - - 

11 3  2 1 15 4 2 0 - - 

12 5  1 1 0 3 17 2 0 0 

 

other was in the magnitude of 10% of this. This explains the methods inability to 

establish the right number of factors for these three data sets, it really is half a 

factor higher than the given true value. 

(a) 

 

(b) 

 

Figure 2: Two factor PARAFAC solution on Catechol and water. 

6  Rinnan, Å. and Bro, R. 



Determining the number of components to use in a PARAFAC decomposition of a fluorescence landscape 

5 Conclusion 

By using 24 diagnostic tools it is possible to estimate the correct number of 

components in a set of fluorescence landscapes. The model used so far is a simple 

method, and more work should be performed to build a better, more refined and 

more robust model. 
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8 Appendix 

8.1.1 Structure in loadings 

The structure in the loadings is given by 5 different numbers. All numbers are 

based on the first derivative of the original loadings. The derivative method used is 

very crude, and is simply given by the following: 

iiid xxx 1 −= +  

where dxi is the estimate of the first derivative of the loading at point i, and x is the 

original data.. For the three first parameters, they are also based on a smoothing of 

this derivation spectra, by: 

3

x
x

1

1
∑
+

−==

i

in
n

i

d
sd  

sdxi is the smoothed first derivative at point i. 

The first number is based on a jack-knifed congruence between dx and sdx. The 

jack-knifing is performed by removing one and one variable in the loading and 

calculating the congruence between the remaining normalized variables. The first 

structural parameter is given as the standard deviation of these jack-knifed 

congruences divided by the mean congruence. Congruence between two vectors is 

defined as: 

N
T

Ncong baba, =  
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where the subscript N denotes that the vectors are normalized. When the structure 

in the loading decreases, the standard deviation of the congruence increases while 

the mean value decreases. 

The second parameter is given by: 

)(stdev2 xx sddS −=  

The third parameter is a normalization of S2: 

)(stdev
)(stdev

3 x
xx

d
sddS −

=  

As for the first parameters, these numbers will also increase with decreasing 

structure. 

The two last numbers are the so-called morphological factor (MF) [Wang et al. 

1996] and the morphological score (MS) [Shen et al. 2000], and are discussed in 

these references and will not be discussed further here. Both of them decrease as 

the structure in the loadings decreases.  

These five numbers are calculated on the loadings from PCA, PARAFAC, leverage 

of the PARAFAC loadings, one factor PARAFAC model on the residuals and the 

new loading from a f+1 factor PARAFAC model fixing the f first factors. For a f 

factor PARAFAC model, there are as many sets of structure parameters as there are 

factors in the model. The diagnostic tools recorded are then the maximum value of 

each of these five parameters. On all the PARAFAC models both B and C loadings 

are investigated separately. This adds up to a total of 45 diagnostic tools. 

8.1.2 Relative eigenvalue 

1
, λ

λ
λ i

ir =  

where λi is the ith eigenvalue from a PCA. When there is no information left to 

explain the relative eigenvalue should drop. Only used on PCA; 1 diagnostic tool. 
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8.1.3 Jack-Knifing 

The data has both been jack-knifed [Martens and Martens 2001] by PCA and by 

PARAFAC. The result from one jack-knifed PCA is given as the maximum 

decrease in the residual per factor, while for PARAFAC this is given as the 

summed change in the residual per factor. 

Used on PCA and PARAFAC; 2 diagnostic tools. 

8.1.4 Split-half 

Data set is split into two halves, and a PARAFAC with equal complexity is 

computed on both of the two halves. The mean congruence of the similar loadings 

is used. 

Used on PARAFAC, B and C loadings; 2 diagnostic tools. 

8.1.5 Congruence between landscapes 

This is only defined if the number of components is larger than 1. The congruence 

between two landscapes is found by multiplying the B and C loadings pair-wise, 

and subsequently vectorizing the landscapes. These landscapes are then 

normalized, and the congruence between the different vectorized landscapes is 

calculated. 

Both the minimum and the maximum congruence between landscapes are used; 2 

diagnostic tools. 

8.1.6 Ten different PARAFAC models 

Ten PARAFAC models from different starting points are calculated. The core 

consistency, number of iterations and the residual from these ten models are found. 

Core consistency is defined by Bro and Kiers [Bro and Kiers 2003]. The median 

and the minimum of these ten values are used, 2 parameters. When the congruence 

drops too many factors are extracted. The minimum number of iterations is found. 

The relative increase is then found as: 
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1

1
,
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+ −
=∆

i
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ir it
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When PARAFAC starts having convergence problems, the number of iterations 

increases, indicating too many factors.  

The amount of unique residuals is found as the number of residuals varying by 

more than 0.1%. A model with only one unique residual indicated that the result 

found is the grand minimum. This gives a total of 4 diagnostic tools. 

8.1.7 Decrease in relative error 

i

ii
ir SSQ

SSQSSQ
SSQ 1

,
+−

=∆  

where SSQi is the sum of the squared error for the ith model. The error decreases 

with increasing components. It is only calculated from the PARAFAC models; 1 

diagnostic tool. 

8.1.8 PCA on loadings 

A PCA is performed on the loadings from a PARAFAC model. The condition 

number is then found. Used on both B and C loadings; 2 diagnostic tools. 

8.1.9 Percentage of negative values in loadings 

00
10

,% 1

=⇒≥
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=
∑
=

ii

ii

N

i
i

dx
dx

N

d
neg  

where xi is the loading value at point i, di is defined as shown above, and N is the 

total length of the loading. This is also calculated from the total modeled cube for 

each of the factors in the PARAFAC model, thus di = 1 if aifbifcif < 0 and di = 0 

otherwise. N is then equal to IJK. This number should in general be small as 

fluorescence data per definition should be positive. For the PARAFAC model only 

the maximum value is recorded, both for the loadings, and for the modeled cube. 
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This descriptor is also calculated for the one factor PARAFAC model on the 

residual. Total number of diagnostic tools is 6. 

8.1.10 Explained variance 

%varexp
0SSQ

SSQ
iancelained i=  

where SSQi is the sum of squared model and SSQ0 is the sum of squared raw data. 

Should flatten out when the right number of factors is reached. Computed on the 

PARAFAC models; 1 diagnostic tool. 

8.1.11 PARAFAC factor based 
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where aif is the ith score value, bjf the jth B-loading value, ckf the kth C-loading 

vector, all of factor f. The “,1” in the denominator refers to the 1 factor PARAFAC 

model on the raw data. This sum should always be positive, because of the nature 

of the data.  
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where badf is the sum of the f factor of the model lying below the 1st order 

Rayleigh scatter, goodf the sum of the f factor of model above the 1st order 

Rayleigh scatter, belowraw is the number of points below the 1st order Rayleigh 

scatter, and dataraw is the amount of data points above the 1st order Rayleigh 

scatter. Should be low; no artifacts wanted. 

These diagnostic tools are also computed for the one extra factor PARAFAC model 

on the residual, only then no minimum or maximum is computed (the number of 

factors is 1). For the cubeΣr for the one factor PARAFAC on the residual the 

denominator is set to 1. 

12  Rinnan, Å. and Bro, R. 



Determining the number of components to use in a PARAFAC decomposition of a fluorescence landscape 

This adds up to a total of 4 diagnostic tools. 

8.1.12 Based on the residual 
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where ||a|| is the 2nd norm of the A-score from the one extra factor PARAFAC 

model on the residual, and rijk is the residual at point (i,j,k). Number of factors 

decided upon leveling of this number. 
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where notations are as shown above. Should be positive and less than one. 

A [2 2 2] factor Tucker3 model is computed on the residual. The range of the core 

is computed. The relative decrease in the range is reported as: 
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where Gi is the core-array from the Tucker3 model. Should be high. 

A t-test is performed on the vectorized difference in the residual from a f and f+1 

factor model. If the null-hypothesis of the residual being equal is true, no more 

factors should be computed. 
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where rijk and xijk is the residual and value of raw data in the point (i,j,k). This gives 

the relative bias left to model. 
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where the notation is as above. The residual left to model. 

This gives a total of 6 diagnostic tools. 

8.1.13 Ratios between PCA and PARAFAC 
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rJK-PCA,n is the residual of the nth sample from PCA, and rJK-PARAFACni is the residual 

of the nth sample from PARAFAC, both jack-knifed. 
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PCA
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SSQ is the squared sum of squares, the subscript indicating the model used.  
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||x|| denotes the norm of the number, tf is the fth score from PCA and af is the fth 

score from PARAFAC. When these ratios flatten out the number of factors is 

reached. This gives a total of three diagnostic tools. 

8.1.14 Preset sample 

Two samples of two different known spectra are added to the rest of the dataset. A 

PARAFAC model with two extra factors is modeled and the known spectra are 

searched for. The congruence between the calculated and the known spectra is 

computed. The minimum congruence of the two known spectra is reported. 

This is done both on the B and C loadings; 2 diagnostic tools. 
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1 Abstract 

The use of fluorescence spectroscopy has increased in use in recent years, mainly 

due to high sensitivity towards organic compounds typically present in e.g. food 

products and due to the instrumental development. The extension from measuring 

single emission or excitation spectra to so-called emission-excitation-matrices 

(EEM) has proven useful; increasing the selectivity between the components in the 

sample. However, EEMs can be rather complex and the analysis can become 

complicated due to interferences, scatter, overlapping signals, etc. This paper gives 

a comparison of several methods to handle the 1st order Rayleigh scatter when 

PARAFAC modeling is used to decompose the three-way fluorescence data. 

Furthermore, the paper provides suggestion for how to handle scatter in the 

modeling phase. 

 

Keywords: Fluorescence, PARAFAC, Rayleigh scatter, weights, constraints, 

inserting zeros, missing values 
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2 Introduction 

Fluorescence is a type of spectroscopy used in fields such as food science, 

analytical chemistry, biochemistry, environmental science and others. Fluorescence 

detects so-called fluorophores, molecules with a structure that allows emission of 

light when relaxing to the ground state from an excited singlet state. Such 

molecules include mainly aromatic compounds but also some carbonyls and 

molecules with highly conjugated double bonds. An advantage of the fluorescence 

technique is that it is capable of measuring concentrations down to one thousandth 

of what can be measured by normal absorption spectroscopy. 

 

In fluorescence spectroscopy, the emission spectra are typically studied. A 

potentially more informative way to analyze the data is to study several emission 

spectra, taken at different excitation wavelengths. The data obtained this way can 

be seen as an excitation-emission matrix (EEM). Adding several matrices of equal 

excitation and emission wavelengths (EEMs of several samples) on top of each 

other makes up a cube of data (see Figure 1). Multi-way models, such as 

PARAFAC 1 can be used to study such data providing estimates of the spectra and 

concentration profiles of the underlying chemical analytes if the data are 

approximately tri-linear 2. 

 

There are some parts of EEMs that may be problematic in the PARAFAC 

modeling because they may bias the estimated model parameters. The two most 

important are two types of scatter: Rayleigh and Raman, which show up as 

diagonal lines in the EEMs (see Figure 2). They both originate from the interaction 

between molecules in the solution and the incident light and do not contain 

information on the chemical properties of the sample. Rayleigh scatter is caused by 

molecules of the solute oscillating at the same frequency as the incident light, and 

thus emitting at the same wavelength as the incident light (1st order Rayleigh). It 

will also emit light at twice the wavelength of the incident light (2nd order 

Rayleigh), and also at higher multiples of the wavelength. While Rayleigh is 
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perfectly elastic, Raman is inelastic; the emitted light has less energy than the 

absorbed light. However, the energy loss for Raman is constant throughout the 

EEM for a given solute, e.g. for water the distance between the 1st order Rayleigh 

and the Raman scatter line is 3600 cm-1 3.  

 

The Rayleigh/Raman scatter signals may complicate the analysis of fluorescence 

data by PARAFAC since they do not conform to a low-rank trilinear model. 

Therefore, it is of interest to remove the influence of these scattering effects. 

Several methods to do this have been developed such as subtraction of a standard 

as discussed by Wentzell et al. (2001) 4, weighting 5-8, application of non-negativity 

and unimodality constraints 9, 10 and insertion of missing 11, 12 or zero values 13. 

However, few comparisons between the different methods have been done, and in 

many publications only a few of the methods have been taken into account. 

 

Some of the above mentioned methods can easily be combined without the loss of 

the strength of either method. This paper gives a comparison of many different 

methods to handle the scatter effects in PARAFAC modeling of three-way 

fluorescence data. The methods under investigations are combinations of the 

different weighting schemes or constraints, and insertion of zeros or missing 

values. Only the 1st order Rayleigh scatter is treated in the paper for simplicity. 

Further, the 1st order Rayleigh scatter has a larger influence on the PARAFAC 

modeling than the other scattering effects, mainly due to magnitude. The ability of 

each method to remove Rayleigh scatter and retrieve the pure components is 

evaluated. Three data sets are used: two consisting of designed data containing 

fluorescence measurements of solutions with known fluorophores and one 

consisting of fluorescence measurements of sugar samples taken from a production 

process. 
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3 Materials and methods 

3.1 Data  

3.1.1 Data set 1 

Fifteen samples of mixtures of five fluorophores were recorded, with three or four 

fluorophores present in each sample. The spectra of these fluorophores are highly 

overlapping. The fluorophores are: catechol, hydroquinone, indole, tryptophane 

and tyrosine. The concentrations are shown in Table 1. All the fluorophores were 

dissolved in de-ionized water, which was also used to dilute the final samples to 

the wanted concentration.  

 

The prepared samples were measured by a Varian Eclipse Fluorescence 

Spectrometer. The settings for the instrument were: Slit widths 5nm (for both 

excitation and emission), Emission wavelengths 230-500nm (recorded every 2nm), 

Excitation wavelengths 230-320 (recorded every 5nm) and scan rate 1920 nm/min. 

A PMT Detector voltage of 600V was used. The samples were excited with lowest 

energy (highest excitation wavelength) first, and then up to the highest energy 

excitation. Every sample was left in the instrument for a total of five replicate 

scans. The total recording time for one sample was approximately 15 min. 

3.1.2 Data set 2 

This data set contains EEMs of 16 samples containing different concentrations of 

four fluorophores with rather similar spectral properties 14. The four compounds 

are: phenylalanine, 3,4-dihydroxyphenylalanine (DOPA), 1,4-dihydroxybenzene 

and tryptophan. The concentrations of the fluorophores are shown in Table 2. 

 

The measurements were performed on a Perkin Elmer LS50 B fluorescence 

spectrofluorometer with excitation wavelengths ranging between 200 and 315nm 

(recorded every 5nm) and emission wavelengths ranging from 250 to 459nm 
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(recorded every 1nm). Both excitation and emission slit widths were set to 5nm and 

the scan speed was 1500nm/min.  

3.1.3 Data set 3 

Sugar samples taken from the final unit operation from a sugar plant in 

Scandinavia were obtained as described by Bro (1999) 15. In total 268 samples 

were obtained. They were dissolved in un-buffered water (2.25g/15mL).  

 

Fluorescence was measured on a Perkin Elmer LS50 B fluorescence 

spectrofluorometer with emission ranging from 275 to 560nm (recorded every 

0.5nm). Seven excitation wavelengths were used. These were 230, 240, 255, 290, 

305, 325 and 340nm.  

3.2 Data analysis 

The data were arranged in an I × J × K three-way array where the first index (I) 

refers to the samples, the second (J) to the emission wavelengths, and the third (K) 

to the excitation wavelengths. The PARAFAC model was used to model the data. 

It can be written as 

 

    ∑ += ijkkfjfifijk ecbax
=

F

f 1
 

where xijk is the intensity if the i-th sample at the j-th variable (emission mode) and 

at the k-th variable (excitation mode). aif, bjf and ckf are parameters describing the 

importance of the samples/variables to each component. The residuals, eijk, contain 

the variation not captured by the model. 

3.3 Data pretreatment 

For data set 1 a standard containing only the solvent is measured. The measured 

data of this standard is subtracted from all the samples in order to remove or at 

least minimize the Raman scatter line, and possibly the Rayleigh scatter line. 

Rayleigh scatter is mainly caused by the solvent, but is also dependent upon the 
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light source, and the solutes in the solvent. Thus, the Rayleigh effect will be 

reduced by subtraction of a standard, but it might cause some values in the EEM to 

become negative. 

 

For the two other data sets the Raman scatter line is assumed to be small compared 

to the signal, and thus not disturbing the decomposition significantly. 

 

Emission around twice the excitation wavelength is influenced by 2nd order 

Rayleigh scatter. Since this paper is only focussing on the removal of 1st order 

Rayleigh scatter, all the emission wavelengths which are more than twice that of 

the first excitation wavelength are removed (i.e. above the 2nd order Rayleigh 

scatter line). Some wavelengths slightly below this are also removed in order to 

ensure that all the 2nd order Rayleigh is removed. 

 

Data set 1 is reduced by removing all the emission wavelengths exceeding 440 nm; 

a total of 30 emission lines. The new dimension of the dataset is thus 15 × 106 × 

19. 

 

For data set 2, excitations from 200 to 230 nm are removed in order to reduce the 

amount of noise and missing values. Emissions from 441 to 459 are removed to 

remove any 2nd order Rayleigh scatter. Furthermore, only every second emission 

wavelength is used. This gives a three-way array of the size 16 × 101 × 18. 

 

Data set 3 is reduced by removing all the emission wavelengths above 440 nm. In 

addition only every second emission wavelength is used, thus reducing the 

dimensionality to 268 x 165 x 7. 
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3.3.1 Insertion of zeros/missing values 

All the data in the EEM where the emission is below the excitation wavelength is 

normally set to missing values. This may amount to a considerable part of the 

EEM, which may slow convergence and may also lead to spurious results 16. 

Furthermore, it is typical to insert missing values in the area covered by the scatter 

lines (especially the Rayleigh line, since this normally has a higher intensity than 

Raman) (16 and see Figure 2). However, the scatter lines may be confounded with 

chemical information, and thus it is of interest to keep these areas. Furthermore, it 

might be difficult to accurately estimate the exact width of a Rayleigh peak.  

There is no emission below the excitation wavelength because emission will 

always be of lower energy. Therefore, emission is theoretically zero below the 

excitation wavelength. However, most of these zero values do not conform to the 

trilinear model 16 and may give misleading results. This problem may be handled 

by inserting missing values for a band of emission wavelengths below excitation 

and zeros for all other emissions below excitation 13. This is done in the present 

paper. The bandwidth of missing values is varied from 0 to twice the estimated 

width of the Rayleigh scatter line, which is found through visual inspection of the 

data. In this way, the PARAFAC model is constrained to aim for zero signal in the 

areas of very low emission wavelengths. In Figure 3 an extreme example shows 

how these zeros can effect the decomposition. When all lower emissions are set to 

missing values, the actual model of the signal of the sample is hidden in high 

model-values in the spurious part. This approach will also be beneficiary in the 

sense that the PARAFAC algorithm tends to converge faster. 

3.4 Models 

Insertion of missing values in the band of the EEM where one knows that the 

Rayleigh scatter is present is not always a good method since some of the data, 

which actually hold some information, are removed. In order to circumvent this 

problem weighted PARAFAC or a combination of missing values and constraints 

can be used.  
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A total of four methods are investigated: 

– “MILES” weighting 

– Hard weighting 

– Soft weighting (only possible for data set 1) 

– Insertion of missing values instead of the Rayleigh scatter and the use of 

constraints. The constraints used are non-negativity for the A-scores 

(sample mode) and the C-loadings (excitation mode), and uni-modality and 

non-negativity for the B-loadings (emission mode). 

 

The four methods are explained more thoroughly in the next section. 

3.4.1 Weighting 

Here, three types of weighting are investigated. In two of the methods, the 

Rayleigh scatter area is down-weighted, while for the third weighting scheme an 

instrumentally based set of weights are used. 

 

Hard weighting 

JiJi and Booksh (2000) 7 compared different ways of assigning weights to 

PARAFAC in the decomposition of fluorescence data. Their conclusion was that 

what they termed hard weighting was the best weighting scheme of the four they 

compared. This kind of weighting essentially mimics the use of missing values by 

assigning binary 0 or 1 weights to each data element. In this paper a slightly 

different approach to hard weights are used, where the area containing Rayleigh 

scatter is assigned a weight of 0 while the rest of the EEM is assigned a weight of 

1. I.e. even the area of very low emission wavelengths is assigned a weight of 1. 

 

“MILES” 

Bro et al. (2002) 5 gave an explanation of maximum likelihood fitting of 

PARAFAC models and at the same time gave an example of a new weighting 

scheme for fluorescence data, which in this article is called “MILES” weights. 
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Here the idea is that there is always some information in the whole dataset, but 

because of the Rayleigh scatter line, the relevant information is partly hidden, and 

therefore this area should have smaller weights than the area only containing 

signals from the analytes. However, it is known that the intensity of the Rayleigh 

scatter line decreases as you go from the exact diagonal. Thus the farther away 

from the diagonal one moves the higher the weight. This increase in weights 

follows a Gaussian curve. The weights are set to 1 in the triangle below the 1st 

order Rayleigh scatter line where zeros are inserted. This method is similar to the 

soft-weights JiJi and Booksh (2000) 7 used in their study. The difference is, while 

the method proposed by JiJi and Booksh uses the relative intensity of the signal as 

the basis of the weights, MILES uses the shape of a theoretical Rayleigh scatter 

line as the base for the weights. So, the focus in MILES is in down-weighting the 

areas with Rayleigh scatter, while the soft weights used by JiJi and Booksh focuses 

on up-weighting the areas containing large signals. 

 

Soft weigthing 

The third method uses “smoother” weights and is only applied on data set 1. Russel 

and Gouterman (1988) 8 showed that by using a theoretically based measuring 

uncertainty for the instrument, the decomposition was faster and more precise. The 

theoretical measuring uncertainty of the instruments used in this work is not 

known, and thus it is necessary to use a different measurement of the uncertainty. 

An approximation to the measurement uncertainty can be found by measuring 

several instrumental replicates. However, this will lead to the use of different 

weights, than if the theoretical measurement uncertainty is known. In this paper the 

samples of dataset 1 were left in the instrument for a total of five replicate scans. 

The standard deviation of these replicates is then used as an estimate of the 

uncertainty. These standard deviations will reflect the uncertainty of the 

instrument. The detector in a fluorescence instrument typically has heteroscedastic 

noise, and by down-weighting the areas with a high noise level the decomposition 

of the spectra may converge faster and give better estimates. The inverse of these 
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estimated uncertainties is used as weights in a weighted PARAFAC. A typical 

weighting scheme for this method is shown in Figure 4. The use of soft weights 

does not in any way try to weigh down the Rayleigh scatter. However, it weighs 

down those areas in the EEM where the uncertainty is high.  

3.4.2 Non-negativity and uni-modality constraints 

All spectroscopic data should be positive in the ideal case. Furthermore, it is 

common for the emission spectra of a single fluorophore to only contain one single 

peak, thus allowing for the use of uni-modality as a constraint. Often this is not the 

case for the excitation mode, where it is more common for the fluorophore to have 

several peaks. However, if only a limited amount of excitation wavelengths are 

recorded, as to not enter the dual peak area, uni-modality may also be used with 

success. This is not the case for the data sets investigated here. Thus uni-modality 

is only applied on the emission mode, while non-negativity is used for the 

excitation mode. Non-negativity constraint is also applied to the concentration 

profiles, since clearly no concentrations can be negative.  

 

It was initially tested if this approach alone would lead to a better modeling of the 

data. The results from this initial analysis (see Figure 5) show that the use of 

constraints only works if the Rayleigh scatter line is removed in another way, and 

will thus only be used together with the insertion of missing values where the 

Rayleigh scatter peak is present. However, insertion of missing values may remove 

some of the chemical information close to the Rayleigh scatter peak (if present). 

 

From Figure 5 it can be seen that two of the resolved components have their 

emission maxima at a lower wavelength than their excitation maxima. This is 

physically impossible, and thus the estimates obtained when applying constraints 

and no missing values are not good. 
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3.5 Varying the parameters 

In all the models there are two parameters that need to be set before the model is 

calculated: The width of the Rayleigh peak and the width of missing values to be 

inserted below the 1st order Rayleigh line. In order to investigate the importance of 

choosing the right parameters, both of these are changed independently of each 

other. Both the width of the band of missing data below the 1st order Rayleigh 

scatter line, and the estimated width of the 1st order Rayleigh peak is varied from 0 

to twice the estimated width of the Rayleigh peak (done visually), if possible. The 

Rayleigh peak is estimated to 10 nm for data set 1, 20 nm for data set 2 and 40 nm 

for data set 3. The parameters are increased by 2.5 nm, 5 nm and 10 nm, for the 

three data sets, respectively. For example the bands of missing values for data set 1 

used in the investigations have the size 0, 2.5, 5, 7.5, etc, up to 20nm. In addition to 

this, models are made with missing values for all emissions below excitation. This 

sums up to a total of 90 different combinations of parameters for every model. 

However, for data set 3, the maximum width of missing values is 60 nm, and thus 

only 72 combinations are possible. 

3.6 Quality of a model 

The quality of a model is evaluated by the Q2 between the model and the reference. 

This is calculated as follows: 

1. First the best model of all the models for one data set is found and used as 

the reference model. This reference is found by visual inspection of the 

models. Peak position, smoothness, absence of scatter-influence and 

amount of negative values in the loading modes were used as criteria for 

choosing the reference. An example of a good and a not-so-good model is 

given in Figure 6. All other models are then compared to this model. 

2. The mean of the Q2 between the factors in the model and the reference is 

calculated – both B and C-loadings (emission and excitation modes) are 

taken into account. The loadings of the tested model and the reference are 

compared in order to find the best match. Q2 is defined as follows: 
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where y is one of the loadings of one factor under investigation, is the 

reference loading for this factor, while 

ŷ

y is the average of the loading 

under investigation. The m and f indexes on the Q2 denote the mode and 

factor number investigated (m=2 indicates the B-loadings, m=3 the C-

loadings). If Qm,f
2 equals one, the two loadings are equal, if it is zero or 

less, then there is no similarity between the loading under investigation and 

the loadings of the reference model. If Qm,f
2 is below zero, it is set to zero. 

3. The average Q2-value for all the factors and loadings (B and C) is 

calculated, giving a number between zero and one. E.g. for a four factor 

PARAFAC model, the average Q2 would be the average of 4×2 + 8 

different Qm,f
2-values. 

The criterion for a model being good changes from data set to data set, where the 

easiest data set requires better similarity between the model and the reference than 

the most difficult one. Further, for data set 3, no reference model is found, but 

rather two that both looked reasonable. Thus the Q2-value is not only averaged over 

the factors and loadings, but also across the two references. Each model is 

evaluated based on its average Q2-value, time before convergence and number of 

iterations. 

3.7 Software 

MATLAB (The Mathworks Inc, Natick, MA) version 6.5 was used during the 

calculations. The algorithms in use were from the N-way toolbox version 2.10 17, 

and some in-house algorithms. 

4 Results and Discussion 

The results from one data set comprises of three (or four for data set 1) matrices 

with 90 (or 72 for data set 3) numbers in each (one matrix for each method). The 

10×9 matrix is made up of all the possible parameter combinations. The rows are 
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given by increasing band of missing values, while the columns are the estimation 

of the width of the Rayleigh scatter peak. One of these matrices given as the quality 

(Q2) is visualized in Figure 7. 

 

The three data sets are of different origin, so different values of Q2 are used to 

determine whether a model is good or not. These values are set to 0.995, 0.95 and 

0.85 for the three data sets, respectively. Q2-values lower than 0.85 refer to models 

that are very different from the reference, and thus a lower limit for data set 3 was 

not chosen. Table 3 gives an overview of the results upon the investigation of how 

well the different methods perform in the ranges of the parameters. Relative time is 

the average of time needed before convergence of all the good models, divided by 

the method with the lowest average time. This version of relative time is chosen 

instead of averaging or summing all the times before convergence, because the 

interest lies in the good models, and not in the bad ones. The relative number of 

iterations is calculated in the same manner.  

 

Generally, using hard weights is the method that needs the least amount of time to 

converge. However, its decomposition is not as good as those made by MILES and 

constraints. The amount of time needed for one computation is less for MILES 

compared to constraints when the data are easier to model, while for the process 

data, constraints uses less time than MILES. The average number of iterations is 

lowest when applying constraints or using hard weights, but MILES only needs a 

few more iterations. The difference in the number of iterations needed before 

convergence is largest for the process data. The results for soft weights will be 

discussed under Data set 1. 

4.1 Data set 1 

For this data set it was also investigated how the models performed if only the 

Raman part of the standard was subtracted, instead of the whole standard. In 

general this gave worse results than the ones presented here, with 86%, 87%, 0% 

Rinnan, Å., Andersen, C. M.  13 



Handling of First Order Rayleigh Scatter in PARAFAC Modeling of Fluorescence Excitation-Emission Data 

and 73% good models (with a limit on Q2 of 0.99) for MILES, hard, soft and 

constraints, respectively. This is a lot lower than for the results obtained when the 

whole standard is subtracted and, therefore, these results will not be discussed 

further. 

Almost all the models are good for these data, most probably because the signal is 

nicely separated from the 1st order Rayleigh scatter line and the signal from the 

analytes is of a considerable higher intensity than the Rayleigh peak. The main 

difference between the different approaches is that by the use of missing values and 

constraints, some of the results are not optimal in that the loadings have an inferior 

appearance. However, the greatest difference is between the calculation times. The 

fastest method is for using the hard weights, while MILES is almost as fast. Soft-

weights generally need almost four times the amount of time to converge. The 

same tendencies are seen for the number of iterations where application of soft 

weights uses approximately 5 times more iterations before the model converges. 

The use of constraints needs approximately 60% more time to converge than hard 

weights. Even though the calculation time and the number of iterations for soft 

weights disfavor this method, it compensates somewhat for this by the need of only 

estimating one of the meta-parameters; width of missing values. So while the three 

other methods have a total of 90 parameter combinations under investigation, soft 

weights only have 10. It is difficult with the results from this dataset to tell which 

of the methods are better or worse, other than the use of constraints can result in 

inaccurate estimates, and that MILES and hard weighting are the two fastest. The 

setting of the band of missing and the size of the Rayleigh scatter does not seem to 

influence the decomposition considerably. 

4.2 Data set 2 

For this data set the number of good models per method vary slightly, with MILES 

performing the best, giving good estimates for as many as 86% of all the parameter 

combinations. For the other two methods, this number is 70% for hard weighting 

and 74% for constraints. However, the average time for those parameter 
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combinations that give good estimates is shortest for hard weighting, followed by 

MILES needing 35% more time, while constraints in general needs 60% more time 

than hard weighting. The number of iterations is lowest for MILES with constraints 

using 4% more and hard weights using 15% more. In general, setting the Rayleigh 

width to 0 nm, gives bad results. Also setting the Rayleigh width to 5 nm and using 

a big bandwidth of missing values cause results of lower quality. MILES is the 

method that is least sensitive to the correct estimate of the Rayleigh width, while 

hard weights is the most sensitive. Further, in the extreme parameter settings, with 

both parameters close to the maximum, both hard weights and constraints fail to 

give good estimates, while MILES does not suffer the same problems. 

4.3 Data set 3 

This is the only real data set, and in that perspective also the most interesting data 

set in the investigation. For this data set the results vary more than in the previous 

ones. In general MILES is the best giving good estimates in 28% of all the 

parameter combinations. For constraints, this percentage is 24% and for hard 

weights as low as 11%. Thus, the number of good parameter estimates is lower for 

data set 3 than for the other data sets. An interesting factor here is that the time 

needed before convergence, is the exact opposite to the amount of good 

decompositions, thus hard weights is fastest, followed by constraints, and MILES 

being the slowest. However, the time before convergence is only 50% more for 

MILES than for hard weights. The number of iterations follows the same trend, 

with the lowest upon applying hard weights. Constraints need 29% more iterations, 

while MILES requires 56% as many iterations. 

 

In order for MILES to work it is essential to at least use an estimate of the Rayleigh 

peak width that is equal to the one found during visual inspection. However, 

overestimating the Rayleigh peak does not seem to have any influence on the 

decomposition. This means that although the visual inspection of the data suggests 

a Rayleigh peak width of 40 nm, setting this as high as 80 nm, still give good 
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estimates of the loadings using MILES. Constraints perform similarly, but the 

bandwidth of missing values is more limited. While for MILES the band of missing 

values could be set as high as 30 nm, and sometimes even up to 50 nm, constraints 

only behave well, when this number is between 0 and 20 nm. Constraints on the 

other hand are not as sensitive to estimating the Rayleigh peak correctly, and give 

good predictions for Rayleigh peak estimates as low as 20 nm. In general the best 

decompositions is found when the band of missing values is set very low meaning 

that a large number of zeros are inserted into the EEM. 

 

Visual inspection of the data shows that a good estimate of the two parameters 

would be about 40 nm for the width of the Rayleigh peak and since it seems like 

the signal from the fluorophores is far from the Rayleigh scatter line, a band width 

of missing values of 0 or 10 nm should be appropriate. However, since the 

Rayleigh scatter peak is higher than the actual signal from the fluorophores, a 

width of as much as 60 nm may be an appropriate estimate for MILES. The Q2-

values for these parameter settings are given in Table 4. 

 

From Table 4 it can be seen that for the parameter combinations shown MILES and 

constraints both give five models with good estimates of the loadings, while hard 

weighting gives three good models. However, since the visual inspection of the 

data indicated a width of the Rayleigh peak of 40nm, using 60 nm in the hard 

weights (and possibly also for the constraints) is not appropriate, and thus hard 

weights performs well on three out of four settings, almost as good as the other 

methods. 

5 Conclusion 

Of the four methods under investigation it seems that using MILES gives the best 

results. In order to use MILES it is of great importance to estimate the Rayleigh 

peak correctly, especially in cases where the intensity of the Rayleigh peak is 

higher than for the analytes themselves. It is less sensitive to changes in the 
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parameters compared to hard weights and constraints. However, MILES requires 

more work on estimating the Rayleigh scatter peak and the exact weights to apply 

than for example constraints. Of the four methods under investigation, MILES and 

soft weights are the only methods that use all the information in the EEM. 

However, based upon the analyses performed here it is impossible to conclude 

anything substantial regarding the use of soft weights. More data sets of this type 

are required. Further, it would be interesting to combine the soft weights with one 

of the other weighting methods to see if that could both speed up the process 

(focusing only on areas in the EEM with low uncertainty), and handle the influence 

of the scatter. Constraints, which is really hard weights with constraints, gives 

better results than by using hard weights by itself. From this perspective it would 

be interesting to apply constraints to the other weighting schemes as well.  
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Table 1: Concentrations of the five fluorophores in the 15 samples of data set 1. 

Sample 

no. 

Catechol 

(10-6 M) 

Hydroquinone

(10-6 M) 

Indole 

(10-6 M) 

Tryptophane

(10-6 M) 

Tyrosine 

(10-6 M) 

1 22 0 0.64 0 0.91 

2 10.9 0 1.28 0 0.91 

3 6.5 5.6 0.38 0 3.0 

4 6.5 2.8 0 0.93 0.91 

5 6.5 0 0.38 1.86 1.51 

6 22 0 1.28 0 0 

7 0 0 0.38 0.56 0 

8 10.9 2.8 0 0 0 

9 0 0 0.64 1.86 1.51 

10 22 2.8 0 0.93 0 

11 22 0 0.64 0 0.91 

12 10.9 0 1.28 0 0.91 

13 6.5 5.6 0.38 0 3.0 

14 6.5 2.8 0 0.93 0.91 

15 6.5 0 0.38 1.86 1.51 
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Table 2: Concentrations of the four fluorophores in the 16 samples of data set 2.  

Sample no. Hydroquinone 

(10-6 M) 

Tryptophan 

(10-6 M) 

Phenylalanine 

(10-6 M) 

Dopa 

(10-6 M) 

1 46 4 2800 18 

2 17 2 4700 28 

3 20 1 3200 8 

4 10 4 3200 16 

5 6 2 2800 28 

6 3.5 1 350 20 

7 3.5 0.5 175 20 

8 3.5 0.25 700 10 

9 1.75 4 1400 5 

10  0.875 2 700 2.5 

11 28 8 700 40 

12 28 8 350 20 

13 14 8 175 20 

14 0.875 8 1400 2.5 

15 1.75 8 700 5 

16 3.5 2 700 80 
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Table 3: Amount of good estimates, relative time and relative number of iterations 

required per method.  

 Method 1 2 3 

MILES weights 98.9 86.7 27.8 

Hard weights 100 70.0 11.1 

Soft weights 100 - - 
% good 

Constraints 92.2 74.4 23.6 

MILES weights 1.05 1.36 1.50 

Hard weights 1 1 1 

Soft weights 4.4 - - 
Rel. time 

Constraints 1.58 1.73 1.08 

MILES weights 1.25 1 1.56 

Hard weights 1.18 1.15 1 

Soft weights 5.2 - - 

Rel. 

number of 

interations 
Constraints 1 1.04 1.29 
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Table 4: The Q2-values for good estimates of the Rayleigh peak width and the band-

width of missing values for data set 3. 

Width of Rayleigh peak  
Method 

40 nm 50 nm 60 nm 

MILES 0.96 0.96 0.95 

Hard 0.65 0.96 0.46 

0 
nm

 

Constraints 0.95 0.95 0.94 

MILES 0.19 0.95 0.94 

Hard 0.95 0.95 0.46 

W
id
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Constraints 0.56 0.95 0.94 
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Figure 1: Going from a set of EEM’s to a three-dimensional cube, ready to be handled 

by e.g. PARAFAC. 

 

Figure 2: An EEM of a water sample. The scatter lines are clearly seen. 

a) 

 

b) 

 

Figure 3: The predicted EEM of sample 1, data set 3, using hard weights. Inserting (a) 

only zeros –  454 iterations, or (b) only missing values, below the Rayleigh scatter line 

– 18118 iterations. 
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Figure 4: A typical set of soft weights calculated based on the inverse standard 

deviation of the instrumental replicates of one sample. 

(a) 

 

(b) 

 

Figure 5: The excitation (a) and emission (b) loading when applying a non-negativity 

constraint on the A-scores and the C-loadings, while uni-modality on the B-loadings. 

No missing values are inserted. Data set 2. 
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(a) 

 

(b) 

 

Figure 6: The loadings for a good (a), and a bad (b) model for dataset 3. 

 

Figure 7: Visualization of the results from “MILES” on data set 3. 
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1st Order Rayleigh as a Separate Component in 
PARAFAC Decomposition of Fluorescence 

Landscapes 
Åsmund Rinnan, Karl S. Booksh and Rasmus Bro 

1 Abstract 

2 Introduction 

During the recent years, the use of fluorescence spectroscopy has increasingly 

focused on total luminescence spectra, or excitation-emission-matrices (EEM). The 

use of chemometrics, and more specifically parallel factor analysis (PARAFAC) 

[Carrol and Chang 1970, Harshman 1970, Bro 1997] has become recognized as a 

good and reliable tool for extracting chemical information from EEM spectra. By 

using PARAFAC to extract more information from the collected data, it is of vital 

importance that the data is low-rank tri-linear. This is the case for the behavior of 

all fluorophores in a sample, as long as no quenching or inner-filter effects are 

present. However, there are some light scatter effects in fluorescence that do not 

conform to the tri-linearity assumption. Instead these spectral features lie on a 

diagonal of the EMM landscape. The light scattering effects are called Rayleigh (1st 

and 2nd order are most common) and Raman scatter. The 1st order Rayleigh scatter 

line is centered at the emission equals excitation line, 2nd order Rayleigh scatter at 

the emission equals twice the excitation, and the Raman is at a certain energy 

difference from the 1st order Rayleigh scatter line. This energy difference is 

dependent upon the solute of the sample. 1st order Rayleigh scatter is the most 

intense of the light scattering, and therefore has a higher influence on the 

PARAFAC model.  
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If the signal from the fluorophores themselves lie away from these scatter lines, 

they can simply be omitted. However, in many food or environmental samples the 

signal from the fluorophores of interest lies close to, or on top of, one or more of 

the scatter effects. If these scatter effects are not accounted for in the modeling 

process they may cause errors in the decomposition of these spectra. Several ways 

of handling the scatter effects have been proposed in literature: subtraction of a 

standard [Ho et al. 1978, Ho et al. 1980, McKnight et al. 2001], inserting missing 

values [Christensen et al. 2003, Munck et al. 1998, Rodriguez-Cuesta et al. 2003, 

Trevisan and Poppi 2003], constraints in the PARAFAC decomposition [Andersen 

and Bro 2003, Bro 1999] and weighted PARAFAC [Bro et al. 2002, Jiji and 

Booksh 2000, Rinnan and Andersen 2004]. In this paper a novel way of treating the 

1st order Rayleigh scatter is proposed, namely modeling it as a separate component 

in the decomposition step. This is done through reorganization of the data so that 

the 1st order Rayleigh scatter line is low-rank bi-linear. The following bi-linear 

Rayleigh scatter is either modeled by PCA (one model per sample) or PARAFAC 

(one model for all samples). 

3 Materials and Methods 

3.1 Data sets 

For analyzing the ability of the new method, three different fluorescent data sets 

are used. 

3.1.1 Data set 1 

Fifteen mixtures of five fluorophores were recorded, with three or four 

fluorophores present in each sample. The spectra of these fluorophores are highly 

overlapping. The fluorophores are: catechol, hydroquinone, indole, tryptophane 

and tyrosine. The concentrations are shown in Table 1. All the fluorophores were 

dissolved in de-ionized water, which was also used to dilute the final samples to 

the wanted concentration.  

2  Rinnan, Å., Booksh, K.S., Bro, R.  



1st order Rayleigh scatter as a separate component in PARAFAC decomposition of fluorescence landscapes 

Table 1: Concentrations of the five fluorophores in the 15 samples of data set 1. 

Sample no. Catechol 

(10-6 M) 

Hydroquinone

(10-6 M) 

Indole 

(10-6 M) 

Tryptophane

(10-6 M) 

Tyrosine 

(10-6 M) 

1 22 0 0.64 0 0.91 

2 10.9 0 1.28 0 0.91 

3 6.5 5.6 0.38 0 3.0 

4 6.5 2.8 0 0.93 0.91 

5 6.5 0 0.38 1.86 1.51 

6 22 0 1.28 0 0 

7 0 0 0.38 0.56 0 

8 10.9 2.8 0 0 0 

9 0 0 0.64 1.86 1.51 

10 22 2.8 0 0.93 0 

11 22 0 0.64 0 0.91 

12 10.9 0 1.28 0 0.91 

13 6.5 5.6 0.38 0 3.0 

14 6.5 2.8 0 0.93 0.91 

15 6.5 0 0.38 1.86 1.51 

 

The prepared samples were measured by a Varian Eclipse Fluorescence 

Spectrometer. The settings for the instrument were: Slit widths 5nm (for both 

excitation and emission), Emission wavelengths 230-500nm (recorded every 2nm), 

Excitation wavelengths 230-320 (recorded every 5nm) and scan rate 1920 nm/min. 

A PMT Detector voltage of 600V was used. The samples were excited with lowest 

energy (highest excitation wavelength) first, and then up to the highest energy 

excitation. Every sample was left in the instrument for a total of five replicate 

scans. The total recording time for one sample was approximately 15 min. 
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3.1.2 Data set 2 

This data set contains EEMs of 16 samples containing different concentrations of 

four fluorophores with rather similar spectral properties [14]. The four compounds 

are: phenylalanine, 3,4-dihydroxyphenylalanine (DOPA), 1,4-dihydroxybenzene 

and tryptophan. The concentrations of the fluorophores are shown in Table 2. 

 

Table 2: Concentrations of the four fluorophores in the 16 samples of data set 2.  

Sample no. Hydroquinone 

(10-6 M) 

Tryptophan  

(10-6 M) 

Phenylalanine 

(10-6 M) 

DOPA 

(10-6 M) 

1 46 4 2800 18 

2 17 2 4700 28 

3 20 1 3200 8 

4 10 4 3200 16 

5 6 2 2800 28 

6 3.5 1 350 20 

7 3.5 0.5 175 20 

8 3.5 0.25 700 10 

9 1.75 4 1400 5 

10  0.875 2 700 2.5 

11 28 8 700 40 

12 28 8 350 20 

13 14 8 175 20 

14 0.875 8 1400 2.5 

15 1.75 8 700 5 

16 3.5 2 700 80 

 

The measurements were performed on a Perkin Elmer LS50 B fluorescence 

spectrofluorometer with excitation wavelengths ranging between 200 and 315nm 

(recorded every 5 nm) and emission wavelengths ranging from 241 to 481nm 
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(recorded every 2 nm). Both excitation and emission slit widths were set to 5nm 

and the scan speed was 1500nm/min. 

3.1.3 Data set 3 

Sugar samples taken from the final unit operation from a sugar plant in 

Scandinavia were obtained as described by Bro (1999). In total 268 samples were 

obtained. They were dissolved in un-buffered water (2.25g/15mL).  

 

Fluorescence was measured on a Perkin Elmer LS50 B fluorescence 

spectrofluorometer with emission ranging from 275 to 560nm (recorded every 

0.5nm). Seven excitation wavelengths were used. These were 230, 240, 255, 290, 

305, 325 and 340nm. 

3.2 Reduction of original data 

The goal of this work was to model the 1st order Rayleigh scatter. Therefore, the 

parts of the fluorescence landscape that was affected by 2nd order Rayleigh scatter, 

or other artifacts were removed prior to any analysis. Little fluorescence 

information was lost because no significant overlap with the second order Rayleigh 

scattering occurred. Data set 1 was reduced from 15×136×19 down to 15×106×19, 

by removing the 30 last emission wavelengths due the presence of 2nd order 

Rayleigh scatter. Data set 2 was reduced from 16×121×24 down to 16×101×18, the 

six first excitation wavelengths due to high noise-level, and the 20 last emission 

wavelengths due to the presence of 2nd order Rayleigh scatter. Data set 3 was 

reduced from 268×571×7 down to 194×165×7. The last 242 points was removed 

due to the presence of 2nd order Rayleigh. The dataset was reduced even further by 

removing every second measured emission wavelength. 71 samples were removed 

because of intensities reaching max, and three samples were removed as outliers. 

3.3 Constraints 

For all data sets, both models without constraints and models with nonnegativity 

constraints were investigated. Fluorescence spectra can readily be decomposed by 
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PARAFAC, and an unconstrained solution is often also in accordance with the 

physical/chemical premises of the data. Sometimes it may, however, be valuable to 

enforce some constraints on the PARAFAC solution. In the data used in this 

investigation, there were no missing values, and thus no danger of artifacts in the 

areas with missing values. Instead constraints, like non-negativity [Bro and de Jong 

1997, Bro and Sidiropoulos 1998] can be used in order to smooth the estimated 

spectra. Non-negativity in all modes is a valid constraint in fluorescence, because 

all concentrations and spectra should be strictly positive. In decomposition, 

however, there may be small negative numbers, and by using non-negativity 

constraint these are removed. The effect of non-negativity constraints in all modes 

in the PARAFAC model was tested together with the parameters mentioned above. 

3.4 Methods to model Rayleigh 

In this paper, two different techniques of modeling the 1st order Rayleigh scatter 

have been investigated: 

1. Rotating the spectra into a new coordinate system such that the Rayleigh 

scatter makes a line in the landscape and not a diagonal 

2. Shifting the different emission spectra according to the excitation 

wavelength, cutting off the part away from the Rayleigh scatter line, 

making the Rayleigh scatter low-rank bi-linear 

The Rayleigh scatter is sequentially modeled by either PCA or PARAFAC. By 

using PCA, the Rayleigh scatter of the different samples are allowed to have 

different shapes, while by the use of PARAFAC all the samples should have 

similar shapes of the Rayleigh scatter. This Rayleigh model is then reshaped into 

the original data matrix and subtracted from the original data. A PARAFAC is run 

on the corrected spectra. The PARAFAC modeling of the fluorophores has both 

been computed with and without non-negativity in all modes. 

3.4.1 Rotating the EEM 

The rotation of the EEM to make Rayleigh a line in the new coordinate system, 

would ideally be a rotation by 45º. However, since there are uncertainties in the 
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lamp and the detector, there may be small deviations from this. Thus the optimal 

rotation from 43º-47º was searched for, by finding the smallest model error in the 

Rayleigh scatter model. The step length in the new coordinate system was defined 

as the step length of the old system, with the step length in the emission mode 

being the new step length in the width of the Rayleigh, while the step length in the 

excitation mode is along the length of the Rayleigh scatter peak. The rotation was 

performed according to the following steps: 

1. The coordinates of the landscape is found, and formed into a long matrix 

containing two columns, and as many rows as the size of the landscape. I.e. 

a landscape of the size J×K would have a coordinate axis of JK×2. 

2. This coordinate matrix is multiplied by a rotational 2×2 matrix. 

3. If the rotated coordinates do not fit to the new coordinate system, then it is 

necessary to find the closest coordinates in the new system.  

4. This corrected rotation matrix is rotated back into the old coordinate 

system in order to find where the corrected raw coordinates lie in the 

original coordinate system.  

5. Since these corrected raw coordinates are not in correspondence with the 

original raw coordinates it is necessary to perform interpolation in the old 

system in order to find the amplitude values of the corrected rotation 

matrix. 

6. The corrected rotated matrix is reduced in order to not take into account 

fluorescence far away from the Rayleigh scatter line. 

7.  The signal intensity at desired excitation-emission wavelength pairs is 

interpolated from the nearest 4 measurements. 

8. The reduced corrected rotated matrix is modeled by PCA or PARAFAC. 

9. This model is rotated back into the old coordinate system by a similar 

procedure as the one described in 1-7 (not including point 6). 

3.4.2 Shifting the EEM 

For the shifting to work it is essential that the uncertainty in the excitation and the 

emission wavelengths are negligible. This is because this method is purely based 
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on the coordinate system recorded from the instrument itself. The idea here is 

simple: the Rayleigh scatter peak should behave similarly at different excitation 

wavelengths. The shifting is done as follows: 

1. For each row in the data, the position of the Rayleigh peak is located where 

the emission wavelength equals the excitation wavelength. Each row in the 

spectra are shifted such that the Rayleigh scattering forms a vertical 

structure in the matrix.  The smaller wavelength spectra are shifted to the 

right (higher wavelengths), while the larger wavelength spectra are shifted 

to the left (shorter wavelengths). 

2. This procedure is repeated for all the different excitation wavelengths of 

the landscape. 

3. The shifted landscape is reduced by removing points away from the 

Rayleigh scatter line.  

4. A PCA or a PARAFAC is used to model the Rayleigh scatter line. 

5. The modeled Rayleigh line is shifted back to the original matrix. 

3.4.3 Number of factors to model the Rayleigh scatter 

It was investigated whether the modeling of the Rayleigh scatter line should be 

performed with one or more components. This was done through re-computing the 

same total model with a different amount of factors for the Rayleigh scatter model, 

keeping the numbers of factors explaining the fluorophores constant. The criterion 

to estimate the right number of components for the modeling of the Rayleigh 

scatter was set by maximizing the modeled landscape. If the sum for the current 

model was higher than for the previous model with less complexity, a new model 

with increased complexity was computed. This was repeated until the sum 

decreased or was equal, and the estimated model complexity was set as the 

previous less complex model. 

3.4.4 The complete model 

The complete model was calculated in an iterative fashion. First the Rayleigh was 

modeled. Then the Rayleigh model was subtracted from the original data, and this 

8  Rinnan, Å., Booksh, K.S., Bro, R.  



1st order Rayleigh scatter as a separate component in PARAFAC decomposition of fluorescence landscapes 

Rayleigh corrected data was then modeled for the fluorophores. This fluorophore 

model was again subtracted from the original data, and the fluorophore corrected 

data was then put through the Rayleigh modeling step again. This procedure was 

repeated until convergence. The convergence criterion was set to 10-6 relative 

change in the residual between two consecutive models – one model being both the 

Rayleigh and the fluorophore parts. 

3.5 Stability of a model 

The stability of each of the models was investigated by the use of bootstrapping 

[Wehrens et al. 2000] for the two first datasets and by jack-knifing [Martens and 

Martens 2001] for the last dataset. The reason for these choices is that the two first 

data sets are rather small, and thus a Jack-knifing could cause biased results. For 

both of these methods, 20 models were built on the data. The excitation- and 

emission-loadings for each set of factors and each model was multiplied making a 

landscape. This means that for each stability tests a number of three-way arrays 

equal to the numbers of factors for the model were made. The dimension for one of 

these arrays is 20×(length of excitation)×(length of emission). The standard 

deviation landscape for each of these arrays was calculated, and the mean standard 

deviation of these standard deviation landscapes is used as a parameter describing 

the stability of a model. The lower number the more stable model. 

3.6 Quality of a model 

In addition to the stability of a model it is of interest to determine how good the 

model estimates the pure spectra, and hence a quality parameter. The quality of a 

model was quantified by comparing the result from one model with the pure 

spectra for data sets 1 and 2. There were no known spectra for data set 3, and 

instead the best model with hard-weights, constraints and a band of missing values 

from [Rinnan and Andersen 2004], which is a refined decomposition of what Bro 

(1999) shows in, was used as the reference. It should, however, be noted that 

because there are no known spectra for this data set, the standard deviation of the 
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Q2-values are of more importance than the mean Q2-value in order to define a 

stable, good model.  

 

As in [Rinnan and Andersen 2004] the quality is defined using the Q2-statistics: 

1. The mean of the Q2 between the factors in the model and the reference is 

calculated – both emission and excitation modes are taken into account. 

The loadings of the tested model and the reference are compared in order 

to find the best match. Q2 is defined as follows: 
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where y is one of the loadings of one factor under investigation, is the 

reference loading for this factor, while 

ŷ

y is the average of the loading 

under investigation. The m and f indexes on the Q2 denote the mode and 

factor number investigated (m = 2 indicates the excitation-loadings, m = 3 

the emission-loadings). If Qm,f
2 equals one, the two loadings are equal, if it 

is zero or less, then there is no similarity between the loading under 

investigation and the loadings of the reference model. If Qm,f
2 is below 

zero, it is set to zero. 

2. The average Q2-value for all the factors and loadings (excitation and 

emission) is calculated, giving a number between zero and one. E.g. for a 

four factor PARAFAC model, the average Q2 would be the average of 4×2 

= 8 different Qm,f
2-values. 

Each of the total models is computed 20 times according to bootstrapping/ Jack-

knifing as explained above. The mean and the standard deviation of the Q2-values 

can therefore be calculated. 

4 Results 

The first step was to decide the number of factors to use in order to model the 

Rayleigh scatter line as a separate component. For both of the two first data sets, 
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one factor was optimal using either PCA or PARAFAC. For the last, more complex 

system, two factors were needed both for the PCA and for the PARAFAC case. 

As a reference method, a “MILES” PARAFAC [Bro et al. 2002, Rinnan and 

Andersen 2004] with insertion of zeros below the 1st order Rayleigh scatter was 

used, as explained in Rinnan and Andersen (2004). The PARAFAC model was 

both computed without any constraints and with non-negativity in all modes. 

 

Table 3: The stability and quality of the 10 different PARAFAC models on the three 

data sets. The stability is given as the average standard deviation in 10-5. The quality is 

given as the mean and the standard deviation of the Q2-values. 

  Data set 1 Data set 2 Data set 3 

Model Cons JK Q2 Std-Q2 JK Q2 Std-Q2 JK Q2 Std-Q2

Reference           

 MILES - 34 0.992 0.0004 717 0.989 0.002 125 0.907 0.006 

 MILES NN 30 0.993 0.0004 723 0.992 0.001 73 0.929 0.013 

Rotation           

 PARAFAC - 364 0.797 0.033 250 0.734 0.012 104 0.359 0.003 

 PARAFAC NN 72 0.916 0.018 356 0.775 0.082 87 0.149 0.0003 

 PCA - 376 0.791 0.042 394 0.676 0.080 77 0.382 0.020 

 PCA NN 72 0.916 0.018 345 0.792 0.115 68 0.159 0.0004 

Shifting           

 PARAFAC - 16 0.992 0.0004 40 0.988 0.002 63 0.933 0.005 

 PARAFAC NN 13 0.993 0.0004 27 0.992 0.001 116 0.960 0.018 

 PCA - 23 0.991 0.002 39 0.986 0.003 86 0.918 0.004 

 PCA NN 12 0.992 0.0005 28 0.989 0.001 128 0.913 0.034 

 

From Table 3 it is clear that by modeling the 1st order Rayleigh scatter as a separate 

factor in the modeling step gives a more stable model. The average quality of the 

model is similar for both data set 1 and 2, while for data set 3 (the “real” data set) 

the quality of the model is higher; the model is better. Rotating the landscape, 

making the Rayleigh scatter line low-rank bilinear, seems not to be a good idea. 
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For data set 3, the models are the most stable, with a standard deviation of the Q2 

values below those of both the reference model and the shifting of the Rayleigh 

scatter line. However, upon looking at the loadings from the model (see Figure 1) it 

becomes clear that the model is not adequate, and thus even though the model is 

stable, the solution reached is not the correct one, which also can be seen from the 

very low Q2-values. 

(a) 

(b) 

 

Figure 1: The fluorophore loadings, modeling the Rayleigh scatter by rotation. (a) 

emission loadings, (b) excitation loadings. 

 

Figure 1 show that all the four fluorophore factors have excitation and emission 

maxima at the same wavelength, meaning that what this model mainly models the 

Rayleigh scatter line itself. The tails of the emission loadings seems to resemble 

that of the real fluorophores. This means that the modeling of the Rayleigh scatter 

line fail, it is not modeled by the PCA/ PARAFAC that should model the Rayleigh. 

There are some assumptions in the rotation method: 1) the modeling should start 

with modeling the Rayleigh and not the fluorophores, 2) the rotational angle can be 

optimized by explained variance, 3) keeping the steps in the old coordinate system 
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gives a good estimation of the rotated coordinate system, 4) the area between 

points should readily be modeled by a line and 5) the chosen model complexity for 

modeling the Rayleigh scatter is correct. It does not seem like one or some of these 

assumptions hold. The rotation model was therefore re-analyzed several times on 

data set 2 in order to check if these assumptions where correct. The alternatives for 

the five points are: 1) using hard weights prior to modeling Rayleigh for the first 

time, 2) keeping the rotational angle constant, 3) the steps in the new coordinate 

system equal to the average step length in the old coordinate system, 4) using 

second or third order fitting in the interpolation step and 5) modeling the Rayleigh 

model with one or two components. All these combinations were run to investigate 

if there was an optimal setup for data set 2. The best setup gave a decomposition as 

good as the shifting method. However, when the six best setups for data set 2 were 

tried on data set 1, the results did not give any good decomposition. It therefore 

seems like the rotation methods needs to be setup specifically for each data set. In 

the optimal case it can give as good results as the shifting method, but in order to 

find the optimal setup for the rotation method, the time used compared to the 

shifting is multiplied by at least 50. 

 

The shifting method on the other side, being straightforward, fast and stable seems 

to be a reliable and good method for modeling the Rayleigh scatter line. The results 

are slightly better than for the reference method. The time needed before 

convergence is between 4 and 10 times longer for the shifting methods, but on the 

other hand, there are less parameters to estimate. While for the MILES algorithm to 

work optimally, the Rayleigh width and the bandwidth of missing values are both 

important to estimate correctly in order to get good decompositions, as was shown 

by Rinnan and Andersen (2004). For the shifting method, the only parameter to 

estimate is the width of the Rayleigh scatter. However, it is not as important to 

estimate this correctly as for the MILES method. There are less parameters to 

optimize and less important to estimate the parameters correctly for the shifting 

method rather than the MILES method. Therefore the total time consumption may 
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not be as large as for the optimal case. It thus seems like a better method than 

MILES if a more automatic decomposition is wanted. 

5 Conclusion 

Rotating the landscape does not work, while shifting the emission spectra 

according to the excitation spectra gives good estimates of the Rayleigh scatter 

peak. Generally, imposing non-negativity constraints on the modeling of the 

fluorophores gives a better model, but may cause some unstability. For modeling 

the Rayleigh scatter line, PARAFAC is a better method than by using PCA, 

although the difference is not large. 

 

This work has shown that modeling the Rayleigh scatter line as a separate 

component in the decomposition with the shifting method gives more reliable and 

better results than MILES – the best method found in the literature. The shifting 

method is, model to model, slower than MILES, but taking into account the 

optimization steps necessary for MILES, equal or even less time is consumed for 

the shifting method. The shifting method is therefore a better and more automatic 

model than the best method found in the literature. 
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Abstract

The use of fluorescence spectroscopy for recording multiple excitation and corresponding emission wavelengths and the subsequent

technique of analyzing the resulting fluorescence landscapes is a rather new method as opposed to the use of just a single excitation

wavelength. In a fluorescence landscape, several light-scatter effects are usually present, and often the part of the landscape containing

information on the chemical and/or physical characteristics of the sample is surrounded by two Rayleigh scatter lines. When such landscapes

are decomposed using parallel factor analysis (PARAFAC), the scatter effects may have detrimental effects on the resolved spectra, especially

if the peaks from the analytes lie close to or on the Rayleigh scatter lines. Normally, all values close to and outside the Rayleigh scatter lines

are set to missing values before decomposing the fluorescence landscapes by PARAFAC. In this paper, we introduce a novel pretreatment

method applicable for two-dimensional fluorescence landscapes, where instead of inserting only missing values a mixture of zeros and

missing values are inserted close to and outside the Rayleigh scatter lines. It is shown that, by the use of this technique, a physically and

chemically meaningful decomposition is obtained, and furthermore the modeling converges faster. Constraining the PARAFAC solution to

positive values in all modes gave results similar to those obtained for the unconstrained model, except that the loadings where less smooth

and the number of iterations before convergence was smaller.

D 2004 Elsevier B.V. All rights reserved.

Keywords: PARAFAC; Fluorescence; Rayleigh scatter; Missing values; Inserting zeros into the EEM

1. Introduction

The role of fluorescence spectroscopy in the analysis of

organic products has increased. Handling these data with

parallel factor analysis (PARAFAC) [1] is a very powerful

way of extracting information from an excitation–emission

matrix (EEM), i.e. several samples where the emission

intensity is depicted as a function of both excitation and

emission wavelengths. Often these data also include light

scattering effects, such as Rayleigh scatter. Since PARAFAC

only decomposes trilinear structures and the scatter is on the

diagonal (excitation = emission), this causes some mathe-

matical difficulties in the decomposition. It is therefore of

interest to remove this effect, or at least to reduce it as much

as possible. Several ways of handling these scattering

effects have been presented previously: weighting the scat-

ter areas down (or areas containing information up) [2,3],

inserting missing values [4] or plainly avoiding the part of

the matrix that includes the scatter. The last method,

however, can only be used in cases where the removed

wavelengths contain little or no information. For some

analysis, this is mostly the case, and thus there need not

be any concern about the scattering effect. The method of

inserting missing values, on the other hand, can lead to

unacceptable decomposition of the spectra. Some of these

models show photophysical impossible features, like a

component emitting light at a higher energy level than the

absorbed light.

In this paper, we describe a new way of handling these

problems. The method can be seen as a pretreatment, where
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zeros are inserted into the matrix. PARAFAC will then

converge faster and give better estimates of the spectra.

This method can be used on any type of fluorescence

landscapes, but it does not have a significant effect on the

resolved spectra unless one or more of the peaks lie close to

or on the Rayleigh scatter lines, as illustrated in the emission

spectra in Fig. 1.

Andersen and Bro [5] explained that inserting zeros into

the dataset instead of using missing values does not conform

to the trilinear structure of the EEM. While this is true in

general, this paper will show that in some practical situa-

tions, even though mathematically being untrue, inserting

zeros in part of the spectra can be very handful for the

decomposition of the underlying emission and excitation

spectra.

1.1. Theory

1.1.1. Terms used

The area between the Rayleigh scatter lines will in this

paper be called the ‘‘data area’’. The part of the landscape

where the emission wavelength is smaller than the excitation

wavelength will be termed below the first order Rayleigh

scatter. Above the second order Rayleigh scatter is where

the emission wavelength is larger than twice the excitation

wavelength.

1.1.2. Information in the data

There is rarely any additional chemical information

outside the data area. More specifically, the area below the

first order Rayleigh scatter does not give any physical

meaning, since a molecule cannot emit light of higher

energy than what it absorbed, and can thus be deleted.

However, removing this part is not a simple matter since it

makes up a triangular area in the matrix. The easiest way of

circumventing this problem would be to enlarge this area

into the smallest possible rectangle and remove this part. By

this, you might, however, remove some interesting infor-

mation and, therefore, it is not a good method for solving

the problem. A different, and much used method, is to insert

missing values below the first order Rayleigh scatter. To

ensure that all the Rayleigh scatter is removed, some extra

data points around the first order Rayleigh scatter are also

replaced with missing values. This often gives satisfying

results, but the amount of missing values can affect the

convergence of PARAFAC and the quality of the results. A

third way of handling this type of data is to either weight

down the part outside the data area, or weight up the data

area. This is a powerful method, but it is computationally

cumbersome, increasing the computational time before

convergence by a factor of 10, or even as high as 100

compared to non-weighted PARAFAC.

The area above the second order Rayleigh scatter, on the

other hand, is meaningful, but rarely holds any new chem-

ical information. The information in this part is mostly an

echo of the information in the data area. These values can be

treated in the same way as for the values below the first

order Rayleigh scatter, with the limitations described.

1.1.3. Constraints

PARAFAC modeling gives the least squares solution,

and this solution is often also in accordance with the

physical/chemical premises of the data. Sometimes, it

may, however, be valuable to enforce some constraints on

the PARAFAC solution, especially in situations where the

number of missing values is relatively high. In these

situations, small model-errors may strongly bias the esti-

mated spectra. Thus, the estimated spectra may give no or

little chemical meaning. By constraining the PARAFAC

model with sound constraints in agreement with a priori

knowledge about the system, such as non-negativity and

maybe unimodality, the resolved spectrum will more clearly

Fig. 1. Emission spectrum with a Rayleigh scatter line and a peak from a chemical component when excited at 350 nm (simulated data). (a) The problematic

case, (b) the insertion of zeros does not affect the solution very much.
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indicate the chemical attributes of the sample. Spectroscopic

data should be strictly positive, and hence the use of non-

negativity may be enforced upon the data to ensure this [6–

8]. Fluorescence spectra of a single fluorophore without

vibrational fine structure will only have one emission peak,

making it adequate to use unimodality constraints. Normal-

ly, this constraint is not valid in the excitation mode,

which—even in the absence of vibrational fine structure—

may contain several excitation peaks (electronic transitions).

In the case where only a limited range of excitation wave-

lengths is recorded, it may, however, be valid.

2. Experimental

2.1. Methods

A novel way of pretreating fluorescence spectra is to

insert zero-values in parts or in the whole of the landscape

outside the data area.

Four different pretreatment methods of the data are tested

in this paper (see Fig. 2):

1. Only missing values—conventional method

2. Zeros below first order and missing values above second

order—mixed method

3. Only zeros—all zeros method

4. Mostly zeros, but with a ribbon of missing values around

the Rayleigh scatter lines—ribbon method

As Andersen and Bro clearly stated, methods 2–4

above do not conform to the trilinear structure of the

EEM. However, a large amount of missing values may

cause problems in the decomposition. Especially if the

number of missing values at one emission/excitation

wavelength is very large (typically 80% or more), small

artifacts close to the missing values may lead to large

artifacts in the extracted spectra (see Fig. 4). So, even

though inserting zeros is not mathematically true, it can

help PARAFAC to decompose into a solution that is more

Fig. 2. Different strategies for inserting missing (white) and zeros (black) outside the data area of an excitation–emission matrix (data area: grey). (a) Only

missing values, (b) zeros outside the first order, missing outside the second order, (c) only zeros and (d) mostly zeros with a ribbon of missing values around the

Rayleigh scatter lines.
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liable than upon keeping all the missing values (method 1).

Inserting zeros may be seen as a weak form of non-

negativity constraint, since the spectra are guided towards

zero, but not set to strictly be non-negative. However,

since one fluorophore’s excitation and emission spectra

might have some overlap (which is the case of, e.g.,

tyrosine), inserting zeros will destroy this possibility of

overlap. Inserting zeros below the first order Rayleigh

indicates that there should not be any overlap in the

emission and excitation spectra.

2.1.1. Conventional method

This method has already been discussed and will there-

fore not be explained further.

2.1.2. Mixed method

Sometimes the areas with missing values especially

below the first order Rayleigh scatter can be quite large.

This can cause PARAFAC to convergence slower, as it

has to estimate a large number of missing values. It can

also give unstable or non-meaningful results. Therefore,

inserting zeros outside the scatter line can stabilize the

decomposition and make it converge faster. From a

photophysical point of view this method correctly reflects

the fact that no emission is expected below the first

order Rayleigh scatter, whereas emission tails may ex-

tend into the part above the second order Rayleigh

scatter, as is seen for some samples analyzed in the

present work.

2.1.3. All zeros method

Instead of missing values above the second order Ray-

leigh scatter, zeros are inserted. This may cause PARAFAC

to converge even faster and give better estimates of the

spectra.

2.1.4. Ribbon method

In some of the above-mentioned methods, where zeros

are inserted adjacent to the data area, PARAFAC may

produce chemically unsound solutions due to this intro-

duction of discontinuity in the data. One way to circum-

vent this problem is to insert a ribbon of missing values

around the Rayleigh scatter lines, which also permits

some overlap between one fluorophore’s emission and

excitation spectra. In this way, PARAFAC will be ‘‘free’’

to estimate a continuous shape of the peaks. Three

different widths of the ribbon are chosen: 1, 5 and 10

units. A unit equals the width of a single step in the

excitation or emission (wavelength) dimension, which is

defined by the experimental conditions. It should be

noted that, for the data analyzed in this paper, there is

no difference in a width of 5 and 10 units for dataset II

above the second order Rayleigh scatter, since the

dimensions of the excitation–emission matrix are trans-

gressed with the increase from 5 to 10 units. The ribbon

was applied in two ways: only around the first order

Rayleigh scatter (A) or both around the first and second

order Rayleigh scatter (B). Ribbon method ‘‘1A’’ thus

denotes a ribbon width of 1 unit in conjunction with

using the ribbon only around the first order Rayleigh

line.

2.2. Quality of a model

The pretreated dataset is decomposed into its pure

chemical components by the use of PARAFAC (with or

without constraints). This results in a number of factors

for every model, and it is of vital importance to evaluate

which models are adequate. In order to evaluate this, five

different criteria were set (they are set in the order of

importance):

– No emission spectrum of a component can have its peak

placed at lower wavelength than the corresponding

excitation spectrum peak

– Only small negative values in the resolved spectra are

allowed

– The explained variance of the model should be high

(above 97%)

– All factors should be smooth and not only describe noise

– Finally, the spectra were evaluated by visual inspection to

make sure they were reasonable

All analyses were performed in Matlab 6.1 and 6.5 for

Windows (Mathworks, Natick, MA, USA), with algorithms

taken from the N-way toolbox version 2.10 [9], available at

www.models.kvl.dk. The algorithms for the insertion of

zeros were written in-house.

2.3. The data

2.3.1. Dataset I (wood fibers)

Thermo mechanical pulp (wood fibers) of spruce (P.

abies) was supplied by Sunds Defibrator, Sundsvall, Swe-

den. The pulp was dried at ambient temperature and

humidity before use. The pulp is autofluorescent due to its

content of the fluorescent plant polymer lignin. Samples of

different emission intensities were produced by the adsorp-

tion of (non-emissive) p-benzoquinone into the fiber cell

walls. The control sample had no p-benzoquinone adsorbed,

whereas three less emissive samples had three different

quantities of the quinone adsorbed, the larger the adsorbed

amount the smaller the emission. The experimental setup is

described in more details elsewhere [10].

The samples were pressed into disks of 1 mm thickness

by a Perkin-Elmer hydraulic press (at 5 bar). The disks were

used for fluorescence measurements by a SPEX 1680 0.22-

m double monochromator fluorescence spectrometer in

front-face setup. The samples were measured at 35 excita-

tion wavelengths (259–599 nm), and 30 emission wave-

lengths (355–645 nm), both with a step of 10 nm. For the

control sample, as well as for the quinone-containing
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samples, five independent excitation–emission intensity

matrices were produced. However, for the quinone-contain-

ing sample with the highest content of quinone, only 3 of

the 5 matrices have been included because the remaining 2

matrices were highly deviating from the other 18 matrices.

The cause of this deviation was not further investigated and,

because the aim of this study is to show the effects of

inserting zeros into the EEM and not how to detect outliers,

no further explanation as to why these were outliers will be

given. Fluorescence data for sample number 1 of this dataset

is shown in Fig. 3a and b.

2.3.2. Dataset II (dry-cured hams)

Lean raw pork from fresh hams was obtained from the

local market, whereas Parma hams were from a processing

plant in Parma, Italy. Parma ham ages ranges from salted (3

months) to matured (11 and 12 months) and further to aged

(15 and 18 months). Samples were thermostated in a water

bath at 25 jC before measuring. A total of 67 meat samples

were submitted to duplicate measurements of surface auto-

fluorescence spectroscopy.

The measurements were done using a BioView instru-

ment (Delta Light and Optics, Lyngby, Denmark)

equipped with a fiber optics measuring probe giving an

open-end 180j excitation–emission geometry. The instru-

ment used a pulsed xenon lamp for excitation, and a

surface area of f 6 mm in diameter was sampled in each

measurement. The samples were measured at 15 excita-

tion wavelengths (270–550 nm), and 15 emission wave-

lengths (310–590 nm), both with a step of 20 nm. The

emission wavelengths were shifted by 40 nm from each

excitation wavelength applied. Before analysis of the data,

the excitation wavelengths above 470 nm, and the emis-

sion wavelengths below 350 nm were removed. Thus, the

dimension of the dataset was reduced from 67� 15� 15

to 67� 11�13 (samples� excitation� emission). The

areas deleted only contain very few measurement values

and were thus removed to stabilize the model. The data

and their chemical interpretation in relation to process

control is described in detail elsewhere [11]. Fluorescence

data for sample number 50 of this dataset is shown in

Fig. 3c and d.

Fig. 3. Fluorescence landscape and data area for sample no. 1 from dataset I (a and b) and from sample no. 50 from dataset II (c and d).
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2.4. Data analysis

Thirty-six PARAFAC models were calculated for each

dataset, i.e. all combinations of the nine methods for

insertion of zeros into the data matrices (of which six

are the different ribbon methods), and four different ways

of constraining the PARAFAC model: no constraints, non-

negativity constraint on the two spectroscopic modes, non-

negativity constraint on all three modes and unimodality

constraint on the two spectroscopic modes. Apart for the

constraints, PARAFAC was carried out using default input

parameters. For dataset I, the number of components in

the models was set to three based on an evaluation of

model stability and the shape of the loadings. For dataset

II, five component models were calculated in accordance

with a previous publication on the dataset [11]. Normally,

there is little sense in assessing model quality without

discussing the number of components to include in the

model. However, in the present study, focus is on the

effect of inserting zeros into the data matrices, and thus a

fixed number of components for each dataset have been

chosen.

3. Results and discussion

Fig. 4 shows the scores and loadings for five different

PARAFAC models obtained for dataset I. All models were

calculated without constraints. The sample scores are very

similar, both within each model and within the models,

indicating that the fluorophores in the wood fiber samples

co-vary. Furthermore, the sample score follow the intensity

of the treatment (quinone-adsorption), i.e. in reality the

dataset only contains four uniquely different sample types.

These two characteristics are bound to make the PARAFAC

model less stable for dataset I, and a Tucker3 model with

dimensions [1 3 3] might have been more appropriate.

However, a PARAFAC split-half analysis of dataset I gave

the same sets of loadings for the two subsets, and thus it

seems reliable to use PARAFAC with three components. In

Fig. 4, the excitation and emission loadings are very

different between models, even though the explained vari-

ance does not differ with more than 1–2%. From a physical

point of view, the model for the conventional method is not

acceptable, as the emission peak appears at a shorter

wavelength than the excitation peak for at least one of the

Fig. 4. Scores and loadings for five different unconstrained PARAFAC models for dataset I. The text to the left gives for each set of loadings the method used

for insertion of zero values (line 1), the percent explained variance (line 2) and the number of iterations necessary before convergence was reached (line 3).
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components, and more than half of at least one loading is

negative. Furthermore, the emission loadings are not unim-

odal, as they should be if each component represented a

single fluorophore. The model for the all zeros method, on

the other hand, has three perfectly unimodal loadings with a

reasonable spacing between each excitation peak and its

corresponding emission peak. Another nice feature of the

model for the all zeros method is that it converged in only

48 iterations, while the model for the conventional method

took 14,650 iterations. The model for the mixed method

gave emission loadings more or less identical to the model

for the all zeros method, except that one of the excitation

loadings has an extra peak below 300 nm. The models for

the ribbon method were all rather similar (only some results

shown), independent of whether a narrow or a broad ribbon

of missing values was inserted and independent of whether

ribbons of missing values were inserted both above and

below the data area or only below. In Fig. 4, only two of the

models for the ribbon method are included, namely methods

1A and 10B. For both models, the excitation and emission

loadings are reasonably unimodal, but all have small neg-

ative values at the base of the main peaks. Using the criteria

for an acceptable model set up in Section 1, the model for

the conventional method is unacceptable. The other four

models, however, are acceptable, with the model for the all

zero method being the best from a physical point of view,

albeit it explains slightly less of the variance compared to

the other models.

Fig. 5 shows the model of the fluorescence landscape for

sample no. 1 of dataset I for four different combinations of

PARAFAC modeling constraints and zero insertion meth-

ods. Fig. 5a confirms what is already indicated in Fig. 4,

namely that the unconstrained model for the conventional

method has a spurious peak outside the data area. Fig. 5a

shows that the spurious peak is an order of magnitude larger

than the part modeling the data area. The non-negativity

constrained model for the all zeros method (Fig. 5b) also

shows a spurious peak outside the data area, but in contrast

to what is the case for the model in Fig. 5a, the modeling of

the data area is acceptable according to the criteria set up in

the introduction. Fig. 5c and d illustrates the difference

between ‘‘constraining’’ the data, i.e. the input of PAR-

Fig. 5. Selected PARAFAC models of the fluorescence landscape of sample no. 1 from dataset I: (a) conventional method, unconstrained, (b) all zeros method,

non-negativity constraint on all three modes, (c) ribbon (1A) method, unconstrained and (d) ribbon (10B) method, non-negativity constraint on all three modes.
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AFAC, and constraining PARAFAC directly, for data sub-

jected to pretreatment according to the ribbon method. In

Fig. 5c, the missing values were ‘‘constrained’’ to zero,

except for one row below the first order Rayleigh scatter,

while PARAFAC was unconstrained. In Fig. 5d, zero values

were only inserted far from the actual data area (10

measurement points from it at both sides), while PARAFAC

was constrained to non-negativity in all three modes. The

modeling of the core of the data area is similar. The

difference is that the peaks of the model in Fig. 5c continue

a bit below zero at the base, thus providing continuous,

smooth loadings, while the peaks of the model in Fig. 5d are

abruptly cut off at zero because of the non-negativity

constraint. In turn, this may lead to spurious peaks outside

the data area, as a form of compensation. Replacing missing

values outside the data area with zeros, while keeping

PARAFAC unconstrained, thus appears to be a more gentle

way of guiding the model towards non-negativity.

Figs. 6 and 7 are similar to Figs. 4 and 5, but here dataset

II is under investigation. A big difference between the two

datasets is that the number of wavelengths in the excitation

and emission modes for dataset II is only half the number of

wavelengths included in dataset I. The resolved spectra for

the components of dataset II therefore appear less smooth

than those of dataset I. From Fig. 6, it can clearly be seen

that the conventional method gives excitation and emission

spectra that are unacceptable from a photochemical point of

view, as more than one emission peak appears at a shorter

wavelength than its corresponding excitation peak. The

other four results are all very similar, giving one component

with negative score values, but all the emission spectra are

close to unimodal, and the excitation spectra have only

small negative values. Both excitation and emission spectra

are smooth. The three last methods result in identical

decompositions, while the second from the top is very

similar to these. From an analytical point of view, it can

be argued that only four factors should be included in these

models, since two of the spectra in both the excitation and

the emission mode behave similarly. However, since five is

the estimated number of components [11] for this dataset, it

has also been used here. None of the models in Fig. 6 are

good since one of the score factors is negative, but for all the

four last models, the two other modes seem reasonable, and

thus these models will be evaluated as acceptable. It should

Fig. 6. Scores and loadings for five different unconstrained PARAFAC models for dataset II. The text to the left gives for each set of loadings the method used

for insertion of zero values (line 1), the percent explained variance (line 2) and the number of iterations necessary before convergence was reached (line 3).
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also be noted that modeling using the conventional method

(missing values outside the data area) with three or four

components also resulted in models where two components

showed ‘‘complementary’’ or ‘‘mirrored’’ sample scores, i.e.

each sample was modeled to ‘‘contain’’ either one or the

other (i.e. to have a high score value for one and a low score

value for the other). This is also seen in all five-factor

models in Fig. 6, with one of the two ‘‘complementary’’

scores vectors being negative for all models, and thus this

pattern appears to be unaffected by the replacement of

missing values with zeros. We have also observed this

pattern for PARAFAC modeling of fluorescence data from

beet sugar processing juices (not published), and speculate

that it may occur whenever a ‘‘discrete’’ PARAFAC model

implying a few well-defined fluorophores is forced upon

data of natural/biological origin, which in reality contains a

continuum of only slightly different fluorophores, maybe

because the same fluorescent groups are part of many

different macromolecules. In other words, the negative

scores vector is maybe a sign that PARAFAC modeling of

dataset II is a simplification of a complex reality. Neverthe-

less, it may lead to something useful.

Fig. 7 shows that, for dataset II, the conventional method

gives spurious peaks below the first order Rayleigh scatter

line, where there should not be any peaks. The three other

methods are all similar, showing all the same peaks. There

are only minor differences in these predicted spectra, with

the Ribbon (1A) method giving some small negative values

in the spectra, and a small peak in the area below the first

order Rayleigh scatter line.

Table 1 gives a condensed overview of the quality of the

calculated models, evaluated from plots like those in Figs.

4–7. Each model was categorized as either ‘‘acceptable’’ or

‘‘unacceptable’’ based on the criteria mentioned in the

introduction. No acceptable models where achieved at all

for the datasets with missing values at all positions outside

the Rayleigh scatter lines (the conventional method). For the

pretreatments of the datasets with zeros inserted the PAR-

Fig. 7. Selected PARAFAC models of the fluorescence landscape of sample no. 50 from dataset II: (a) conventional method, unconstrained, (b) all zeros

method, non-negativity constraint on all three modes, (c) ribbon (1A) method, unconstrained and (d) ribbon (10B) method, non-negativity constraint on all

three modes.
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AFAC constraints rather than the amount/placement of the

zeros where decisive for the quality of the models. Uncon-

strained models and models with a non-negativity constraint

on all three modes stand out as acceptable in contrast to

models with a non-negativity or unimodality constraint on

the spectroscopic modes only. The unconstrained models for

all except the conventional method generally gave smoother

loadings than the non-negativity constrained models for

these methods, and fewer of them resulted in spurious peaks.

The number of iterations before the model converged was

only about 1/10 for the non-negativity constrained model

relative to the corresponding unconstrained model—but the

ratio in modeling time was more equal, as each iteration took

more time for a non-negativity constrained modeling.

4. Conclusion

Inserting zeros instead of missing values in parts of the

data area helps PARAFAC to converge faster, and leads to

solutions that are physically and chemically meaningful.

Insertion of zeros into the data matrices was also combined

with constraining the PARAFAC model. Constraining only

the spectroscopic modes had a detrimental effect on the

model quality, while a non-negativity constraint on all three

modes resulted in models that were essentially identical to

the corresponding unconstrained models, but with less

smooth loadings.

Future work lies in optimization of the method of

inserting zeros. In this respect, several topics would be

worth examining, such as evaluation of what kind of

bandwidth of missing values to use for the ribbon method,

and other, new and better methods of selecting the positions

to insert zero values at. An investigation of different

methods to initialize the PARAFAC model may also be

appropriate.
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Table 1

The results on the two datasets studied (I and II)

PARAFAC

constraints

Conv Mix Zeros Ribbon

1 5 10

A B A B A B

I II I II I II I II I II I II I II I II I II

None x x x x x x x x x x x x x x x

Non-negativity,

spectroscopic

modes

Non-negativity,

all modes

x x x x x x x x x x x x x x x x

Unimodality,

spectroscopic

modes

‘x’ means that the model was acceptable according to the criteria described

in Section 1.1. An ‘A’ in the ribbon method means that the ribbon was

inserted outside the first order Rayleigh scatter only and ‘B’ the ribbon was

inserted on both sides of the data area.
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Low-field 1H nuclear magnetic resonance (NMR) transverse relaxation was used to measure water mobility and distribution of water
in fresh cod fillets. The NMR relaxations were analysed with the so-called SLICING method giving uni-exponential profiles from
which the transverse relaxation time (T2-values) and the relative sizes of the water populations were calculated. Two water
populations with the T2-values of 50 and 94 ms were obtained. The shortest relaxation time was primarily found near the head, and
water with the longest relaxation time was primarily found near the tail. This variation can be explained by the smaller muscle cells
and muscle fibers in the tail, which may influence the distributions of water into the different pools. The amount of one of the water
populations was correlated to the overall water content with a correlation coefficient of �0.94.

r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: water distribution; water populations; NMR; SLICING

Introduction

Water is one of the most important components for the
quality of food matrices including fish muscle. Water
influences quality attributes such as appearance, texture
and storage stability. The water content of fish muscles
can be separated into different populations according to
the mobility and how tight the water molecules are
bound to the muscle structure. It is not only the total
amount of water that is important for the overall quality
of the product, but also its state and mobility (Ruan and
Chen, 1998).
The heterogeneity within biological materials has
implications on the results of most types of analyses
made on that material. Therefore, it is important to
know about this variation before analysing muscle-
based food. Only very few studies have tried to
characterize the heterogeneous distribution of the water
content in lean gadoid fish species. Dambergs (1963)
showed an increase in the overall water content of cod
from the head-end to the tail-end. There was an inverse
relationship between water and protein content within
the fish muscle basically because these are the only
significant components in the muscle.

This paper describes the distribution of water within
cod fillets. The variation in water content and the
variation in the populations of water within cod
fillets will be investigated by measuring the water
content physically and by measuring NMR relaxations.
Low-field 1H nuclear magnetic resonance (NMR)
measures the mobility of protons and is therefore a
direct technique for investigating both the total quantity
of water and the state of water within the fish muscle.
Low-field 1H NMR has been used to measure and
describe changes in properties of fish muscle occurring
during frozen storage and processing (Lambelet et al.,
1995; Steen and Lambelet, 1997) and for investigat-
ing quality attributes of pork meat (Larsson and
Tornberg, 1988; Brøndum et al., 2000; Bertram et al.,
2001).
The use of a fast bench-top NMR hardware makes it
possible and easy to acquire entire relaxation curves. In
this paper, these will be analysed with a multivariate
techniqueFSLICINGFenabling interpretation of the
underlying phenomena of the measurements. SLICING
is a chemometric tool that resolves multivariate data,
where the signals measured are an additive sum of
exponentials. SLICING has been used for describing
NMR relaxations of frozen and chill stored cod fillets
(Jensen et al., 2002), and minced and processed meat
(Pedersen et al., 2001).

*To whom correspondence should be addressed.
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Materials and Methods

Materials
Five cod were caught in Øresund, Denmark, in August
2000. They were immediately brought to the laboratory
where they were stored on ice for 5–7 days such that all
fish were in a post-rigor state when they were measured.
The five fish were coded A–E and were weighed before
filleting. The weights were 1.0, 0.7, 0.6, 1.3 and 1.5 kg for
the fish, A, B, C, D and E, respectively. Only one fillet
from each cod was used for the analyses, since it was
supposed that there was no difference between the two
sides of the fish.

NMR measurements
The cod fillets were divided in squares of 1.5 cm2

retaining information on the anatomical position of the
square. The samples were taken from each of the squares
such that one sample is measured for every 1.5 cm both
in the horizontal and the vertical direction of the fillet.
The number of samples measured was 59, 37, 38, 58 and
62 for the five fish, respectively, giving 254 samples in
total. Each of the samples were weighted and prepared
for the measurements. Blood, bone and red muscle,
though, were manually excluded from the samples.
The measurements were performed on aMaran Benchtop
Pulsed NMR analyser (Resonance Instruments, Witney,
U.K.) operating at 23.2MHz and equipped with an
18mm variable temperature probe head. The receiver was
adjusted to 3% and the receiver delay was set to 6 s.
Previous experiments showed that a receiver delay of 6 s
was enough for recovering of the magnet. Transverse
relaxations were measured using the Carr–Purcell–
Meiboom–Gill (CPMG) sequence (Carr and Purcell,
1954; Meiboom and Gill, 1958). For each measurement
eight scans were performed with 1024 echoes and Tau at

500ms. Tau is the 90–1801 interpulse spacing in the
CPMG sequence. Only even echoes were recorded, which
gives 512 echoes measured for each sample.
All measurements were performed at 4 1C. Before
measuring, the samples were equilibrated for 30min at
the chosen temperature. The fish were introduced into
the NMR probe by placing samples of 2–4 g into glass
tubes that matched the inner diameter of the 18mm
NMR sample tubes. The sample preparation was
performed as carefully as possible in order not to alter
the muscle structure by the manual treatment.

Water content
The water content was determined on exactly the same
samples as were used for the NMR measurements, after
the NMR relaxations were measured. The fish samples
were kept in the small glass tubes and dried overnight at
110 1C. They were weighed before and after drying.

Data analysis
The measurements of six of the squares taken from the
fillet were considered as outliers. Three of these were
removed because of extreme water content, due to
measurement errors. The three remaining outliers were
removed due to high modeling residuals in X and Y,
caused by errors in the NMR-measurements. The decay
of mobile protons is measured by 1H low-field NMR
relaxations. In cod, the protons that can be measured
with low-field NMR will almost exclusively be found in
the water molecules. Thus, the amplitude of the signal will
depend on the amount of water in the sample and thus
the weight of the sample since all the samples contain
approximately the same concentration of water. In order
to properly handle the fact that the measured samples are
of different weight, the measurements are normalized
using maximum normalization. By this method, the

Fig. 1 Normalized CMPG curves. Each line represents the relaxation curve of one sample. Only some of the samples are shown
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maximum of each relaxation curve is set to one and all
other elements in the profile scaled accordingly.

Theory of SLICING. The normalized CMPG relaxa-
tion curves, illustrated in Fig. 1, are sums of exponen-
tially decaying curves.

AðtÞ ¼
XN

n¼1

Mne
�t=T2;n Eqn ½1�

Where A(t) is the NMR signal, N is the number of
exponential components, and Mn is the amplitude of the
nth exponential and thus a measure of the relative
concentration. T2,n is the corresponding spin–spin relaxa-
tion time constant and t is the acquisition time. Due to
the normalization, the sum of the amplitudes (Mn) is one.
Equation [1] represents the ideal case of the NMR signal.
In real samples there will always be some noise, and a
noise factor should then be included in the equation.
SLICING is a method based on the principles of direct
exponential curve resolution algorithm (DECRA)
(Windig and Antalek, 1997). The idea is to split the
spectrum into two (or more) overlapping parts (slabs),
where the size of the overlap is determined by the lag
term generating a three-dimensional array. Most of the
relaxation curve is present in both slabs. This operation
is illustrated in Fig. 2a. The dimensionality of the matrix
will then increase from I (samles)�L (measurement
points) to I� (L-maximum lag)� number of slabs (K).
Below, this will simply be shortened to I� J�K.
The three-dimensional array (X) has the size I� J�K
and contains the elements xijk, where the first index (i)
refers to the samples, the second ( j) refers to the time
and the third (k) refers to the slab number. It can be
shown that the rearranged three-way data follow a so-
called PARAFAC model (Eqn [2]) (Harshmann, 1970;
Bro, 1997) when the original data is of the form
described by Eqn [1]

xijk ¼
XF

f¼1

aif bjf ckf þ eijk

ði ¼ 1; . . . ; I ; j ¼ 1; . . . ; J; k ¼ 1; . . . ;KÞ Eqn ½2�

The element xijk is the original value in the position (i, j,
k) of the data cube X. aKf is the object score (magnitude)
for factor f (first mode), bKf is the estimated decay curve
for the pure component f (second mode), and loading

cKf gives the ratio between the different slabs (third
mode). The term eijk contains residual variation not
captured by the model. Another way of presenting the
PARAFAC model is shown in Fig. 2b. The X-cube
represents the sliced data array. In the figure, the array is
decomposed into two sets of factors, where each of these
sets is called a triad. The factors (triads) are found
simultaneously via an alternating least-squares algo-
rithm (Bro, 1997) and are represented by a set of a–c.
The E-cube to the right represents the noise that is left
unmodeled. Noise is here defined as the variation in the
data that contains no chemical information. Ideally, the
estimated decay curves (b) are uni-exponential and by
fitting one exponential to these, the corresponding T2-
value can be found.
If the residuals show random behavior and no
systematic trend, it can be presumed that only noise is
left unexplained and hence the N estimated profiles
explain the variation in the data up to the noise.
Furthermore, if the model is adequate each second mode
loading should be exponential because the PARAFAC
model can be shown to uniquely recover the underlying
model when correctly specified (Windig and Antalek,
1997). If too many components are extracted, the curves
will reflect this, one or more being nonexponential. The
appearance of the spectral loadings, bootstrapping
(Wehrens et al., 2000) by the use of split-halves
(Harshmann and de Sarbo, 1994) and the distribution
of the residuals will be used to estimate the right number
of components.

Results and Discussion

According to Love (1970) there are no systematic
differences between the chemical composition of the left
and the right fillets of cod muscles. Thus, analyses
performed on one of the fillets (left or right side) are
used in this study to determine the general distribution
of water within a fish.

Distribution of the water content
Figure 3 visualizes the distribution of the water content
over the entire fillet. The figure shows the water content

Fig. 2 (a) The SLICING method yielding three-way data from two-way data. (b) A visualization of the PARAFAC model. (b)
is made on the three-way data from (a)
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as a function of the distance from the head. Generally,
there is an increase in the water content going from the
head to the tail. It seems that the smaller fish A–C have
a similar water content distribution. Going from the
head to the tail, the water content is getting a little lower
towards the middle of the fish. Beyond that the water
content increases with the highest content found at the
tail-end of the fish. Fish D and E do not have the same
distribution. The water content increases constantly
from the head towards the tail. However, at some point

the water content stops increasing, and in the last points
it even decreases, especially for fish E. It is probable that
this is reflecting a fundamental difference between
smaller and bigger fish, but this cannot be investigated
further with the present data.
The results correspond to the results obtained by
Dambergs (1963). There, cod fillets were divided in
three parts (head, middle/belly and tail) and showed an
increase in water content going from the head to the tail.
The results obtained by Dambergs (1963) were found as

Fig. 3 Distribution of the water content within the fillets of the five fish. The water content is denoted in g water per g fish
muscle and is shown as a function of the distance from the head (position 0). Differences across the fillet are shown with different
marks: (*) is the sample closest to the belly, (*) is 1.5 cm from the belly, (~) is 3 cm from belly, (&) is 4.5 cm from belly, (}) is
6 cm from belly and (+) is 7.5 cm from belly
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an average over the whole year and it is likely that the
same variation would have been obtained in this study if
more experiments were performed at other seasons. The
opposite variation in water content was found in catfish
and herring (Brandes and Dietrich, 1953; Jafri, 1973),
which both have a higher fat content than cod.
Cell sizes and muscle fibers are smaller towards the tail
compared with the rest of the fillet. This may have an
influence on the distribution of the water content within
the fillet corresponding to the results shown in the
figure. Furthermore, the lower water content around
10 cm from the head seen for fish A–C can be explained
by the fact that the largest muscle cells and muscle fibers
are found around myotome number 12 (Love, 1988). An
effect of sampling may explain some of the unexpected
variations such as the decrease in water content in the
outermost end of the tail. In some cases especially in the
tail where very small samples are obtained, it is possible
that a little part of red muscle is included in the samples
because of the difficulty in separating red and white
muscle in those small pieces of muscle flesh. Since red
muscle has lower water content (Mannan et al., 1961),
it can explain why the water content decreases at the
tail end.

SLICING modeling
The two-dimensional data were sliced using a lag of 1,
and with two slabs, increasing the dimensionality of the
matrix from 248� 512 to 248� 511� 2.

Choosing the optimal number of factors. Figure 4

illustrates the results obtained from slicing models with
two or three factors. From the loading plot (Fig. 4a) it is
clear that the two first factors are both exponential,
indicating that at least two populations of water are
present. It is imperative that the right number of
components are chosen in the model, because all
components change with the total number of compo-
nents. For example, the faster relaxing factor has a T2-
value of 49.8 and 49.5ms for the two- and three-factor
models, respectively. The second T2-values are 104.3 and
81.5ms. The third factor for the three-factor model is
probably not exponential, since it does not seem to
decrease towards zero, but rather to a limit of
approximately 0.03. There might be two reasons for
this behavior: either the model is overfitted, or there is
some kind of offset in the data. The offset may be due to
the way data are collected in that all data were
constrained to have positive values (H.T. Pedersen,

Fig. 4 (a) Second mode loadings (black) and exponential fit (gray) after three components. (b) Squared residuals summed over
relaxation time from PARAFAC models with two (black) and three (gray) factors. (c) The B-loadings from three-factor models
on the raw data (black) and the corrected data (gray). (d) The A-scores for the third factor. Black is the model on the raw data
and the gray is the model on the corrected data
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pers. commun.). Figure 4b shows the residuals along the
time axis for the two- and three-factor models. From
this figure, it is clear that some information is gained by
going from two to three factors. Thus, application of a
three-factor model could be an advantage. Furthermore,
when increasing the model complexity from two to three
factors, the residuals become less structural as can be
seen in Fig. 4b.

Corrections of the data. The possible presence of a
minor third factor could be caused by an offset effect
(Fig. 4a), as noted above. In order to investigate if the
model could be improved by correcting for this artifact,
the mean of the last 50 measuring points are subtracted
from the whole spectra. The correction is done sample
wise and is based on the assumption that the decays are
measured sufficiently long so that the signal should
effectively be zero unless there are offsets. As can be seen
from Fig. 4c, the second mode loadings for the third
factor has become exponential by the correction
indicating the presence of a third minor factor.
However, upon studying the scores (Fig. 4d) of the
third factor, it becomes clear that some of these are
negative, which gives no chemical meaning. Thus, only
the two main factors give strictly positive score values.

Bootstrapping. To support the conclusion of a two-
factor model, and further investigate the effect of
correcting the data, bootstrapping (Wehrens et al.,
2000) is performed. Two- and three-factor SLICING
models are made on 100 split-halves (Harshmann and de
Sarbo, 1994) of the dataset with raw data and of the
corrected data, giving rise to 4� 200 models in total.
For comparing the results from the bootstrapping, uni-
exponential fits to the second mode loadings are made.
Mean and standard errors of the uni-exponential fits are
calculated and are given in Table 1. Since the sample sets
contain the same water populations, the standard error
of the T2-values should be as small as possible. Large
standard errors indicate an unstable model, hence too
many factors. By investigating the results in Table 1, it
becomes clear that for both datasets the standard error
of the third factor is very large. Furthermore, it was
found that only 45% of the three-factor models made
with corrected data have three exponential second mode
loadings. The correction seems appropriate for the two-
factor model since the standard error decreases going
from the noncorrected to the corrected data. The
bootstrapping thus supports the conclusion that the

two-factor model is the optimal, but that the corrected
data should be used.
For the two-factor model made on all data corrected for
the offset, the fast relaxing factor has a T2-value of
approximately 50ms and the slower relaxing factor has
a T2-value of 94ms. Thus, one of the water populations
is relatively tightly bound to the muscle structure and
the other is less tightly bound.
Lambelet et al. (1995) obtained T2-values of 1 and 65ms
by exponential fitting. The low T2-value was only
obtained when tau was as low as 12 ms. In the present
experiment a tau of 500 ms was used and it therefore
seems reasonable that a component with a T2-value of
1ms could not be detected. Modeling only one
component gave a T2-value of approximately 66ms,
which agrees with the slower relaxing component
obtained by Lambelet et al. (1995). It seems that
SLICING gives a possibility for identifying two water
populations with great similarities, which could not be
identified with the bi-exponential fitting as was used
by Lambelet et al. (1995). Another study made on
frozen–thawed cod gave three exponential components
(Jepsen et al., 1999). These had T2-values of 34, 62 and
526ms. Four populations of water with T2-values of 37,
56, 126 and 361ms were obtained by the SLICING
technique applied on NMR-relaxations of minced
frozen–thawed cod (Jensen et al., 2002). The two
components with the T2-values of 56 and 126 could
correspond to the water populations obtained in the
present study. Thus, it seems as two more water
populations are developed during processing such as
mincing or freezing. Furthermore, the variation in T2-
values between this study and other studies may be
due to variations in the sample preparation, season,
places of catch, etc. Differences in instrumentation,
parameters used and the ways of analysing the data may
also cause a variation in the experimentally determined
T2-values.
For whole, minced and homogenized pork three
exponential components were obtained by distributed
exponential fitting (Fjelkner-Modig and Tornberg, 1986;
Larsson et al., 1988; Bertram et al., 2001). As
mentioned, only two components were obtained
in the present study. It might be that fresh fish
muscle in contrast to pig muscle contains only two
populations of water. Furthermore, the variation and/or
the content of the third water population may be so
small that it cannot be described by the method used
here.

Table 1 Mean relaxation times (in ms) and the standard error of second mode loadings obtained from two and
three factor bootstrapping on 100 split-half models performed on both noncorrected and corrected data.

Uncorrected data Corrected data

Two factors Three factors Two factors Three factors

Mean s.e. Mean s.e. Mean s.e. Mean s.e.

T2,1 49.8 0.6 49.5 0.6 49.6 0.4 46.5 1.8
T2,2 104.3 2.8 81.5 1.7 93.7 1.2 82.6 5.7
T2,3 467.7 100.8 203.1 73.6

The number of samples for these tests is 248.
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Interpretation of the SLICING model

Distribution of the different types of water between the
cod fillets. The score values (first mode) describe how
much each water population contributes to the NMR
relaxation phenomena and may thus be used as a
measure of the relative concentrations of the popula-
tions of water. Figure 5 shows a score plot of factor one
(relating to T2,1) vs. factor two (relating to T2,2) of all
the fish. The plot is coded according to each of the fish
(A–E). The ellipses are made for helping in the
interpretation of the plot. The ellipses are centered in
the mean of each fish along each of the two axes. The
range in each direction is the standard deviation for that
fish’s scores in the specific direction of variation.
By comparing Fig. 5 with Fig. 3, it might seem odd that
fish B and D look so similar in Fig. 5. However, by
investigating Fig. 3 further, and taking into account that
the NMR-signal is mostly due to the water in the fish, it
comes as no surprise that fish B and D overlap in Fig. 5.
The range of the water content for fish B is higher than
for fish D, but the range of the water content of fish D is
inside the range of fish B. Therefore, it is expected that
the ellipse for fish D should be inside the ellipse for fish
B, which also is the case in Fig. 5.
From Fig. 5, it is seen that the samples from the five fish
are grouped together illustrating some variation among
the fish. The grouping shown in Fig. 5 can be related to
the average water content of the five fish. Fish E has the
highest water content of 82.02/100 g, fish B and D have
the next highest of 81.53/100 g and 81.20/100 g, respec-
tively, whereas fish A and C have the lowest water
content of 80.74/100 g and 80.53/100 g, respectively.
There is an inverse relation between these two types of

water. The reason for this is that by normalizing the
spectra to one, the scores will approximately add up to a
constant value. Thus, when there are only two factors in
the model and the noise level of the raw data is low, the
score values will be highly correlated.

Comparing heterogeneity within the fish. Figure 6

illustrates the scores of the first factor vs. the relative
position of each sample. The scores are obtained from
the two-factor SLICING model made on all fish with
correction for offset. The results will be more or less the
same if the figures are made using the results obtained
from PARAFAC models made on each fish (figure not
shown). Further, if the scores from the second factor
were used instead of the scores from the first, the same
results would be obtained. This, however, is of no
surprise since the two factors are highly correlated.
There is a clear relation between the scores obtained
from the PARAFAC model and the position of the
sample. The black line in each figure is the ‘best line’
fitted to minimize the distance from every sample to the
line (corresponding to the first component in a PCA).
The correlation coefficients illustrate that fish A, C and
E are fairly homogenous, whereas the largest correlation
between the score values and the horizontal position is
found for fish B (Table 2 and Fig. 6). However, the same
results are not obtained by looking at the range of the
values, where the greatest variation is found for fish E.
The low correlation and large range obtained for fish E
seems to be due to a curvature in the score-values, and is
consistent with what is seen in Fig. 3. Fish A has two
samples close to the head, which have fairly low score-
values compared to the others. By removing these two
samples, the correlation coefficient increases to �0.66. It

Fig. 5 Scatter plot of the scores of factor 1 vs. the scores of factor 2 obtained from a two-factor PARAFAC model on the raw
data. Samples are coded according to fish: fish A (*), fish B (*), fish C (~), fish D (&) and fish E (})
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becomes clear that fish A is homogenous up to the tail-
end where the score values start to drop. Fish C seems to
be homogenous in the middle of the fish, while to both

sides of the middle there is a steady decrease of the score
values. The reason why fish A and C in some part of the
fillet are more homogenous than the other fish is not
known.
There are some samples near the tail of fish D, which
clearly do not follow the trend of the other samples. This
might be due to some red muscle being included in the
samples, and as mentioned earlier, red muscle contains
less water than white muscle and will thus give a
different signal. If these few samples at the tail-end of
the fish are removed, the results for fish D improve,

Fig. 6 Plot of the horizontal position of each sample vs. the A-scores of the first factor obtained from a two-factor PARAFAC
model on the raw data

Table 2 Correlation between the first score and the
horizontal position (r), and the range in the first score.
Both are done for each fish separately

A B C D E

No. of samples 59 36 34 57 62
r �0.57 �0.85 �0.69 �0.74 �0.75
Range 1.20 1.05 0.88 1.06 1.09
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giving a correlation coefficient of �0.88. Thereby, the
relation between the score values and the sample
position increases resulting in a larger correlation
coefficient than is obtained for fish B.
The negative correlation between the score values of the
two factors means that samples with a high content of
the water population described by factor one will have a
low content of the water population described by factor
two. Thus, samples from the head part contain more of
the fast relaxing component, whereas samples from the
tail part contain more of the slow relaxing component.
This is consistent with theory. The muscle fibers are
smaller towards the tail where the cell sizes also get
smaller (Love, 1970). It is suggested that a separation of
the water into two populations is due to an anatomical
compartmentalization. The water with the shortest
relaxation time is likely intracellular water and the
water with the longest relaxation time is extracellular
water (Cole et al., 1993). In that case the intracellular
water that is found in a higher amount near the head is
bound more firmly to the muscle fibers than the
extracellular water. The more loosely bound extracel-
lular water is found in a larger amount near the tail. The
relative size of intra- and extracellular water is in
agreement with the variation in cell and muscle fiber
sizes. Furthermore, the distribution of the score values is
in accordance with the theory of the separation of water
into the intracellular and the extracellular parts.
Above, it was shown that the score values of the first
factor decrease when samples are taken from a position
closer to the tail. This was also the case for the overall
water content (Fig. 3). Therefore, the relative amount of
each water population may correlate to the total amount
of water. This is illustrated in Fig. 7 where the water
content is plotted against the score values of the first
factor. It is illustrated that there is a linear relation

between the two parameters. Furthermore, a correlation
coefficient of �0.94 is found. This variation in water
content and content of the different water populations
illustrates the importance of how sampling is performed
when instrumental measurements are performed on a
small part of the fish.
As mentioned, other studies have already shown the
multi-exponential distribution of water within muscle
tissue. However, low-field NMR combined with SLI-
CING is a new way of analysing the states of water in
various products. Compared with exponential fitting,
SLICING is a fast, easy and stable method giving the
underlying exponential decays of the NMR relaxations.
When analysing the NMR relaxations of fresh cod fillets,
it has been shown that two populations of water can be
identified. The concentration of the populations varies
within the length of the cod fillet and seems to be related to
the overall water content. Thus, these results illustrate the
possibility for studying the distribution of the populations
of water between and within other fish species.
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Abstract

In this paper the decomposition of low-field Carr–Purcel–Meiboom–Gill (CPMG) NMR relaxation measurements on 23 raw

potato categories was investigated. The potato categories were formed from five different cultivars, each binned in 2 or 3 dry matter

intervals, sampled at two storage times. A novel data analytical tool—called SLICING—revealed that different amounts of four

distinct proton relaxation profiles could describe the main variation in the data set. Magnitudes (scores) of the third and fourth

profile separated the potato cultivars, storage times, and dry matter content indicating that properties related to fast relaxation times

explain the differences between cultivars and storage times for the potatoes. The concept of direct decomposition using SLICING on

low-resolution NMR data is a new approach in potato analysis and a promising tool for obtaining more information about the

structure and water distribution in food products.

Furthermore, the texture-related sensory attributes, hardness, cohesiveness, adhesiveness, mealiness, graininess, and moistness of

cooked potatoes were predicted by partial least-squares regression (PLSR). Four different types of predictor variables derived from

the NMR relaxation curves were compared in the regression models: (i) the raw CPMG curves, (ii) the parameters from the

traditional bi-exponential fitting, (iii) the results from a distribution analysis, and (iv) the scores from the SLICING model. The

predictions based on the distribution analysis performed worse than the first three procedures, which all showed similar prediction

ability. The advantage of the SLICING approach is in the possibility to interpret physical properties, e.g. water distribution of the

potato samples.

r 2003 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Potato; Low-field NMR; NMR relaxation; PARAFAC; PLSR

1. Introduction

The texture of cooked potatoes is an important
quality attribute when assessing potato quality. In the
potato industry great interest lies in both improving and
developing rapid methods to determine this quality.
Special interest lies in assessing the raw potato samples
and relating them to the sensory quality of cooked
potatoes. The potential perspective could be an early
sorting of the raw material according to quality prior to
packaging or processing. The texture of cooked potatoes
is related to the size and amount of starch, rigidity and
chemistry of the cell walls, enzyme activities, minerals,

heating, water content as well as the subsequent heating
process (Gould, 1999). Evaluation of potato texture
and quality can be performed by mechanical, analy-
tical and/or sensory methods (VanMarle, DeVries,
Wilkinson, & Yuksel, 1997; Thybo & Martens, 1999;
Ulrich, Hoberg, Neugebauer, Tiemann, & Darsow,
2000). Using sensory evaluation, information about
the human perception of potato quality is obtained, as
the senses of sight, smell, taste, touch and hearing are
studied. In sensory analysis, the texture is evaluated in
terms of moistness, adhesiveness, mealiness, etc. In
addition, mechanical measurements, for example uni-
axial compression and nuclear magnetic resonance
(NMR) relaxation, have been applied in the texture
analysis of vegetables (Tang, Belton, Ng, Waldron, &
Ryden, 1999; Thybo & Martens, 1999; Tang, Godward,
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& Hills, 2000). NMR has been shown to provide useful
information about molecular structure within a sample
and has become a powerful nondestructive analytical
tool in chemistry (Hemminga, 1992; Ruan & Chen,
1998). In food science, NMR techniques have been used
to study the texture and the state of water in food
samples (Hills & Le Floc’h, 1994; Seow & Teo, 1996;
Hills, Goncalves, Harrison, & Godward, 1997; Ruan
et al., 1997; Tang et al., 1999; Tang et al., 2000) and for
the analysis of fats and oils (Pedersen, Munck, &
Engelsen, 2000). Previous work by Thybo and Martens
(1999) showed a higher correlation between sensory
quality of cooked potatoes and 1H NMR on raw
potatoes compared to using 1H NMR on cooked
potatoes. This work forms the basis for the present
study, where the objective was to compare the
SLICING method (Pedersen, Bro, & Engelsen, 2001)
to existing methods for analysing low-field proton NMR
signals (1H-NMR) from Carr–Purcel–Meiboom–Gill
(CPMG) pulse relaxation curves of raw potatoes. The
comparison was based on the interpretability in data
analysis and the predictive performance of sensory
quality on cooked potatoes using multivariate regres-
sion. The SLICING procedure has previously shown
good results for data analysis purposes when estimating
the underlying relaxation curves of fish (Andersen &
Rinnan, 2002). When handling low-field NMR data,
these underlying relaxation curves ideally correspond to
the different chemical states of water in the measured
samples. Thus, SLICING makes it possible to interpret
the data directly on a physical basis because the model
separates the measured signal, a mixture of exponential
curves, into physically meaningful uni-exponential con-
tributions. It is noted that the SLICING method
assumes that a fairly low number of such curves are
sufficient for describing the actual measurement signal,
in contrary to, e.g. distribution analysis, where it is
assumed that the data consist of a sufficiently large
number of distinguishable exponentials, such that a
distribution of these can be computed. In the bi-
exponential fitting method two contributing exponen-
tials are assumed sufficient to describe the measured
signal. However, the two last methods assume no
relationship between samples—treating each sample
individually—and thus differ from the factor-based
SLICING method. The discussion as to which of these
alternative decomposition methods is most appropriate
will not be the main issue of this paper. Rather, it will be
shown that the SLICING approach as such provides a
solution, which is scientifically sound and useful for
interpretation and further modelling.

The relation between the NMR relaxation curves on
raw potatoes and sensory attributes evaluated on
cooked potatoes was studied by regression modelling.
The prediction performance based on partial least-
squares regression (PLSR, Martens & Næs, 1989) using

the SLICING scores as predictors were compared to
modelling on the raw low-field 1H-NMR curves (CPMG
PLSR). PLSR has previously been used on raw low-field
1H-NMR curves for prediction of fish and potatoes
sensory attributes, showing good performance (Thybo,
Bechmann, Martens, & Engelsen, 2000; Thygesen,
Thybo, & Engelsen, 2001). However, the CPMG PLSR
results are less interpretable because the loadings do not
have a direct physical meaning. The regression perfor-
mance based on the model parameters retrieved from bi-
exponential fitting and distribution analysis was also
compared to the regression methods based on the
SLICING scores. Bi-exponential fitting was applied
because it constitutes one of the main alternatives to
the SLICING approach, while distribution analysis was
applied because it has been used with success in pre-
vious potato studies (Hills & Le Floc’h, 1994; Hills,
Goncalves, Harrison, & Godward, 1997), as well as
other areas of research (Tang et al., 2000).

2. Materials and methods

2.1. Potatoes

The material used in the experiments included five
potato cultivars grown at an experimental field at the
Danish Institute of Agricultural Sciences. Within the
five cultivars the potatoes were graded in salt solutions
according to 1% dry matter bins (Burton, 1989) in the
range of 18.0–22.9%, as described by Thybo and
Martens (1999). Potato samples harvested in September
1999 were analysed in November 1999, and in May 2000
after being stored at 4�C at 95% relative humidity. This
selection procedure gave a total of 23 different potato
samples (see Table 1).

2.2. Sensory analysis

The potatoes were peeled and boiled in water for
20–25min until they were cooked through. The sensory
analysis was performed on the cooked potatoes by a
trained panel of ten assessors and evaluated on a scale
from 0 to 15. The measurements were performed as
described by Thybo and Martens (1999) using the
average of the ten assessors times four sensory
replicates. The sensory variables hardness, cohesiveness,
adhesiveness, mealiness, graininess, and moistness were
evaluated.

2.3. NMR measurements

The relaxation measurements of the water protons
were performed on a Maran Bench top Pulsed 1H-NMR
Analyser (Resonance Instruments Ltd., Witney, UK)
with a magnetic field strength of 0.47 T, corresponding
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to a resonance frequency of 23.2MHz. The instrument
was equipped with an 18-mm temperature variable
probe. The samples were sized in cylinders of
h� d ¼ 40� 14mm2. They were stamped longitudinally
from the stem end of the potato, and placed in a
cylindrical glass tube (14mm in diameter and 50mm in
height). This tube fitted into the NMR temperature
variable probe 18mm in diameter. Before the measure-
ment was performed, the sample was temperature
controlled to 25�C in a water-bath for 15–20min.

Transverse relaxation (T2) was measured using the
CPMG sequence (Carr & Purcell, 1954; Meiboom &
Giil, 1958). The transversal relaxation measurements
were performed with a t value (time between 90� and
180� pulse) of 1000 ms. The data were acquired as
four scan repetitions. The repetition delay between two
succeeding scans was 4 s. The signal amplitude was
measured every echo and the relaxation measurements
were performed at 25�C.

2.4. Data treatment

Each potato sample (bin) was measured by NMR in a
number of replicates (tubers) ranging from 12 to 15. If
outliers were detected in any of the replicate series, they
were removed before the computations. Outliers were
defined as replicates that were significantly different
from the other replicates in any of the following
attributes: low initial value, slower relaxing curve or
faster relaxing curve. The initial data consisted of a total
of 324 measurements, which was reduced to 295 after
removing the outliers. Each sample was now represented
by 11–14 NMR measurement replicates. The sensory
analysis was performed on only four replicates with no

direct link to the tubers used in the NMR measure-
ments. To compensate for differences between tubers
from one category, the average of the sensory analysis
was used together with the average of the NMR curves
for each bin. In this study the difference between
cultivars, and not between tubers, was of interest, hence
using the average reduces the natural variety within
the bins.

3. Data analysis and modelling

3.1. Description of the NMR curves

NMR relaxation signals can be expressed mathema-
tically as a sum of exponential decays (see Eq. (1)):

IðtÞ ¼
XN

n¼1

M0;n exp �
t

T2;n

� �
: ð1Þ

In this equation the profile IðtÞ is parameterized such
that N is the (expected) number of uni-exponentials, M0

holds the N magnitude values, t is time, and T2 is the
time constants associated with each uni-exponential
decay. For a set of curves, it is assumed that the
quantitative information, amount of a specific proton
signal, is carried by the M0 values and the qualitative
information, the type of proton signal, by the T2 values.
There are several methods to find these parameters.
Three methods are evaluated in this article: bi-exponen-
tial fitting, distribution analysis and SLICING. In
bi-exponential fitting, the assumption is that N in
Eq. (1) is two for any sample and that the T2 value
can vary from sample to sample. In the SLICING N is
not known beforehand but determined as part of the
modelling step. It is assumed that all samples can be
described by the same set of T2 values. In distribution
analysis, it is assumed that a distribution of T2 values
generates each profile. Hence, N is assumed to be very
large indicating that each proton has its own distinct
value. This assumption appears reasonable at first
glance, but in practice distribution analysis can be
hampered by numerical instabilities caused by the high
amount of parameters to be determined from a limited
data set with finite signal-to-noise ratio. The discrete
methods, bi-exponential fitting and SLICING, on the
other hand, assume an approximation, which may be
valid in practice due to this limited signal-to-noise ratio
and the similarity of the individual proton relaxations
over samples. Hence, it is not possible on theoretical
grounds to reject any of the proposed methods. One
purpose of this investigation is to show empirically to
what extent, these methods can provide reliable infor-
mation on the current data. In the following the
different modelling approaches for NMR data and
regression are described.

Table 1

Tuber samples used in the experiments

Cultivar Dry matter bins (%)

Storage time

November 1999 May 2000

Ditta 20.0–20.9 21.0–21.9

21.0–21.9 22.0–22.9

Sava 18.0–18.9 18.0–18.9

19.0–19.9 19.0–20.9

20.0–20.9 21.0–21.9

Bintje, low dry matter 19.0–19.9 20.0–20.9

20.0–20.9 21.0–21.9

21.0–21.9

Bintje, high dry matter 21.0–21.9 —

22.0–22.9

Berber 18.0–18.9 18.0–18.9

19.0–20.9 19.0–20.9

21.0–21.9 21.0–21.9
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3.2. Regression by PLS on the raw CPMG curves

One of the advantages of multivariate methods such
as PLS regression (Martens & Næs, 1989) is that they
handle correlated variables well. This feature makes
them suitable for handling data such as NMR relaxation
curves, where neighbouring time points are highly
correlated. Using PLSR on raw data, focus is on the
prediction ability of the model, but the interpretation of
the models might not be as straightforward as the other
methods described in this paper.

3.3. Bi-exponential fitting

A common approach to model NMR curves is bi-
exponential fitting, yielding for each sample individual
values for parameters M0;1; M0;2; T2;1; and T2;2 in
Eq. (1). This approach is based on the assumption that
any sample can be described as a weighted sum of two
exponentials and the T2 values are specific for this
sample. The M0 and T2 values may be used for the
prediction of the sensory attributes by the use of PLSR.

3.4. Distribution analysis

Another method for describing the NMR curves is by
the use of distribution analysis. Distributed exponential
fitting analysis was performed on T2 relaxation data
using the Win-DXP program for Matlab (Butler, Reeds,
& Dawson, 1981). A continuous distribution of ex-
ponentials for a CPMG experiment can be defined by
Eq. (1), setting N to a large number. To use this
distribution information for regression analysis the
results need to be transformed into a suitable set of
variables. In this paper, the position and the amplitude
of the peaks in the distribution were used for regression
analysis.

4. SLICING

SLICING is a novel method for exploring NMR
relaxation curves (Pedersen et al., 2001). The method
decomposes the relaxation curves from NMR measure-
ments into a few individual archetype proton contribu-
tions. It is based on increasing the dimensionality of the
data from a two-way to a three-way array by a proper
rearrangement. The rearranged data cube (three dimen-
sional) will ideally follow the so-called tri-linear model.
Performing a tri-linear decomposition of the rearranged
data will directly yield a set of normalized exponential
decays (i.e. T2 values) as well as the corresponding
amounts/magnitudes of these decays for each sample
(M0 values).

In SLICING the assumption is that all samples can
be represented by a weighted sum of a number of
exponentials, conforming Eq. (1). Thus, there is no
predefined number of exponentials as in the bi-
exponential fitting. On the other hand, it is assumed
that all samples are sums of the same exponentials,
which is not the case for bi-exponential fitting.

The SLICING algorithm uses the principles of direct
exponential curve resolution algorithm (DECRA,
Windig & Antalek, 1997). The idea is to split the
CMPG relaxation curves (see Fig. 1a) into two (or
more) overlapping parts (slabs), where the size of the
overlap is determined by the lag term, generating a
three-dimensional array. Most of the original relaxation
curve is present in both slabs. This operation is
illustrated in Fig. 1a. Next, PARAllel FACtor analysis
(PARAFAC) is performed on the three-dimensional
array (Bro, 1997). The PARAFAC model is described
by the following equation:

xijk ¼
XF

f¼1

aif bif ckf þ eijk

ði ¼ 1;y; I ; j ¼ 1;y; J; k ¼ 1;y;KÞ: ð2Þ

Fig. 1. Going from NMR signal to the data cube for PARAFAC modelling: (a) illustrating the principles of creating a three-way array from NMR

relaxation curves; (b) the data cube X [23� 1991� 3] is decomposed into four triads with sample scores a (23 exponential loadings), b (1991) and slab

loadings c (3), plus residual cube E (‘noise’).
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The element xijk is the original value in the position
(i; j; k) of the data cube X : The parameter adf is the
object score (magnitude) for factor f (first mode), bdf is
the exponential decay curve for the pure component f
(second mode), and loading cdf gives the ratio between
the different slabs (third mode). The term eijk contains
residual variation not captured by the model. The data
cube X is decomposed into F different components
(triads) and a residual cube E (Fig. 1b). In the
PARAFAC algorithm used here, the factors (triads)
are found simultaneously via an alternating least-
squares algorithm (Bro, 1997). If the model is correctly
specified, the residual of the exponential loadings
indicates how much structural information remains
unmodelled. If the residuals show random behaviour
and no systematic trend, only noise is left unexplained
and hence the N estimated profiles explain the variation
in the data up to the noise. Furthermore, if the model is
adequate each loading is described by a single exponen-
tial. If too many components are extracted, the
estimated curves will reflect this (one or more being
nonexponential). The residuals were used together with
the appearance of the relaxation loadings to estimate the
correct number of components. The object scores from
the SLICING were then used for prediction of the
sensory attributes.

In this study the data matrix X held the CPMG
relaxation curves of the 23 samples. The SLICING was
performed by splitting the relaxation curves into three
slabs; with a lag of 0, 1, and 4 data points, respectively.
This choice of lags was based on a subjective selection
from initial investigations. The dimension of the rear-
ranged data cube was 23 objects� 1991 relaxation
variables� 3 slabs.

4.1. Validation

The validation of the regression models for the
CPMG PLSR, the SLICING, the bi-exponential, and
the distribution analysis predictions were all performed
by the leave one subset out cross validation (Eastman
& Kranowski, 1982; Martens & Næs, 1989). In this
method the data are split into equally sized, randomly
selected subsets. One subset is left out and a model is
built from the remaining data. The properties of the left-
out objects are then predicted using this model, and the
residuals are calculated for models of increasing model
complexity (number of factors). In the next step a new
subset is removed and the procedure is repeated until
every subset has been left out once. The root mean
square error of cross validation (RMSECV, see Eq. (3))
indicates the difference between the predicted and the
measured values. In the following equation, y is the
measured values, #y is the predicted value, while n

represents the number of samples:

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðy� #yÞ2

n

s

: ð3Þ

In this study the data sets were divided into four
subsets. RMSECV and the correlation coefficients (r;
upon plotting measured versus predicted) were used as
indicators of the model’s predictive ability.

All data analysis and modelling were performed using
Matlab 5.3 software (Mathworks) for Windows with
algorithms taken from the PLS-Toolbox (www.eigen-
vector.com) and the N-way Toolbox (Andersson & Bro,
2000). A dedicated SLICING toolbox is available at
www.models.kvl.dk, but was not yet available at the
start of this investigation.

5. Results and discussion

To get an impression on the way the sensory
attributes discriminate potato cultivars a principal
component analysis (PCA) is performed (Martens &
Næs, 1989). Fig. 2 shows the bi-plot of sample scores
and attribute loadings. In this figure clear grouping of
cultivars and storage times are observed, as well as for
the dry matter bins. This proves that the data set
contains information which can distinguish these design
variables. It was of interest to investigate the possibility
to extract the same information from the NMR
measurements via multivariate data analysis, without
the requirement of sensory panel input.

In the present work the region from 12 to 4000ms of
the NMR measurement signal was used in the analysis.
The first five data points were considered unreliable due
to noise and the last 2000 points had a signal close to
zero, not contributing any significant information. The
average CPMG relaxation curves of the raw potatoes
were investigated prior to any analysis. Upon studying
the raw data, a variation in the decays for the five
potato cultivars and dry matter bins was observed (not
shown). The potato samples of the cultivar Berber were
distinct from the rest of the cultivars showing a
slower exponential decay. The difference was observed
throughout the entire signal, and indicates a deviation in
the composition and distribution of water compared to
the other four cultivars. Within the five cultivars, the
two storage times, November 1999 and May 2000,
appeared different, where the storage time May 2000
showed a faster decay. This implies changes in the water
distribution due to storage time.

5.1. Data analysis using SLICING

A SLICING model of the CPMG curves was
computed. The NMR profile loadings for the optimal
SLICING model, consisting of four factors, are shown
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in Fig. 3. The four loadings are all exponentials as
expected. This was further verified using a Monte Carlo
approach, where 97% of 1000 randomly selected split-
half tests resulted in the same four exponential loadings
(Harshman & De Sarbo, 1994). In each split-half run,
the data set was split into two parts, each part
containing 12 and 11 samples, respectively. Both of
these data sets were then modelled individually.
Obtaining similar results from two such completely

independent sets of data implies that the results are
reproducible in a scientific sound way. I.e. the compo-
nents are not merely an arbitrary result from a specific set
of samples, but rather a fundamental property of all
similar samples. This indicates that a valid estimate of the
CPMG relaxation curves was derived from SLICING
and hence the loadings could be associated with the
water distribution in the potatoes. Previous studies have
made use of bi-exponential fitting of the raw CPMG

Fig. 2. Bi-plot from PCA on the sensory data. Ditta (B), Sava (D), Bintje—low dry matter (&), Bintje—high dry matter (%), and Berber (J) for

storage 1999 (open) and 2000 (filled). The numbers from 18 to 22 represent the % dry matter bins (see Table 1) where the range of the % dry matter

bin is 18: 18.0–18.9, 19: 19.0–19.9, 20: 20.0–20.9, 21: 21.0–21.9 and 22: 22.0–22.9.

Fig. 3. Exponential loadings for components one to four from the PARAFAC model.
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relaxation curves to explain the different states of water
in potatoes (Thygesen et al., 2001). The T2;1 and T2;2

relaxation times from bi-exponential of the raw CPMG
relaxation curves using Eq. (1) (N ¼ 2) are listed in
Table 2, together with the uni-exponential fitting of the
four loadings from the SLICING model.

The transversal relaxation times T2;1 and T2;2 from bi-
exponential fitting for the 23 objects range from 130 to
180 and 430 to 540ms, respectively. The relaxation times
for the four exponential loadings in Fig. 3 show that the
fourth loading has the fastest decay with a T2;B4 of 52ms
followed by the third loading T2;B3 of 192ms (‘‘B’’
indicating that these T2 values are calculated from the

B-loadings of PARAFAC). The T2;B for the first two
exponential loadings are 378 and 646ms, respectively.
The results from the distribution analysis gave two
peaks, where the first peak ranged from 56 to 82ms and
the second peak from 404 to 540ms (not shown). A
comparison of the four relaxation time constants
showed that the relaxation times T2;B for the SLICING
model span wider than the T2;1 and T2;2 from the bi-
exponential fitting. Both the bi-exponential fitting and
the distribution analysis have a peak around 480ms,
while the SLICING estimated decays at 378 and 646ms.
The first peak from the distribution analysis corresponds
approximately with the fastest relaxing component from
the SLICING. In the bi-exponential fitting, the fastest
component lies in between the two fastest components
from the SLICING.

By looking at the average residual over time for each
of the three decomposition methods, it became clear that
the residual from bi-exponential fitting was roughly four
times larger than the residual from distribution analysis,
which was twice as large as the average residual from the
SLICING model. The reason may be caused by a
smoothing constrain in the distribution algorithm.
These observations imply that loadings derived from
the SLICING model provide more information about
the data than a simple bi-exponential fitting or a
distribution analysis. In a four-factor SLICING model,
the best description of the potato cultivars was given by
the sample scores for factors 3 and 4 (the two fastest
decays), where a clear distinction of the five cultivars
was seen. This is shown in the score plot in Fig. 4, where
the samples are marked due to cultivar, storage, and dry

Table 2

Overview of the transversal relaxation time (T2)

Curves Fitted against T2 (ms)

Exponential loadings (T2B)

from SLICING

T2B1 378

T2B2 646

Fitted by uni-exponentials T2B3 192

T2B4 52

Raw curves fitted by bi-exponentials T2;1; fast decay 130–180

The range of the 23 potato samples T2;2; slow decay 430–540

Raw curves fitted by distribution analysis T2;1; fast decay 56–82

The range of the 23 potato samples T2;2; slow decay 404–540

T2;B represent the relaxation times of the uni-exponential fitting of the

four relaxation slicing loadings and the T2;1 and T2;2 represent the

relaxation times of the bi-exponential fitting of the raw CPMG

relaxation curves. The raw curves show the range of the 23 potato

samples.

Fig. 4. Score plot of sample score 3 and 4 for the PARAFAC . Ditta (B), Sava (D), Bintje—low dry matter (&), Bintje—high dry matter (%), and

Berber (J) for storage 1999 (open) and 2000 (filled). The numbers from 18 to 22 represent the % dry matter bins (see Table 1) where the range of the

% dry matter bin is 18: 18.0–18.9, 19: 19.0–19.9, 20: 20.0–20.9, 21: 21.0–21.9 and 22: 22.0–22.9.
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matter bins. Within the cultivars the storage times for
each bin are explained in the direction from the upper
right corner to the lower left corner. The opposite
direction from the left lower corner to the upper right
corner describes the increase in dry matter bins within
the same cultivar. The separation can be related to the
diversity in the structure of the five cultivars and
the varying water content and distribution of water
(Table 1). There is no such clear distinction between the
cultivars using the results from either the bi-exponential
fitting or the distribution analysis (not shown).

Relaxation times can be related to the distribution of
water within the samples. A high mobility of water
makes it more available, and it will take a long time
before it reaches the equilibrium state, giving rise to a
high T2: Thus, the highest T2 value (T2;B2) may reflect
the water used for gelatinization and can be expected to
be of major importance for texture differences. How-
ever, the variation in the potatoes is not captured by the
two slower decaying loadings, indicating that this type
of water is not important for the description of the
differences in the five cultivars. The description of
the cultivars in the SLICING scores 3 versus 4 indicates
that the clear difference in the cultivars is caused by the
distribution of the water with low mobility in the potato
tubers. These low-mobile water components are as-
sumed to describe the less mobile diffusion-hindered
water hypothesized to be located in, e.g. the cell walls,
entrapped in pectin, in sites with high ionic strengths,
and in the vascular tissue (water transport tissue).

Several states and locations of water are possible
within potatoes. Water compartments may be found in
the cytoplasm in the cells and in the pectin network in
the cell walls. Furthermore, very different tissue
segments within a potato tuber exist. This makes the
investigation of the distribution of water in potatoes
very complex. Hills and Le Floc’h (1994) made a
thorough study of the water in potatoes as they froze
them down. Their study give an explanation to three of
the four components found using SLICING. The first

one is similar to a peak they find at about 50ms, coming
from water in cell walls, while the next two resembles
peaks they find at around 200 and 400ms, which they
state is from water in the cytoplasm. However, they do
not find any component higher than ca. 400ms. Tang
et al. (2000), on the other hand, found a peak at around
50ms upon studying water saturated starch granules, so
the exact cause of the fastest decaying component
cannot be given. By the application of the SLICING a
more direct method is introduced. This makes it possible
to get a quick estimate of the parameters related to the
quality, instead of high-cost laboratory analyses.

5.2. Regression models

PLSR has previously been used for the prediction of
sensory attributes and potato quality from CPMG
relaxation curves (Thybo et al., 2000; Thygesen et al.,
2001). In this work six texture-related sensory attri-
butes—hardness, cohesiveness, adhesiveness, mealiness,
graininess, and moistness—of cooked potatoes were
predicted using four different types of predictor
variables. First, the CPMG PLSR was performed on
the raw data set. The right number of components—
four—was selected using the RMSECV values, the
exponential loadings, and the exponential residuals as
diagnostics. The second approach was the bi-exponen-
tial fitting predictions, which was based on the M0 and
T2 values as independent variables in a PLSR model,
and the third was the predictions using the results from
distribution analysis. Two peaks were found from the
distribution analysis, and the predictions were based
upon the position and the amplitude of these two peaks.
The last type of predictors was the four scores from the
SLICING model referred to as SLICING prediction.
The model complexity for prediction based on bi-
exponential fitting and distribution analysis ranges from
one to four components, depending on the sensory
attribute being regressed. In Table 3, the RMSECV
and correlation coefficients (predicted versus reference

Table 3

RMSECV and correlation coefficients (r) for CPMG PLSR prediction (PLSR), the bi-exponential fitting prediction (Bi-exp. fitting) models,

prediction using the parameters from distribution analysis and SLICING on the six sensory attributes hardness, cohesiveness, adhesiveness,

mealiness, graininess, and moistness

Sensory variables PLSRa Bi-exp. fitb Distrib. anal.b SLICINGa

Attributes Rangec RMSECV r RMSECV r RMSECV r RMSECV R

Hardness 4.9 1.19 0.69 1.22 0.67 1.53 0.33 1.15 0.69

Cohesiveness 5.7 1.10 0.78 1.01 0.83 1.74 0.29 1.31 0.71

Adhesiveness 4.7 1.27 0.58 1.01 0.73 1.14 0.64 1.27 0.57

Mealiness 7.4 1.49 0.74 1.26 0.83 2.00 0.48 1.33 0.79

Graininess 5.2 1.25 0.54 1.07 0.63 1.10 0.64 1.13 0.58

Moistness 7.0 1.11 0.76 0.86 0.87 0.71 0.91 1.05 0.79

aFour-factor models.
bBoth M0 and T2 values used. Optimal regression results shown.
cEffective range on a scale from 0 to 15.
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values) for the four regression models predicting the six
sensory attributes are shown. The correlation coeffi-
cients are in the range of 0.29–0.91 and the RMSECV is
between 0.71 and 2.00. The CPMG PLSR and the
SLICING prediction show almost equal predicting
performance, whereas the bi-exponential prediction in
some cases gave a slightly better result. Distribution
analysis gave the most varying results, ranging from the
worst to the best predictions. In general, the six sensory
attributes are not well predicted by any of the four
methods except for the moistness attribute where the
bi-exponential model gives a correlation coefficient of
r ¼ 0:84 and an acceptable RMSECV is observed. This
is sensible as the relaxation curves express the water
content and distribution within the potato starch cells,
whereby the predictions indicate that this attribute was
expressed in the CPMG relaxation curves. The correla-
tion coefficient of the attributes cohesiveness and
mealiness are also acceptable for all four methods, but
taking into consideration the RMSECV and the range
of the scale used by the assessors, the overall prediction
is not impressive.

6. Conclusion

For the investigation of the differences in potatoes
and potato texture by low-field NMR, this study
compared new and established modelling methods to
analyse NMR data: CPMG PLSR, bi-exponential
fitting, distribution analysis, and SLICING. The work
consists of two parts: a qualitative data analysis of the
potato samples where the interpretation of the loadings
was of special interest. Secondly regression analysis was
performed using six sensory attributes as predictor
variables.

In the data analysis part, the results show that the
SLICING method is superior to CPMG PLSR, bi-
exponential fitting, and distribution analysis. The
SLICING method decomposed the CPMG relaxation
curve into four uni-exponential components describing
all the variation in the data set up to the noise. It is
possible to interpret the exponential decaying loadings,
and directly relate them to the design variables: cultivar,
dry matter and storage time. The distinction between the
five potato cultivars is caused by properties related to
the fast decaying loadings, as the properties of water
related to a long transversal relaxation time do not seem
to have the same influence on the separation of the
groups. To understand the role of the water component
more research is required.

In the regression analysis the predictions from CPMG
PLSR and the SLICING scores were very similar. There
is no gain using PLSR on the raw curves if data analysis
is of interest. The predictions using bi-exponential fitting
gave slightly better results (RMSECV ranging from 0.86

to 1.26 and correlation coefficients ranging from 0.63 to
0.87) than the predictions using the CPMG PLSR or the
SLICING (RMSECV ranging from 1.05 to 1.49 and
correlation coefficients ranging from 0.54 to 0.79). The
predictions using the results from the distribution
analysis gave varying results, and in general these results
are inferior to the results from bi-exponential fitting.
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ABSTRACT: 
Predictions with NMR-relaxation curves as descriptor variables are commonly 

performed by PLS regression (PLSR). An alternative method for regression modelling is 
based on the scores from ‘slicing’. Slicing is a method based on the principles of 
DECRA and serves as an alternative tool to decompose NMR relaxation curves. The 
loadings from slicing have the advantage, compared to PLSR, of being directly 
interpretable in terms of underlying exponentials. The scores from slicing provide 
information about the samples, and may in addition be used for regression. In this work 
it will be shown that this procedure gives as good predictions as PLSR and also has 
exploratory advantages. 

Key words: PLSR, slicing, PARAFAC, prediction, NMR relaxation 
 

 
INTRODUCTION: 

In the food industry, fast prediction methods are called for e.g. for quality 
control. Predictions based on NMR-relaxation measurements have become 
more popular in recent years. The use of PLS [5] on such data for regression 
analysis gives good results [9]. In this work an alternative method will be 
demonstrated, where the dimension of the data-table is rearranged into a data-
cuboid, by the use of ‘slicing’ [11, 12]. A PARAFAC (PARAllel FACtor 
analysis) model [3, 6]  is fitted to the three-way array, and the scores are used as 
descriptor variables. There is little or no gain in the prediction, but in the 
interpretation of the results, there is an advantage in using slicing. This method 
is capable of estimating the underlying exponential decays, and thus gives more 
information about the system than the loadings from PLSR do. In this paper the 
rearrangement into a data-cuboid and the following decomposition by the use of 
PARAFAC will be referred to as slicing. 

The use of PLSR in the prediction of food quality is not new. Both Thybo 
et al. (2000) [16] and Thygesen et al. (2001) [17] successfully used PLSR in the 
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prediction of sensory attributes of potatoes. Povlsen et al. (2002) [14] has 
showed that the use of slicing gives equally good predictions, but with a gain in 
the understanding of the potatoes. Slicing has further been used in the 
decomposition of NMR relaxation curves of frozen and chill stored cod [8], on 
processed meat [11], and fresh cod [2]. In this paper more data sets have been 
investigated in order to verify these previous results. 

In the next section of the paper, there will be a description of the slicing 
method, followed by the comparison of PLSR and slicing on four different 
datasets. The comparison will mainly be on the quantitative perspective, but 
there will be some comments as to the advantages of slicing to PLSR when it 
comes to understanding and interpretation of the data.  

 
THEORY AND METHODS 

NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY 

Nuclear Magnetic Resonance (NMR) spectroscopy can provide useful 
information about molecular structure within the sample and has become a 
powerful non-destructive analytical tool in chemistry. In the present study the 
relation between low field proton NMR spectroscopy (1H-NMR) from Carr-
Purcel-Meiboom-Gill (CMPG) pulse relaxation curves and different predictor 
variables in various food products is investigated. The relaxation signals used in 
this paper are transverse relaxation curves, and can ideally be written as a sum 
of exponentials: 
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Where N is the number of exponentials, T2,n is the transversal relaxation 
time and M0,n is the magnitude value. The last term E is an error term, and 
should be as small as possible. 

CHEMOMETRICS 

PARAFAC is a model that can be fitted on cuboids or data-arrays of 
higher dimension. It is closely related to and an extension of Principal 
Component Analysis – PCA [5, 19]. There are, however, two major differences 
between PARAFAC and PCA, except the dimension of the data set to be 
analysed. In PARAFAC, the factors (triads, see Figure 1) are found 
simultaneously via Alternating Least Squares algorithms. This differs from 
PCA where the factors often are computed one after the other, gradually 
increasing the model complexity. Another important difference is the freedom 
of rotation that is present in the bilinear model. To handle this, the results from 
PCA are restricted such that the first component explains the maximum 
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variance; the next is orthogonal and explains maximum residual variance etc. 
Due to the necessity for these abstract restrictions PCA cannot provide unique 
estimates of the underlying components, even if the true model is bilinear. For 
PARAFAC the factors do not have rotational freedom, and thus the solution is 
essentially unique [10, 15]. This means that the parameters from PARAFAC 
can be directly interpreted as estimates of ‘pure’ components when the data 
follow a low-rank trilinear model. 

 

 

Fig. 1: The decomposition by PARAFAC of a data-cuboid X into triads and a residual-cuboid E. 

 
Slicing is a method based on DECRA which again is intrinsically 

connected to PARAFAC [18], and can only meaningfully be performed on data 
consisting of exponential decaying signals. NMR relaxation curves are of such a 
nature, and thus this method can be used. A data-table containing NMR 
relaxation curves of the mathematical form shown in equation 1 above, follow a 
PARAFAC model [18], if it is properly rearranged, as is the case for slicing. 
The idea behind slicing is to split the spectrum into two (or more) overlapping 
parts (slabs), where the size of the overlap is determined by the lag term, thus 
generating the three dimensional array. Most of the relaxation curve is present 
in all the slabs. This operation is illustrated in Figure 2. The size of the data-
matrix is thus increased from I×J to I×(J-lag× (slabs-1))×slabs. It is also  
 

 

Fig. 2: Slicing of the raw CMPG relaxation curves into a three dimensional array. 
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possible to have different lags for the different slabs. The effect of this has not 
been investigated closely. The idea, however, is that a short lag extract the faster 
decaying components, while the slower decaying components is easier extracted 
by the use of a longer lag. 
 
The PARAFAC model derives estimates of the true underlying exponential 
decays from the generated data cube. Each resulting relaxation loading can be 
fitted by a single exponential decay (N=1 in the above equation). Using slicing 
for the decomposition of the relaxation curves gives simple estimates of the 
underlying exponential decay curves, which directly can be related to proton 
properties. This is not the case for the loadings from PLSR models, where the 
NMR relaxation curves are used as descriptor variables. The PLSR models are 
mathematically forced to obey certain orthogonality constraints [7], and thus the 
loadings from PLSR do not hold the same information as the PARAFAC 
loadings (see Figure 3.) In the regression step for the sliced data, the scores 
from PARAFAC are used as the descriptor variables in a multivariate regression 
model. 

 

 
 

a) 

 
 

b) 

Fig. 3: Typical loadings from CMPG relaxation curves decomposed by a) PLSR, and b) PARAFAC.  

 
In the present work, the validation of the PLSR and the slicing predictions 

is performed by segmented cross validation [4]. In the cross validation the 
datasets are divided into four subsets. The size of these subsets is different for 
each dataset, but for all datasets the choice of samples in each subset is random. 
The Root Mean Square Error of Cross Validation (RMSECV) and correlation 
coefficients are used as indicators of the predictive ability of a model. 
RMSECV are calculated using the following equation: 



Alternative regression method to PLS on NMR-relaxation curves 397 

 
( )

1

2

−

−
=

n
yy

RMSECV pm  (Eq. 2) 

ym is the measured value, yp is the predicted value, and n is the number of 
samples. 

RMSECV and the correlation coefficients are sensitive to how the dataset 
is segmented in the cross-validation, and thus 100 different randomly 
segmented cross-validations were performed for each model. Random 
segmentation is appropriate for these data because all the samples are similar. 
The values reported in this paper are the median of the RMSECV, together with 
the standard error of the RMSECV and the median of the correlation coefficient 
based on the 100 cross-validations. 

All data analysis and modelling is performed using Matlab 5.3 software 
(Mathworks) for Windows with algorithms taken from the Matlab PLS-Toolbox 
(www.eigenvector.com) and the N-way Toolbox [1] (www.models.kvl.dk/source). 

 
DATA ANALYSIS AND MODELLING 

 
The data used in this paper are taken from three different sources all from 

the field of food science. Data from potatoes are from Thybo et al. [16], fish 
data are from Andersen et al. [2], and the data on seeds are from Pedersen, et al. 
[13]. 

Due to noise in two of the datasets – potatoes and seeds – some of the first 
data points are removed. The noise occurs because the recording of the signal 
starts too early after the pulse is given. This gives rise to erroneous 
measurement points – non-exponential decay in the beginning of the curve. The 
size of the samples measured was not constant for the fish data. As the 
magnitude of the measured signal varies linearly with the amount of sample, it 
is important to remove the variation due to sample size before modelling the 
data. To minimize the effect of the sample size, the relaxation curves were 
maximum normalized, setting the maximum of each curve to one. Since the 
intensity of the signal is linearly dependent upon the amount of the sample, as 
noted above, dividing each sample by its maximum would minimize the 
influence of the sample size on the data. It can be noted that maximum 
normalization will not influence the calculated T2-values from slicing. The pre-
treatments are summarized in Table 1. 

 
Tab. 1: The pre-treatment of the different datasets, and the slicing parameters. 

Dataset Points removed Pre-treatment Lag Slab 
Potatoes 5 first + 2000 last None 1, 4 3 

Fish None Normalized by first measurement point 1 2 
Seeds 2 first None 1, 4, 10 4 
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The pre-treatment reported in Table 1 is applied both to the PLSR and the 
slicing analysis. 

The correct number of components in the PLSR model is determined 
primarily using the minimum RMSECV. In addition a visual assessment of the 
loadings and the residual (in the variable direction) is performed. The number of 
components in the slicing model is estimated by looking at the mono-
exponential fitting of the loadings and the residuals in the second mode (the 
spectral mode). The number of factors in the different models is summarized in 
Table 2. 

 
Tab. 2: The number of factors and the predictor variables for the different analysis. 

Number of factors Data 
PLSR Slicing 

Predictor Number of samples Y centered? 

Potato 4 4 3 sensory 23 Yes 
Fish 2 2 1 chemical 248 Yes 

Mustardseed 3 3 2 chemical 51 No 
Rapeseed 3 4 2 chemical 60 No 

 
 

RESULTS AND DISCUSSION 

QUANTITATIVE RESULTS 

The results from the quantitative analysis are given in Table 3-5. In each of 
these tables there is a column called range. This is the difference between the 
lowest and the highest value measured for the specific variable. 

POTATO DATA 

The NMR measurements were performed on pre-boiled potatoes. After 
cooking, a sensory panel evaluated the quality of the potatoes using six different 
sensory variables (only three included in this paper), all on a scale from 0-15. 
The results from this analysis can be seen in Table 3. 

 
Tab. 3: Results from the regression analysis of the potato data. 

Sensory variables PLSR Slicing 
RMSECV r RMSECV r 

Attributes Range*
Median Std Median Median Std Median 

Cohesiveness  5.7 1.13 0.09 0.77 1.19 0.09 0.74 
Mealiness  7.4 1.36 0.14 0.79 1.48 0.15 0.75 
Moistness  7.0 1.11 0.15 0.77 1.11 0.14 0.77 

* Difference between the highest and the lowest value. 
 
The results show that PLSR is slightly better than slicing in the regression 

analysis. 
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FISH DATA 

Five different fish were measured, with samples taken from different parts 
of the fish. The water content both differs from fish to fish, and internally in 
each fish as is shown by Jepsen et al. [9]. Therefore the water content was 
measured on every sample. 

 
Tab. 4: Results from the regression analysis of the fish data. 

RMSECV Method Range*

Median Std 
r 

PLSR 3.26 0.242 0.001 0.95 
Slicing 3.26 0.243 0.001 0.95 

* Difference between the highest and the lowest measured value. 
 
From Table 4 it becomes clear that upon predicting the water content, the 

two methods give the same good predictions. 

SEED DATA 

Two types of seeds - mustardseed and rapeseed - were measured by 
CPMG together with three chemical properties (oil-, protein-, and water 
content). The seeds were measured as untreated, wet, and dry seeds. The 
contents of the different chemical properties were calculated as the relative 
content. In this paper, only the predictions for the oil and water content are 
shown. 

As can be seen from Table 5, the results are quite similar, except from the 
prediction of water in the rapeseeds, where slicing performs better than PLSR. 
This might be due to the ability of slicing to find four important factors, while 
PLSR only finds three.  

 
Tab. 5: Results from the regression analysis of the seed data. 

PLSR Slicing 
RMSECV r RMSECV r 

Seed Variable Range*

Median Std Median Median Std Median 
Oil 8.9 0.35 0.01 0.99 0.36 0.01 0.99 Mustardseed 

Water 16.4 2.42 0.10 0.92 2.38 0.06 0.92 
Oil 13.0 0.60 0.01 0.98 0.58 0.02 0.98 Rapeseed 

Water 13.9 2.03 0.05 0.92 1.36 0.05 0.97 
*Difference between the highest and the lowest measured value. 
 

QUALITATIVE RESULTS 

These above results show that the predictive abilities of PLSR and slicing-
based regression are quite similar. However, upon looking at the loadings from 
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the two methods, it becomes clear, that slicing gives loadings that can be 
interpreted directly by the NMR spectroscopist whereas this is not at all the case 
for PLSR (Figure 3). From the slicing results it is possible to calculate the T2-
values for the different proton populations present in the sample. The NMR 
signal is often mainly caused by water, as is the case for these datasets. Very 
often in NMR-relaxation measurements, it is of interest to study the T2-values, 
since these provide the qualitative information as to what the detected 
phenomena represent and also provide means for comparing the results to 
previous work. Further, the scores from slicing can be of more interest than the 
scores from PLSR, namely because of the effect explained above. Povlsen et al. 
[14] showed that the scores from slicing were able to separate the five potato 
tubers, while PLSR scores were not. Another interesting attribute from this 
method, is shown by Andersen et al. [2], which were able to detect an offset in 
the data in one of the factors from slicing. The third factor showed a non-
exponential behaviour. Rather than decreasing towards zero, the third factor 
decreased to a positive constant value. A single exponential can thus not explain 
this factor, and hence there is an offset in the data. Since there is no a priori 
knowledge about the behaviour of the PLSR-loadings, this offset would be 
harder to detect. The reason for this offset was investigated further, and was 
most likely caused by magnitude correction of the raw data. Unfortunately the 
raw data was no longer available, so the offset needed to be corrected otherwise. 
The slicing method is based upon the loadings being exponential, and it may 
thus not perform well if it turns out not to be true. The correction caused all the 
loadings to become exponential, but the T2-values calculated from these 
loadings, will only be the best values based on the data, and not necessarily the 
true values. Even though the fish data was of this type the predictions by the use 
of slicing was identical to the predictions by PLSR.  
 
CONCLUSION 

It is shown that the two methods give equally good predictions for the 
applications shown here. An important difference between the two methods can 
be seen upon looking at the spectral loadings. The loadings from slicing are 
clearly exponentials (as shown in Figure 3), and T2-values can be calculated for 
each loading. The T2-values can be related to the major proton containing 
components. For the PLSR loadings only the first loading is exponential, and 
sometimes not mono-exponential, thus making it impossible to find the T2-
values corresponding to the raw data. These T2-values are essential in the 
understanding of the data, though not explicitly needed for building calibration 
models. 

The slicing method is more time consuming than the PLSR method, and 
often the predictions are of highest importance. However, if the predictive 
ability of PLSR is unsatisfying, slicing may show a better predicting ability. 
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Further, as noted above, this approach has the advantage that the model directly 
provides estimates of the mono-exponential decays present in the raw data. 
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Multi-way prediction in the presence of uncalibrated interferents 

1 Abstract 

The second order advantage states that second-order calibration methods based on 

intrinsically unique decomposition should give good predictions for new samples 

even if they contain new interferents not taken into account in the calibration 

model. In this paper we test the second order advantage using regression models 

based on PARAFAC, focussing on practical issues such as the importance of the 

type of the PARAFAC model to use, the size of the calibration set, the number and 

degree of overlap of new interferents, and the type and magnitude of noise. In order 

to control all these factors, simulated data is used to get the scenarios in which 

regression models based on PARAFAC can take profit of the second order 

advantage. 
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2 Introduction 

In the last years, data provided by analytical instrumentation has changed from 

univariate signals (a single number for a single sample, for instance a pH 

measurement; a vector for a set of samples) to two-way data (a vector for a single 

sample, for instance a NIR spectrum; a matrix for a set of samples), and further to 

multi-way data (a matrix for a single sample, for instance a fluorescence emission-

excitation landscape; a three-way array for a set of samples in case of three-way 

data). Extension to higher orders is straightforward. During the last years multi-

way analysis has become increasingly important because it has proved to be a 

valuable tool in interpreting such complex data. One of the most used multi-way 

models in chemometrics is PARAFAC (parallel factor analysis) [1-3]. PARAFAC 

can to some extent be seen as an extension of more classical multivariate models 

(i.e. models that handle two-way data) as PCA (principal components analysis) [4]. 

 

Since PARAFAC only deals with one array of data (i.e. PARAFAC only works 

with an X array), it is not primarily seen as a prediction method, but rather as a 
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decomposition tool. However, the results (scores) given by PARAFAC can easily 

be related to concentration values by e.g. ordinary least squares (OLS), giving 

PARAFAC the attributes of a second order prediction method. 

 

When making calibration models it is common practice to include samples with 

varying amounts of all future interferents in order to be able to provide essentially 

unbiased predictions. This is necessary in regression-based calibration because the 

regression vector is essentially determined by orthogonalizing the analyte signal to 

the signals from all interferents. In some situations, e.g. in process analysis or 

environmental analysis, the new samples to predict can contain unknown 

interferents that can not be taken into account in building the model. With standard 

regression-based methods it is not possible to handle interferents that are not 

present during calibration, and it is therefore of interest to build models that can 

handle this situation. Previous work [5] has described the advantages of using 

second order prediction for these scenarios instead of classical first order prediction 

– e.g. PLS (partial least squares), PCR (principal components regression) and MLR 

(multi linear regression) [6].  

 

However, there has not been much work on how to perform second order 

prediction using PARAFAC in practice, and some practical doubts arise when 

dealing with this subject. The general principle of second-order calibration agreed 

on so far is that a model of the multi-way calibration data is established using 

PARAFAC. With this model, the concentration of the analyte of interest can be 

predicted using one or several scores. When the concentration in new samples is to 

be predicted, then either the scores in the new samples are found from the earlier 

PARAFAC model loadings or by including the new sample(s) in the calibration set 

and redo the PARAFAC model including the regression step.  

 

In order to choose a reasonable strategy for calibration there are, however, many 

additional issues that must be decided: E.g. should the calibration set be included in 
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the new set to be predicted? Should the loadings from the calibration part be fixed 

during prediction? Should new components be allowed for in the new set? Should 

the scores of the calibration set be fixed? The current paper tries to address these 

and similar issues, looking at different strategies for performing second order 

prediction by the use of PARAFAC. Practical aspects such as the size of calibration 

set, degree of overlap of spectra, noise patterns and number of analytes in the 

calibration set, are investigated to verify which factors are important to consider 

when choosing prediction strategy. Apart from looking at practical aspects like the 

ones mentioned above, PARAFAC has shown to take profit of the second order 

advantage and has shown to make better predictions than other methods such as 

GRAM. 

3 Theory 

3.1 PARAFAC model 

PARAFAC [1-3] is a decomposition method that can be considered as one possible 

generalization of PCA to higher order arrays. For three-way data, PARAFAC 

decomposes the original I×J×K three-way array X (extension to higher order arrays 

is straightforward) into F trilinear components (factors), each one of the F factors 

consisting of one score vector af (column of A) and two loading vectors bf and cf, 

columns of B and C (also sometimes called first, second and third mode loadings 

respectively), with respective elements aif (i=1…I, f=1…F), bjf (j=1…J) and ckf 

(k=1…K). In this paper, A corresponds to the sample mode, while B and C are 

spectral modes. The factors in PARAFAC are found simultaneously and are not 

nested as for instance in the PCA case. The model is found minimizing the sum of 

squares of the residual eijk in the model: 
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Each factor from a PARAFAC model consists of a set of triads as illustrated in Fig 

1. 

 

Even with no additional restrictions on the parameters in Eq. (1), the PARAFAC 

solutions are unique (up to trivial scaling and permutation) in contrast with the 

rotational freedom of the bilinear model, where additional constraints are necessary 

e.g. to make the PCA model unique [7]. For example this implies that for correctly 

modelled fluorescence data, the B and C loadings are estimates of the pure 

emission and excitation profiles (arbitrarily scaled) of the F analytes in the data set. 

 

Although PARAFAC is primarily a decomposition method, it can be used for 

regression relating the scores of each component (i.e. of each analyte) to its 

concentration. This is possible because, as the loadings are estimates of relative 

spectra of specific analytes, then the scores are estimates of the relative 

concentrations of these analytes. The prediction is in this paper performed using 

OLS (which relates the concentration of each analyte only with their scores) 

according to the following expression: 

 , 0, , 1i f f i f fy a ,= + ⋅β β  (2) 

where yi,f represents the concentration of analyte f in sample i, ai,f is the score 

corresponding to analyte f for the ith sample, β1,f is the multiplicative factor for the 

score and β0,f is the offset term. β0 and β1 are estimated using the scores (from the 

PARAFAC model using the calibration set) and the concentration values of the 

calibration set. Eq. (2) is then used to predict the new concentration(s) from the 

score(s) of the new sample(s). Other alternatives for Eq. 2 include using no offset 

or using all the scores in a MLR regression. For well-behaved data, one would 

expect the simplest regression method, OLS with no offset, to be the most 

appropriate. In this paper, however, OLS with offset was preferred because in some 

of the calibration sets with few samples (two or three) the scores tended to be 

slightly biased, and using an offset helped in the quality of the predictions. MLR on 
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the other hand is thought of as too complicated since there are ideally no 

interactions between the factors upon building the datasets used in these analyses. 

 

One of the main difficulties in using Eq. 2 for predicting concentrations in new 

samples is to calculate the PARAFAC scores of the new samples. If the new 

samples contain only the same analytes as the samples in the calibration set (i.e. no 

interferents are present in the new samples), then the scores of the new samples, 

Anew, are simply found using the loadings from the PARAFAC model on the 

calibration set: 

 ( )( )+⊗⋅= T
calcalnew BCXA  (3) 

where X corresponds to the vectorized experimental data for the new sample(s) and 

Bcal and Ccal are the loadings from the PARAFAC model using the calibration set. 

The superscript ‘+’ refers to the Moore-Penrose inverse and the sign ’⊗ ’ stands 

for the Khatri-Rao product [3]. Possible missing data in the experimental values 

(X) can be handled by using suitable PARAFAC algorithms [8]. 

 

If, on the other hand, the new samples to be predicted contain interferents not taken 

into account in the calibration model, the scores of the new samples have to be 

calculated from a PARAFAC model with a higher number of components than the 

one on the calibration samples. The increased number of components is necessary 

to account for the interferents in the new sample(s), and is important in order to get 

good predictions of the analytes. There are several possible strategies for finding 

the analyte scores of the new samples. For instance, the loadings of the analytes of 

interest found from the PARAFAC on the calibration samples can be fixed upon 

calculating these scores in the new samples, or the scores can be found by 

calculating a new PARAFAC model mixing the calibration and the new samples. 

One of the goals of this paper is to find the best PARAFAC strategy to get the best 

estimates of the scores of the new samples and hence the best predictions of the 

concentrations of the analytes in the new samples. 
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An alternative to the use of PARAFAC is using the generalized rank annihilation 

method (GRAM) [9], which only uses one sample for calibration and one sample 

for prediction at a time. This can be an advantage, because GRAM only needs two 

samples, but also a drawback because working with only one calibration sample 

implies that predictions are only adequate for very low-noise well-modeled data. 

The properties of GRAM in relation to these simulations are described in the end of 

the paper. 

3.2 The second-order advantage 

Booksh and Kowalski [5] discussed the different calibration techniques, moving 

from 0th order calibration up to 3rd or higher order calibration. 

• 0th order: calibration between two vectors – e.g. OLS. 

• 1st order: calibration between a matrix and one (or more) vector(s) – e.g. 

PLS, PCR, MLR.  

• 2nd order: calibration between a set of matrices (forming a cube) and one 

(or more) vector(s) – e.g. OLS/MLR on PARAFAC scores and multilinear 

PLS (NPLS) [10]. 

• 3rd and higher order: calibration between sets of three or higher dimension 

data and one (or more) vector(s) – e.g. OLS/MLR on PARAFAC scores. 

 

They further stated that second-order calibration should make good predictions 

even in the presence of new interferents; the second order advantage. This, 

however, only holds for second-order methods based on intrinsically unique 

decompositions, hence not for NPLS. OLS/MLR on PARAFAC scores on the other 

hand, is such a method, as described above, and GRAM is another widely used 

method. 

 

Methods that use the second order advantage have already been applied to several 

real problems. For instance, Moberg et al (2001) [11] investigated the use of 

PARAFAC on excitation/emission matrices (EEM) on six fluorophores followed 
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by regression. They further compared it with CLS (classical least squares), and 

concluded that PARAFAC gave better predictions. Further they checked the 

second-order advantage applied to the use of PARAFAC, where they were able to 

predict two analytes precisely, although only those two analytes were present in the 

calibration set, and there were six analytes (i.e. four new interferents) in the new 

samples. 

 

Second-order calibration has also been used in flow injection analysis [12] where 

Nørgaard and Ridder were the first to show the benefits and drawbacks of three-

way methods applied to such data [13,14]. Their results were later elaborated and 

compared with other techniques [15,16]. 

 

Wilson et al. [17] used rank annihilation on MS/MS spectra of samples containing 

warfarin, different hydroxywarfarins, and phenylbutazone. Rank annihilation was 

also compared to and outperformed different ordinary curve-resolution and 

regression techniques. 

 

Li et al. [18] showed how GRAM can be used to estimate low concentrations of 

hydrocortisone in urine using LC-UV data. They noted that using the original rank 

annihilation algorithm of Lorber [19] inaccurate results were obtained. 

 

Xie et al. [20] compared the merits of second-order calibration for quantifying 

binary mixtures of p-, o-, and m-amino benzoic acids and orciprenaline reacting 

with diazotized sulfanilamide in a kinetic UV/VIS study.  

 

Ho et al. [21,22] exemplified second-order calibration with simple one- and two-

component mixtures of perylene and anthracene and showed that they were able to 

determine the concentration of one analyte in presence of the other one using only 

one pure standard and using fluorescence excitation-emission landscapes. They 
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also used samples of a six-component polynuclear aromatic hydrocarbon to show 

the same principle in a more complex matrix. 

 

Gui et al. [23] used direct trilinear decomposition [24] for quantifying initial 

concentrations of two components (glycine and glutamine) based on the kinetic 

development of fluorescence in a thin-layer chromatographic system. 

 

Poe and Rutan [25] compared the use of GRAM, peak height, peak area, and 

adaptive Kalman filter for quantifying analytes in a separation of polycyclic 

aromatic hydrocarbons using reversed phase liquid chromatography coupled with 

fluorescence detection. GRAM outperformed the other methods, but was found to 

be more sensitive to retention time shifts. 

4 Experimentation 

4.1 Simulation of data 

Simulated data was used during this study in order to control all possible aspects 

concerning calibration and prediction of new samples. Ninety-six different 

scenarios of simulated data sets were obtained according to the following steps and 

the factors in Table 1 (See Fig. 3 for an overview of the problem.): 

1. The second (B) and third loadings (C) of the analytes and interferents were 

constructed as Gaussians curves. 

2. A number of equally spaced Gaussian curves were made. The total number 

of curves was equal to the total number of analytes and interferents that 

were present in the calibration set and the new samples. 

3. The loadings where orthogonalized and normalized to norm one. 

4. The congruence matrix (see Table 1 and Fig. 2) that was to be used to 

assure the degree of overlap between the analytes and the interferents were 

Cholesky factorized [26].  

5. The B and C loadings were then found by multiplying the orthogonalized 

and normalized loadings (from 3) and the Cholesky factorized congruence 
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(from 4). This provides a set of loadings with congruences as defined 

above. 

6. The A loadings (concentrations) were made from numbers drawn from a 

uniform distribution. 

7. The random numbers (with the number of columns equal to the total 

number of analytes and interferents) were then orthogonalized and 

normalized to norm 100 in order to for all analytes and interferents to have 

similar magnitude. 

8. These orthogonal and randomized numbers were then multiplied with 

Cholesky factorized congruence (different from the loadings). 

9. The concentration values for the prediction interferents (i.e. those that only 

occur in the prediction set) were all set to zero in the calibration set. 

10. The total matrix of pure data was then calculated as the outer product of A, 

B and C. 

11. Noise (hetero- and/or homoscedastic, see Table 1) was added to the 

dataset. 

12. The noise addition was done 10 times to give 10 replicates of each of the 

96 scenarios. 

13. All the selected PARAFAC models were fitted (see ‘Prediction models’ 

section) on each one of the 10 replicates of each of the 96 scenarios. 

 

In all cases, the prediction set was made up of three samples. 

4.2 Prediction models 

Nine initial different methods for performing second order prediction using 

PARAFAC were compared. These were reduced to five final methods for reasons 

explained below. A schematic overview of the setup is given in Fig. 3. 

The five final different PARAFAC models were: 

− Predicting using the whole dataset in one step. I.e. the calibration set and 

the new samples are put together making one cube. Using the scores and 

10  Rinnan, Å., Riu, J., Bro, R.  



Multi-way prediction in the presence of uncalibrated interferents 

known concentrations of the calibration samples, the calibration regression 

model is determined and then applied to the scores of the new samples. 

This calibration model will be coded as model 1. 

− Instead of including all the new samples when computing the new model, 

only one new sample is modelled at a time (model 2), and hence a 

PARAFAC model is recalculated for every new sample. 

Calculating a PARAFAC model on the calibration set and then: 

− Computing a separate model on the new samples and searching for the 

common factors with the calibration model (model 3). 

− Fixing the B and C-loadings from the calibration model when fitting the 

PARAFAC model to the new samples. The prediction model is either 

calculated only on the new samples (model 4), or on the calibration set and 

the new samples put together (model 5). In both cases, the PARAFAC 

model for the new samples is calculated with a higher number of 

components than the PARAFAC model for the calibration samples (due to 

the interferents). 

 

There were furthermore four other PARAFAC models that initially were 

investigated: 

− Fixing the A, B and C-loadings from the calibration model. Calculate a 

model on the calibration set with all or one of the new samples at a time. 

− As previous, but setting the new interferents to zero for the scores in the 

calibration set. Calculating with all or one of the new samples at a time. 

 

These four models, however, suffered from convergence problems and reached 

local minima. The initialization for these methods was the factors from model 1, as 

was also used for the other methods. The reason for the problem with local minima 

is not known, and needs further investigation. 
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4.3 Software 

MATLAB (The Mathworks Inc, Natick, MA) version 6.5 was used during the 

calculations. The algorithms in use were from the PLS_Toolbox version 3 beta 

(Eigenvector Research Inc, Manson, WA), and some in-house algorithms. 

4.4 Evaluating the prediction models 

The five different PARAFAC methods/models were evaluated by the use of a 

goodness-of-fit (GOF) factor. If the prediction was perfect compared to the real 

simulated value, this factor was 1. The factor decreased linearly to 0, as the 

prediction error increases to 10, see Eq. 4. 

 GOF 1
10
py y−

= −  (4) 

where yp is the predicted value, while y is the corresponding real simulated value. If 

the GOF factor is less than 0 (prediction error larger than 10), the GOF was set to 

0. We decided to use such a factor instead of using RMSEP (root-mean-square-

error-of-prediction) or relative RMSEP, since this will put too much focus on 

extreme errors which are e.g. a factor 20 off. The value of 10 was chosen as a limit 

because the prediction errors should be small (all real simulated values were below 

76). 

 

Some of the PARAFAC models gave imaginary results in some scenarios, due to 

ill-posed problems. In the predictions based on those imaginary results the GOF-

values were set to 0. After this procedure there was a total of 10560 different GOF-

values per regression model (64 scenarios with 4 analytes plus 32 scenarios with 3 

analytes, all with three new samples and 10 noise additions). Data analyses were 

carried out in order to investigate: 

- which of the scenarios shown in above provide the best and the worst 

prediction results 

- what PARAFAC regression model gave the overall best predictions, what 

gave the worst 
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- the why’s for some of the results  

This investigation was done by the use of analysis of variance (ANOVA) [27], and 

distribution plots of the GOF’s.  

4.5 Analysis of variance (ANOVA) 

For the calibrations results obtained in this study, the ANOVA factors were the 

different congruences, set-up for calibration data, noise level, and type of 

PARAFAC prediction model (all the factors were coded as discontinued variables, 

from 1 up to the number of different ways each parameter was set), while the 

dependent variable was the GOF-value. Interaction terms were included in the 

ANOVA model primarily based on P-values. 

 

In this analysis the prime objective was to study the effect of the different 

prediction models. For the study of the difference in the means of the five different 

methods, the Games-Howell Pairwise Comparison test [28] was used. This test 

checks every possible pair of prediction models to see if their means are different. 

The distribution used is the studentized range statistics. 

5 Results and discussion 

5.1 ANOVA 

The number of samples in the data set analysed by ANOVA was 52800 (10560 

GOF-values per prediction model). Taking this into account the significance limit 

was set as low as 0.001. The first ANOVA run showed that there were only a few 

interactions that were non-significant. However, upon the removal of these and 

running the analysis again, no more interactions showed up as non-significant. The 

results from the first ANOVA can be seen in Table 2. 

Since the interest of the ANOVA was to investigate the effect of the choice of the 

model (X4), only these sources were investigated further: X4, X1X4, X3X4, 

X1X3X4 and X1X2X3X4. 
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First X4 was investigated to see if there was some significant difference in the 

means of the methods. The significance limit here was also set to 0.001 as for the 

ANOVA. The results from this investigation are given in Table 3.  

 

From Table 3 it can be seen that model 1 is the best model (all its values in its 

column are positive), followed by model 2, 4 and 5. However, the only significant 

difference in the means is that model 3 predicts significantly poorer than the four 

other models. 

 

Further analyses were performed on the four interactions mentioned above. Here 

the data was investigated in two different ways in order to explore the results. All 

the interactions were analyzed taking into account the distance between the 

PARAFAC prediction models. Either all the distances were summed directly, or 

they were multiplied by 1 if they were significant and 0 if they were insignificant, 

according to a significant level of 0.001. All the results from these analyses will not 

be shown due to the large amount of tables necessary to show the results. The 

results of the analyses indicated that model 1 is the best, closely followed by 

models 4 and 5, with model 2 also giving good results. Worst is model 3 by far. It 

is of no surprise that model 3 gives the worst predictions, since this method 

decomposes only a small data set containing many more components than samples 

(3 samples with 6 or 7 components). Model 2 is partly subject to a bit of the same 

problem, but this time there is only one new sample with the interferents. The 

problem now is to correctly find the interferents. Since there is only one sample 

included at a time, the decomposition suffers from partial rotational freedom (of 

the new interferents), and this will affect the predictions to a larger degree than is 

the case for model 1, where there are several samples with the same interferents, 

where all of them vary independently of each other. Models 4 and 5 are very 

similar in behavior, which was also expected, as these two models are very similar; 

both of them fix the loadings from the calibration set. The only difference is that 

model 5 includes the samples from the calibration set, and thus recalculating the 
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scores for the analytes, while model 4 keeps the scores from the calibration set. 

These two models do give slightly worse predictions than model 1. By close 

inspection of the results it seems that model 1 is better when the problem is the 

worst-case scenarios (two samples in the calibration with four analytes) while 

models 4 and 5 are slightly better in the more “normal” cases (i.e. when the size of 

the calibration set is higher than two samples). This is probably because the most 

important factor, alongside with the selection of the PARAFAC model, is the 

number of samples in building the model. In the worst-case scenarios, model 1 uses 

five samples (two from the calibration set and three from the prediction set) to 

estimate six or seven loadings, while model 4 and 5 estimates three or four 

(depending on the number of analytes) loadings using only two samples. By 

calculating the loadings based only on two samples, the estimated loadings are not 

as good as the ones used in model 1. 

5.2 Checking the goodness-of-fit factor 

A close examination of the 52800 goodness-of-fit factors can give the scenarios 

which correspond to the best and the worst prediction results. The GOF-values are 

binned into 100 different bins ranging from 0 and up to 1, with 0.01 between the 

bins. The relative cumulative sums of the bins are then investigated. 

 

An important factor in building a calibration model is the size of the calibration set. 

Fig. 4 shows the relative cumulative sum for the six different calibration set types. 

 

From Fig. 4 it can be seen that the smallest calibration set is the dataset causing the 

biggest problems in prediction analyses. The worst scenario should intuitively be 

the calibration set containing only two samples with four analytes. It however 

seems that the calibration set with two samples and three analytes gives the overall 

worst predictions. If we strictly look at the number of samples in the calibration set, 

it can clearly be seen that the higher number of samples in the calibration set, the 

better predictions one will get as expected. In this way, the calibration set 

Rinnan, Å., Riu, J., Bro, R.  15 



Multi-way prediction in the presence of uncalibrated interferents 

containing seven samples with four analytes is the best one since it is the one with 

lowest percentage of low GOF factors (only 17% of the GOF factors are below 0.9 

while more than 42% of the GOF factors are below 0.9 for the calibration set 

containing two samples with three analytes). For low GOF factors, the second best 

scenario is three samples and three analytes. It might have been expected that the 

four samples and four analytes scenario to be the second best. This is because it 

seems that three/four samples is the borderline to have good predictions (two 

samples is very low, seven samples is a good size). Apparently, adding another 

sample (from three to four), does not pay back the effect of adding another analyte, 

and three samples and three analytes remains as the second best for low GOF 

factors. 

 

After studying the effect of the size of the calibration set it is of interest to see if 

there is an effect of the overlapping pattern of the analytes and interferents, thus the 

congruence is studied closer. 

 

From Fig. 5 it can be seen that the (a) congruence pattern is the one with better 

GOFs, while the congruence pattern with the highest amount of overlap, (d), 

between the analytes and the interferents gave the overall worst results. The two 

others with intermediate overlap perform equally, with the congruence pattern with 

generally low overlap, but each interferent highly overlapping one analyte each, 

(b), giving slightly better overall results. This fits nicely with what was expected. 

 

The last factor we investigated is the influence of the noise on the goodness-of-fit 

factor. Fig. 6 shows the sorted GOF values of the four noise patterns. It shows that 

the datasets with most noise give the worst predictions as expected. Furthermore, 

the dataset with only homoscedastic noise gives overall quite good predictions, 

while there is only a small difference between the two other noise patterns, with the 

one with only heteroscedastic noise slightly better than the one with both. 
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5.3 Comparison with generalized rank annihilation 

(GRAM) results 

The same simulated data used in the PARAFAC prediction models studied above 

were used to find the predicted values of the test samples using the GRAM method, 

because GRAM is one of the most widely used methods that takes profit of the 

second order advantage. In this study we did not study factors that could help in 

getting better predictions with GRAM, because the focus of this paper is prediction 

by the use of PARAFAC. To show the advantage of PARAFAC to GRAM, the 

overall results of PARAFAC model 1 is compared with the overall results from 

GRAM. The comparison of the results is shown in Fig. 7. Looking at this figure, it 

can be concluded that GRAM results generally are worse than the PARAFAC 

results; about 11% of the GRAM results have a GOF-factor of zero, more than 

twice of the PARAFAC results. Contrarily, more than 23% of the PARAFAC 

results have a GOF higher than 0.99, which virtually means a perfect prediction, 

while only 8% of the GRAM GOFs are. Fig. 7 shows that PARAFAC uses the 

second order advantage better than GRAM for these simulated data. 

6 Conclusion 

An overall conclusion based on the above results is that the models have the 

following order (from best to worst): 1, 4, 2, 5, and 3. However, the differences 

between the four best models are marginal, and thus the clearest conclusion that 

can be made is that it is not wise to make a new model on only the new samples 

and then try to match the factors found with the factors in the calibration set. It is 

important to be aware that this work is only done on simulated data, which are 

completely trilinear up to the noise. This may be the cause of model 1 (raw 

PARAFAC without fixing anything) giving the best results; it is the model which 

finds the loadings (including calibration parameters) using the highest number of 

samples. All the other models divide the samples in calibration and prediction 

samples, or find the loadings using only the calibration set. Real data may not be as 

perfectly modeled by PARAFAC or may not have as perfect linear relation with 
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the concentrations as the ones in this paper, and therefore the idea of fixing factors 

from the calibration set may play a more important role. Other special 

characteristics such as e.g. slightly varying spectra over time are also problem-

specific and can hence not be tested in general even though they may have 

significance for which approach is most feasible in practice. 

 

There are more that can be done in order to find the best way to do second order 

prediction: Why did the fixing of the A-scores fail to converge? What is the actual 

difference in the models 1, 2, 4 and 5, when do they differ significantly? Is there 

some scenario where one model is clearly better than another? How should the 

number of new interferents be determined in practice? Some of these issues should 

be tested by similar simulations as performed here, whereas others are better left 

for more problem-specific testing. 

 

The influence of the tested congruence pattern and the type of noise follow the 

beforehand expected behavior, but these are difficult factors to control in acquiring 

real data. What appears to be very important in order to achieve good predictions is 

the size of the calibration set, and fortunately this factor is often easy to control by 

the analyst. As is apparent, increasing the calibration set size (with appropriate 

samples) leads to better predictions of future samples. A calibration set size of 

three-four samples gives fairly good results, and a calibration set size of seven 

samples gives very good results in most of the situations. Hence, a calibration set 

size of at least one sample more than the number of analytes, alongside with 

calculations using PARAFAC models 1 or 4 should be adequate to achieve good 

predictions of future samples in the presence of interferents. This conclusion also 

points to why the GRAM results seem to be worse than the PARAFAC ones. In the 

GRAM approach to second order calibration only one calibration sample (or one-

pseudo sample in case of direct trilinear decomposition) is used and hence the 

predictions will only be adequate for very low-noise well-modelled data. 
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Table 1. The factors that were varied in the simulations. *The first number indicates 

the amount of homoscedastic noise, the second the amount of heteroscedastic noise. 

Factor Variations 

Congruence 4 patterns (shown in Fig. 2) 

Noise addition* [5 0]%, [0 2]%, [5 2]% or [10 2]% 

Number of samples in the calibration set 7, 4, 3, or 2 

Number of analytes  4 (for 7, 4, 3 or 2 samples in the 

calibration set) or 3 (for 3 or 2 samples 

in the calibration set) 
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Table 2. Results from the complete ANOVA for goodness-of-fit.  Sources: X1 = 

congruence, X2 = size of calibration set, X3 = noise, and X4 = model. Significant 

factors in bold.

Source d.f. Sum of sq. 
Mean sum 

of sq. 
F Prob>F 

X1 3 229.29 76.431 1970.34 0 

X2 5 62.833 12.567 323.96 0 

X3 3 123.02 41.005 1057.09 0 

X4 4 78.293 19.573 504.59 0 

X1X2 15 60.535 4.0357 104.04 0 

X1X3 9 84.62 9.4023 242.38 0 

X1X4 12 20.258 1.6882 43.52 0 

X2X3 15 46.932 3.1288 80.66 0 

X2X4 20 0.89043 0.044521 1.15 0.29109 

X3X4 12 6.2227 0.51856 13.37 0 

X1X2X3 45 174.83 3.8851 100.15 0 

X1X2X4 60 2.5934 0.043224 1.11 0.25351 

X1X3X4 36 2.6618 0.07394 1.91 0.00085 

X2X3X4 60 3.2528 0.054214 1.4 0.02278 

X1X2X3X4 180 10.385 0.057693 1.49 0.00002 

Error 52320 2029.5 0.038791 - - 

Total 52799 2936.2 - - - 
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Table 3. The difference in the mean value between the five methods. Bold numbers 

refers to significant differences in the mean value at a 0.001 level. * The numbers 

down the columns are the differences in the mean from the model on top to the model 

on the left. If the difference is positive, it means that the model on top has a higher 

GOF factor than the model to the left. 

 

Model number  

1 2 3 4 5 

1  -0.0075 -0.1019 -0.0076 -0.0089 

2 0.0075  -0.0945 -0.0001 -0.0014 

3 0.1019 0.0945  0.0944 0.093 

4 0.0076 0.0001 -0.0944  -0.0013 

M
od

el
 n

um
be

r 

5 0.0089 0.0014 -0.093 0.0013  

 

Rinnan, Å., Riu, J., Bro, R.  23 



Multi-way prediction in the presence of uncalibrated interferents 

Figure captions 

Figure 1: A two-factor decomposition by PARAFAC of a data-cube X into triads and 

a residual-cube E. 

Figure 2: The four different congruence matrices used in the simulations. (d) is the 

congruence matrix that was used for the scores. The congruence matrices in the figure 

are for the 4-analytes case. The matrices for the 3-analytes case is identical but with 

one analyte less. The number of uncalibrated interferents was set to three in all cases. 

Figure 3: The scores and loading of PARAFAC coded according to Analytes, 

Interferents, Calibration set and New Samples. 

Figure 4: The cumulative relative sum of the binned GOF-factors for the six different 

calibration set types. 

Figure 5: The cumulative relative sum of the binned GOF-factors for the four 

different congruence matrices. ‘a’-‘d’ indicates the congruence patterns shown in 

Figure 2. 

Figure 6: The cumulative relative sum of the binned GOF-factors for the four 

different noise patterns coded according to the legend. 

Figure 7. Comparison between the GOFs obtained using PARAFAC model 1 and 

GRAM. 
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Figure 1 
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Figure 2 

 

 (a) 

 

(b) 

 
(c) 

 

(d) 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Abstract 

In Part 1 of this series, a new simplified expression was derived for estimating 

sample-specific standard error of prediction in inverse multivariate regression. The 

focus was on the application of this expression in multilinear partial least squares 

(N-PLS) regression, but its scope is more general. In this paper, the expression is 

applied to a fluorescence spectroscopic calibration problem where N-PLS 

regression is appropriate. Guidelines are given for how to cope in practice with the 

main assumptions underlying the proposed methodology. The sample-specific 

uncertainty estimates yield coverage probabilities close to the stated nominal value. 

Similar results were obtained for standard (i.e., linear) PLS regression and principal 

component regression on data rearranged to ordinary two-way matrices. The two-

way results highlight the generality of the proposed expression. 

 

KEYWORDS: Multiway calibration; Partial least squares; Standard error of 

prediction; Fluorescence spectroscopy; Noise addition 
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1 Introduction 

It is considered good analytical practice to report a result together with an estimate 

of its uncertainty. For example, when fitting a line through scattering x-y points, it 

is desirable to construct the familiar confidence and prediction bands using well-

known expressions from basic statistics. Interestingly, calibration methodology 

differs greatly when moving to more complex data structures, i.e., multivariate and 

multiway data. Beyond univariate calibration, the only generally accepted approach 

to prediction uncertainty is to use an overall measure such as root mean square 

error of prediction (RMSEP), hence for any prediction the uncertainty is set to a 

constant value [1]. Clearly, a negative aspect of this global uncertainty estimate is 

that it does not yield realistic prediction intervals. However, the required sample-

specific prediction uncertainty estimates are available for latent variable (LV) 

methods in general, see [2] for a review of various proposals. Very recently, a 

simple and user-friendly expression for standard error of prediction (SEP) has been 

derived and tested on multiway models using Monte Carlo simulations [3]. It 

performed well for standard (i.e., linear) partial least squares (PLS) regression 

applied to near infrared (NIR) data sets [4]. The purpose of the current work is to: 

• demonstrate the practical utility of our simple expression on fluorescence 

data, and 

• identify the conditions that are critical for reliable use of the proposed 

methodology. 

 

2 Theory 

Since a detailed discussion of the proposed expression is given in Part 1 [3], we 

restrict ourselves to pointing out the relationship with variations of RMSEP, as 

well as another expression for sample-specific SEP. These relationships may lead 

to a better understanding of the properties of our proposed expression. To simplify 

the presentation, we have found it convenient to slightly adapt the earlier notation. 
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2.1 Prediction uncertainty on the global set level 

Current practice is to characterise (multivariate or multiway) prediction uncertainty 

on the set level. An RMSEP–value is calculated as the root mean squared 

difference between predictions and reference values. It is important to stress that 

this procedure is only sound when the noise in the reference values is negligible 

compared with the true prediction uncertainty. The reason for this is that prediction 

errors are defined with respect to the true quantities, rather than noisy reference 

values. Consider the ideal situation where one has the perfect model and noisy 

reference values – a mental experiment. Of course, this limit is not practical, but 

adding noise to the reference values as described by DiFoggio [5] and Coates [6] 

can always approach it to some extent. Clearly, the predictions should be perfect 

and the only contribution to RMSEP would originate from the measurement error 

in the reference values. In this extreme case, RMSEP would just estimate the 

standard deviation (square root of the variance) of the measurement error of the 

reference value – it would not relate to the true prediction uncertainty at all! Thus, 

in general, the presence of this spurious error component leads to a so–called 

apparent RMSEP [5]: 

 ( )
½

1

2
ref,app ˆ

1RMSEP ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

I

i
ii yy

I
 (1) 

where I denotes the number of samples in the test set,  is the prediction of 

property y for sample i and  is the associated reference value. A simple but 

effective correction for the spurious error component leads to a so–called corrected 

RMSEP [5,7] : 

iŷ

iy ref,

 [ ]½
appcor MSEPRMSEP yV∆−=  (2) 

where  is an estimate for the measurement error variance associated with the 

reference method. This correction has been used successfully for NIR [8] and 

Raman [9] applications. If knowledge on  is lacking, it can be set to zero and 

the more pessimistic apparent RMSEP is then obtained. 

yV∆

yV∆
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2.2 Prediction uncertainty on the individual sample level 

Characterising prediction uncertainty on the set level is the best way to answer 

important questions like “how good is my calibration?” It is therefore logical, for 

example, to monitor changes in the (set level) RMSEP when optimising a 

calibration model (spectral pre–treatment, factor selection, etc.). However, as noted 

before, this procedure does not lead to sample–specific prediction intervals with 

good coverage probability. The American Society for Testing and Materials 

(ASTM) has recognised the need for a sample–specific SEP [10] and recommends 

using the expression originally proposed by Höskuldsson [11]: 

 ( )[ ]½
appapp, MSEC1SEP ii h+=  (3) 

where  symbolises the leverage for sample i and MSEC stands for the mean 

square error of calibration. This expression is implemented in certain commercial 

software [12]. 

ih

 

The leverage is related to the distance of a sample to the mean of the calibration set 

data. The calculation of MSEC is similar to the calculation of the apparent (set 

level) RMSEP, i.e. Eq. (1), but now one has to account for the degrees of freedom 

of the calibration model. Because MSEC is explicitly based on reference values, 

Eq. (3) leads to an apparent sample–specific SEP when the reference method is 

imprecise. In other words, Eq. (3) is the sample–specific analogue of Eq. (1). 

Clearly, the correction in Eq. (2) can also be applied on the sample level, leading to 

our proposal [3] 

 ( )[ ]½
appcor, MSEC1SEP yii Vh ∆−+=  (4) 

 

which was derived in Part 1 based on an approximation of a local linearization 

approach.  

 

Notice that only the leverage reflects the individual differences. As leverages are 

simple to calculate this expression is highly operational. The quality of the 
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expression is crucially dependent on the quality of the estimate of MSECapp. 

Ensuring that the calibration model is sound, robust and representative is therefore 

of significant importance to be able to rely on the use of Eq. 4. This is in fact 

similar to the situation in univariate regression. For example, a model where the 

MSEC changes significantly by the in- or exclusion of one sample cannot be 

considered to provide a robust hence reliable estimate of MSEC. Likewise, if the 

cross- or testset-validated mean square error differs markedly from MSEC, then 

most likely the estimate can not be considered to be appropriate. Some practical 

guidelines on how the adequateness can be assessed are provided in the 

experimental section. 

2.3 Validation of proposed sample-specific uncertainty 

estimate 

Comparing the coverage probabilities of the resulting prediction intervals with the 

nominal value would validate Eq. (4). Unfortunately, this requires error-free 

reference values. However, the direct relationship between Eqs. (3) and (4), 

ensures that an equivalent test follows from the studentised apparent prediction 

residuals, 

 Ii
yy

t
i

ii
i ,,1

SEP
ˆ

app,

ref, L=
−

=  (5) 

These should be approximately distributed as Students t with degrees of freedom 

(f) associated with the MSEC estimate [3]. In particular, the standard deviation 

should be close to )2/( −ff . As SEPapp does not rely on the actual reference 

measurements in the validation set, the measurement errors in these are of no 

consequence for the evaluation. 

2.4 Checking validity of the regression model 

For a specific regression model it is possible to verify whether the approach for 

estimating the sample-specific SEP (Eq. 4) is appropriate. As described in Part 1, 

the formula is based on a local linearization and the validity of this first-order 
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approximation can be tested. In this paper a noise-addition approach will be used 

for this purpose. From a principal component analysis (PCA) model of the 

predictor (spectral) data, the noise level in X can be determined. Adding different 

multiples of this level of random Gaussian noise to X leads to different realizations 

of the regression vector, and associated predictions of y. If the first-order 

approximation is valid, the standard error in the regression vector and hence in the 

predictions should increase linearly with the noise added. The presence of linearity 

can then be verified formally or visually in simple manners as will be shown in the 

experimental part. Test set predictions are used for assessing linearity as fitted 

values can led to spurious results when performed in an unsupervised fashion 

(fixing the number of components). Noise is added to both the calibration and the 

test data. 

3 Experimental 

3.1 Generation of the data 

The data set used in this paper is part of a larger data set prepared for the study of 

several topics in fluorescence spectroscopy. The part not used here is characterised 

by specific artificially induced problems (e.g. co-varying components). The 

selected analytes have very similar excitation and emission spectra (see Figure 1). 

Consequently, the calibration problem is fairly difficult. 

 

Figure 1: The pure excitation and emission spectra for the five fluorophores used in 

the data set. 

 

The fluorescence spectra of 131 samples were recorded. Five different analytes 

were used: catechol (Sigma, approx. 99%), hydroquinone (Riedel-deHaën, min. 

99.5%), indole (Riedel-deHaën, min. 99%), L-tryptophan (Merck, min. 99%) 

and/or DL-tyrosine (Sigma, min. 98%). All samples were mixtures of 2 to 4 of 
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these fluorophores. The concentration ranges of the fluorophores in the samples are 

stated in Table 1. 

 

Table 1: Concentration ranges for the analytes. 

Analyte Concentration in 10-6M 

Catechol 0-87.0 

Hydroquinone 0-22.5 

Indole 0-5.46 

Tryptophan 0-7.44 

Tyrosine 0-12.14 

 

The samples were prepared through several dilution steps with deionised water. 

First, a small amount of each analyte was weighted and transferred to a container. 

It was further diluted into standard strength, before they were mixed and diluted to 

the desired concentrations. The prepared samples were then measured by a Varian 

Eclipse Fluorescence Spectrometer. The settings for the instrument were: slit 

widths 5nm (for both excitation and emission), emission wavelengths 230-500nm 

(recorded every 2nm) and excitation wavelengths 230-320 (recorded every 5nm), 

scan rate 1920 nm/min and a PMT (photo multiplier tube) detector voltage of 

600V. The sample was excited with lowest energy (highest excitation wavelength) 

first and then up to the highest energy excitation. Every sample was left in the 

instrument for a total of five replicate scans. The total recording time for one 

sample was approximately 15 min. 

Every day a standard was run before and after analysis in order to ensure that there 

was no drift in the instrument. 

3.2 Outlier detection and wavelength selection during 
calibration 

Eq. (4) only accounts for the effect of random noise in the data as well as the model 

[3]. Consequently, it is crucial for the analyses performed here, that the calibration 
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model is well behaving. The term well behaving is difficult to quantify, but it 

means that the model is primarily reflecting the systematic variation foreseen in 

new samples. This can be quantified by assessing how close the model fit is to the 

(cross-) validated fit or by influence analysis. In line with this requirement, it is of 

importance to remove abnormal and extreme samples as well as irrelevant 

variables. Such outliers and irrelevant variables deteriorate any sound statistical 

evaluation of the model and lead to misleading statistics. Outlying behaviour can 

come from: pollution in the sample, irregular behaviour of the instrument, incorrect 

sample preparation, extremely high or low concentration of an analyte, etc. 

 

One method for outlier detection is based on initial PLS analyses, and the visual 

inspection of the T vs. U-score plots. These plots describe the relationship between 

X and Y. For a good prediction model with relevant variables, these plots should be 

approximately straight lines indicating a predictive relation between X and Y. If a 

sample diverges significantly from this line compared to the other samples, it is an 

outlier – its relationship between X and Y is different from the rest. 

 

Prior to analysis, part of the recorded data was removed in order to avoid any 

scattering effects that are present in fluorescence spectroscopy [13]. The emission 

wavelength ranges 230-296 nm and 422-500 nm were removed, together with the 

excitation wavelength ranges 230-240nm and 300-320nm. This reduced the 

landscapes from 136×19 (emission × excitation) down to 62×10. Further, only the 

first replicate measurement of each sample was used in this analysis.  

3.3 Calculation of the measurement error in the reference 

values 

The samples were prepared in several dilution steps. Consequently, there are 

several uncertainties to be accounted for upon estimating the final uncertainty of 

the reference values. In order to calculate the uncertainty induced by the different 

dilution steps, the following error propagation formula has been used: 
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where 'σ ' denotes the standard deviation in the associated variable, '∂ ' symbolises 

a partial derivative, Q is the total number of parameters with uncertainties and  

( ) is a parameter of y. 

qx

Qq ,,1L=

 

The steps involved in making the solution were as follows: an amount of solid was 

weighed and transferred to a 250ml container, 10 ml of this was taken out using a 

pipette, and transferred to a 100 ml container and 0.5 to 2 ml of this was taken out 

using an adjustable pipette and transferred to a 10 ml container. 

 

An example of the uncertainty for one of these steps is as follows: 
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where  and  denote the new and old concentration, respectively,  is 

the volume of the pipette used to transfer the analyte, and  is the volume of 

the new container. Estimates of the measurement uncertainties for the different 

steps are most often given on the measuring equipment itself (see Table 2). 

newV oldV Pvol

Cvol
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Table 2: Measurement uncertainties in the equipment used in the preparation of the 

samples. 

Parameter Amount Uncertainty 

Weight 0-1g 0.0001 g 

VolumeC,1 250 ml 0.23 ml 

VolumeC,2 100 ml 0.1 ml 

VolumeC,3 10 ml 0.038 ml 

VolumeP,1 10 ml 0.03 ml 

VolumeP,0.5ml 0.5 ml 0.0075 ml 

VolumeP,1ml 1 ml 0.008 ml 

VolumeP,2.5ml 2.5 ml 0.015 ml 

 

Each analyte was present at four levels of concentration, and can thus be coded 

from 1 to 4. Since the measurement error of the weight was constant over its range, 

and the relative uncertainty of the last pipette (VP,0.5ml, VP,1ml, and VP,2.5ml) increased 

with decreasing volume, the uncertainties varied among the analytes, as well as for 

the different concentrations (see Table 3). The relative uncertainties vary from 

0.8% for the highest concentration of catechol, hydroquinone and tyrosine, to 2.1% 

for the lowest concentration of indole. In the remainder of this paper the lowest 

reference uncertainty – 0.8% – is used as a lower bound of the uncertainty. This 

will give the most pessimistic results for the confidence limits, see Eq. (4). In this 

way, the presentation of unrealistically good results is avoided. 
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Table 3: Uncertainty in the reference value for the different analytes with varying 

concentration. 

Uncertainty in % 

Relative concentration Analyte 

1 2 3 4 

Catechol 1.6 0.9 0.9 0.8 

Hydroquinone 1.6 1.0 1.0 0.8 

Indole 2.1 1.6 1.6 1.5 

Tryptophane 1.7 1.1 1.1 0.9 

Tyrosine 1.6 1.0 1.0 0.8 

 

4 Results and discussion 

Calibration models were constructed using both N-PLS as well as standard PLS 

and PCR. Only the results of N-PLS are shown in the following, but similar results 

were obtained for the two-way calibration models. 

4.1 Constructing the model 

The data set was divided into a calibration set of 35 samples and a validation set of 

86 samples. 

  

Initial PLS models were made for each analyte in order to check for gross outliers. 

Two T vs. U-score plots – showing the relationship between X and Y – showed one 

outlier each, see Figure 2, hence the total number of samples were reduced to 129. 

Other traditional outlier diagnostics were also investigated, but no additional gross 

outliers were identified. By close inspection of the experimental setup and the two 

spectra in question, it was clear that the two samples were prepared wrongly. For 

the first outlier, the amount of catechol in the sample was less than it should be 

according to the experimental setup. For the second outlier the hydroquinone 

concentration was higher than planned. So, not only do these outliers make sense 
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from a statistical point of view, but it is also possible to backtrack and investigate 

the actual reason for the outlying behaviour. 

 

Figure 2: T vs. U plots from PLS of a) Catechol – PC5, and b) Hydroquinone – PC3, 

both showing one clear outlier. 

 

Eight additional samples were excluded during specific model building as potential 

outliers. These samples were not extreme outliers as the above-mentioned. For 

most, reasonable explanations for the outlying behaviour was possible to find but 

not for all. However, in order for the distributional properties of the uncertainties to 

be meaningful, even moderate outliers are necessary to remove especially when 

validating the method. Thus, given the large sample size, even some debatable 

outliers were removed in order to be absolutely certain that these did not bias the 

calibration model or the evaluation of the prediction results. In a more realistic 

setting, the decision on which samples to remove could be different depending on 

purpose, but in this paper, the main issue is to show that the formulas work for data 

of good quality. Univariate regression statistics do not work well when influential 

samples are present, and the same holds in multivariate regression. The issue here 

is not finding the limit for when the formulas work but to show that they do 

provide meaningful results for absolutely meaningful data. Hence, we want to 

remove (a little too many) objects to make sure that the results are not due to an 

unfortunate choice of samples. 

 

The choice of the calibration set size was based on having enough samples to 

adequately span the space of interferents and analyte. The remainder of the samples 

was then assigned as the test set. A relatively large test set is required to verify the 

properties of the distribution of studentised prediction residuals. Only tryptophan is 

discussed in the following as an example. Its concentration ranged from zero to 

7.443 µmol/L, but the concentrations were scaled such that the maximum value 

was 1 (for convenience of plotting). The design was purposely chosen so that some 
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of the prediction samples were slightly outside the region of the calibration 

samples. This was done in order to test the approach in a demanding 

(extrapolation) situation (Figure 3).   

 

Figure 3: Second (14% variance explained)) versus first (68%) principal component 

using calibration and prediction spectral data. The plot shows how the prediction 

samples extend beyond the space of the calibration samples. 

 

The adequacy of Eq. (4) depends directly (and almost solely) on having an accurate 

estimate of the calibration error. Recall that Eq. (4) is obtained by propagating 

random errors through the model; any systematic error in the model itself is not 

accounted for. The presence of significant model error shows up in, for example, a 

proper test set or cross-validated mean square error. If the model error is 

insignificant, then it follows that MSEC and MSECV should be of similar size. In 

case there is a significant model error, larger deviations are expected. Thus, by 

monitoring the gap between MSEC and MSECV, an indication of the validity of 

the formula can be obtained. 

 

Figure 4: Calibration errors as a function of the number of components used. 

 

In this investigation, the number of components was chosen manually based on a 

comparison of the cross-validated and fitted predictions. In Figure 4 the calibration 

(RMSEC) and cross-validation (RMSECV) results are shown for the current data 

problem. The prediction results (RMSEP) are also shown for convenience as well 

as the concentration reference uncertainty (SDy) which is situated almost on top of 

the 0 axis. A six-component model was chosen due to the minimum value of 

RMSECV and also due to the small gap between RMSEC and RMSECV at this 

number of components. 
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The predictions obtained with the six-component model are shown in Figure 5. 

 

Figure 5: Predictions for calibration (left) and test set (right). Target line 

superimposed. 

 

To verify that the sample-specific standard errors of predictions can be trusted it is 

necessary to test that the local linearization of the error in the regression vector 

estimate is a valid approximation. By noise-addition as described in the theory 

section, predictions of the test set samples are obtained for different levels of 

random noise added. The noise level was determined from the residuals of a six-

component PCA model of the spectral data. With the added noise, six-component 

PLS models were determined and used to predict the test set samples. 

 

Figure 6: Prediction standard errors for test set predictions using N-PLS and unfold 

PLS with different levels of noise.  

 

As can be seen in Figure 6, the standard error increases linearly with the noise level 

at least up to twice the intrinsic amount of noise. After this point, the added noise 

leads to a non-linear relation between amount of added noise and prediction 

standard error. Because of the linearity for low levels of added noise, the local 

linearization and the equations for sample-specific standard errors can be assumed 

to be valid from this point of view.  

 

Figure 6 also shows that the predictions from unfold PLS are more sensitive to the 

added noise than is the case for N-PLS. This is in agreement with expectations for 

low-noise low-rank trilinear data where the excess free parameters in unfold PLS 

are not needed for describing the systematic part of the data and hence lead to more 

noisy regression coefficient estimates. 
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4.2 Validation of proposed sample-specific uncertainty 

estimate 

Using Eq. (4), the predictions in Figure 5 (right) can be assigned individual 

uncertainty estimates. In Figure 7, this uncertainty is reported as twice the 

estimated standard error. Also shown is the prediction interval that is calculated as 

twice the RMSEP. In that case, the same interval is obtained for all samples. For 

low concentration samples this typically (though not automatically) leads to too 

large intervals while the converse holds for high concentrations.  

 

Figure 7: Test set predictions with uncertainty. For each prediction, two ‘confidence 

limits’ are given (almost superimposed). The left-most is calculated from Eq. 4, while 

the right-most is twice the RMSEP. The uncertainty in the reference value is also 

shown but is of insignificant magnitude. 

 

For the intervals in Figure 7 the sample specific intervals vary by 115% as opposed 

to the constant size obtained from RMSEP. It is possible to assess how the sample-

specific error coverage compares with an overall RMSEP based coverage. The set 

level RMSEP assumes identical prediction error but as this is not a valid 

assumption (compare with the univariate case), a systematic bias is expected from 

the RMSEP based coverage. Indeed, the RMSEP-based coverage of all samples is 

too high for low levels and too low for high levels (Table 4). The coverage based 

on sample-specific prediction errors is in better agreement with the theoretically 

expected results.  
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Table 4. Percentage coverages. 

Level .70 .80 .90 .95  

Theoretical 60 69 77 82 

Sample-specific 62 70 76 82 

RMSEP 67 72 79 80 

All samples 

Theoretical 34 39 44 47 

Sample-specific 36 40 41 46 

RMSEP 40 41 46 46 

Zero-

concentration 

samples 

 

In Figure 8 the studentized residuals are shown for the prediction residuals in all 

and for the zero-concentration sample residuals. The theoretically expected 

standard deviation is )2( −ff  where f = 35-7 which equals 1.04. Although not 

perfect, the empirically observed values are close. This even holds for the zero-

concentration samples; a result that is important e.g. for determining limit-of-

detection. Clearly a similar approach based on RMSEP would hold little promise 

(Table 4). 

 

Figure 8. Studentized prediction residuals calculated using Eq. (5) for (a) entire test 

set and (b) zero-concentration samples. 

5 Conclusions 

In this paper the approach for estimation of sample-specific prediction errors 

developed in part 1 has been has been put to the test. The example shows that when 

the assumptions are carefully assessed to be valid, the sample-specific errors 

provide a more adequate and detailed view on the prediction errors than e.g. 

obtained from traditional RMSEP based overall errors. The approach is based on a 

local linearization, but in this paper, the direct connection to earlier approaches to 

sample-specific prediction errors has also been highlighted. The obtained results 

are stimulating and point to several useful developments e.g. for limit-of-detection 

estimation. 

Bro, R., Rinnan, Å., Faber, N.M. 17 



Standard Error of Prediction for Multilinear PLS. 2. 
 
 

Acknowledgement 
The authors gratefully acknowledge support from the Centre for Advanced Food 

Studies and the Danish Technical Research Council (project 1179) for financial 

support. 

 

Reference List 

 

 1.  Martens H, Næs T, Multivariate calibration. Wiley & Sons, Chichester, 
1989. 

 2.  Faber NM, Song XH, Hopke PK, Sample-specific standard error of 
prediction for partial least squares regression, Trac-Trends in 
Analytical Chemistry, 2003, 22, 330-334. 

 3.  Faber NM, Bro R, Standard error of prediction for multiway PLS 1. 
Background and a simulation study, Chemom Intell Lab Syst, 2002, 
61, 133-149. 

 4.  Fernandez Pierna JA, Jin L, Wahl F, Faber NM, Massart DL, Estimation of 
partial least squares regression prediction uncertainty when the 
reference values carry a sizeable measurement error, Chemom Intell 
Lab Syst, 2003, 65, 281-291. 

 5.  DiFoggio R, Examination of some misconceptions about near-infrared 
analysis, Appl Spectrosc, 1995, 49, 67-75. 

 6.  Coates DB,  Spectroscopy Europe, 2002, 14, 24-26. 

 7.  Faber NM, Kowalski BR, Improved prediction error estimates for 
multivariate calibration by correcting for the measurement error in 
the reference values, Appl Spectrosc, 1997, 51, 660-665. 

 8.  Sørensen LK,  Journal of Near-Infrared Spectroscopy, 2002, 10, 15-25. 

 9.  Wolthuis R, van Aken M, Fountas K, Robinson JS, Bruining HA, Puppels 
GJ, Determination of water concentration in brain tissue by Raman 
spectroscopy, Anal Chem, 2001, 73, 3915-3920. 

18  Bro, R., Rinnan, Å., Faber, N.M. 



Standard Error of Prediction for Multilinear PLS. 2. 

 10.  The American Society for Testing and Materials (ASTM),  Practice E1655-
00. ASTM Annual Book of Standards, Vol. 03.06, ASTM, 2001, 573-
600. 

 11.  Höskuldsson A, PLS regression methods, J Chemom, 1988, 2, 211-228. 

 12.  PerkinElmer Inc., Quant+ software.2002,  

 13.  Lakowicz JR, Principles of Fluorescence Spectroscopy. Kluwer Academic, 
New York, 1999. 

 
 

Bro, R., Rinnan, Å., Faber, N.M. 19 



Standard Error of Prediction for Multilinear PLS. 2. 
 
 

 
 

FIGURE 1 

 

)  b) a

FIGURE 2 

 

20  Bro, R., Rinnan, Å., Faber, N.M. 



Standard Error of Prediction for Multilinear PLS. 2. 

 

-0.2 -0.16 -0.12 -0.08 -0.04 0

-0.2

-0.1

0

0.1

0.2

Scoreplot

Component 1

C
om

po
ne

nt
 2

Prediction

Calibration

Prediction

Calibration

-0.2 -0.16 -0.12 -0.08 -0.04 0

-0.2

-0.1

0

0.1

0.2

Scoreplot

Component 1

C
om

po
ne

nt
 2

Prediction

Calibration

Prediction

Calibration

 

FIGURE 3 

 

 

 

 

 

Bro, R., Rinnan, Å., Faber, N.M. 21 



Standard Error of Prediction for Multilinear PLS. 2. 
 
 

0 1 2 3 4 5 6 7

0.05

0.1

0.15

0.2

0.25

0.3

8
Factors

R
M

SE

RMSEC
RMSEP
SDy
RMSECV

0 1 2 3 4 5 6 7

0.05

0.1

0.15

0.2

0.25

0.3

8
Factors

R
M

SE

RMSEC
RMSEP
SDy
RMSECV

 

FIGURE 4 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Reference value
0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6 Calibration samples

Reference value

P
re

di
ct

io
n

Prediction samples

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Reference value
0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6 Calibration samples

Reference value

P
re

di
ct

io
n

Prediction samples

 

FIGURE 5 

22  Bro, R., Rinnan, Å., Faber, N.M. 



Standard Error of Prediction for Multilinear PLS. 2. 

 

  

0.5 1.5 2.5 3.5 4.5

1.1

1.3

1.5

1.7

1.9

Additional noise added

R
el

at
iv

e 
in

cr
ea

se
 in

 s
ta

nd
ar

d 
er

ro
r o

f p
re

di
ct

io
n unfold-PLS

N-PLS

0.5 1.5 2.5 3.5 4.5

1.1

1.3

1.5

1.7

1.9

Additional noise added

R
el

at
iv

e 
in

cr
ea

se
 in

 s
ta

nd
ar

d 
er

ro
r o

f p
re

di
ct

io
n unfold-PLS

N-PLS

 

FIGURE 6 

Bro, R., Rinnan, Å., Faber, N.M. 23 



Standard Error of Prediction for Multilinear PLS. 2. 
 

0 20 40 60 80

0

0.4

0.8

1.2

Prediction sample

P
re

di
ct

an
d

Maximal difference in Spe = 115%

Reference value
Prediction

0 20 40 60 80

0

0.4

0.8

1.2

Prediction sample

P
re

di
ct

an
d

Maximal difference in Spe = 115%

Reference value
Prediction

 

FIGURE 7 

 

24  Bro, R., Rinnan, Å., Faber, N.M. 



Standard Error of Prediction for Multilinear PLS. 2. 

-3 -2 -1 0 1 2 30

5

10

15

20

25

Studentized residual

Fr
eq

ue
nc

y 
co

un
t

Standard deviation = 1.08

-3 -2 -1 0 1 2 30

2

4

6

8

10

12

14

16

Studentized residual

Fr
eq

ue
nc

y 
co

un
t

Standard deviation = 1.19

Only zeros

a)

b)

-3 -2 -1 0 1 2 30

5

10

15

20

25

Studentized residual

Fr
eq

ue
nc

y 
co

un
t

Standard deviation = 1.08

-3 -2 -1 0 1 2 30

5

10

15

20

25

Studentized residual

Fr
eq

ue
nc

y 
co

un
t

Standard deviation = 1.08

-3 -2 -1 0 1 2 30

2

4

6

8

10

12

14

16

Studentized residual

Fr
eq

ue
nc

y 
co

un
t

Standard deviation = 1.19

-3 -2 -1 0 1 2 30

2

4

6

8

10

12

14

16

Studentized residual

Fr
eq

ue
nc

y 
co

un
t

Standard deviation = 1.19

Only zeros

a)

b)

 

FIGURE 8 

Bro, R., Rinnan, Å., Faber, N.M. 25 


	Title
	Preface
	Summary
	Oppsummering
	List of papers
	Table of contents
	Introduction
	Fluorescence spectroscopy
	Detection range
	Quenching and inner filter effect

	Excitation-emission matrix
	Scatter effects
	Rayleigh scatter
	Raman scatter


	LF-NMR
	Basic NMR Theory
	Carr-Purcell-Meiboom-Gill (CPMG)

	Chemometrics theory and major results
	PARAFAC
	Chemometrics and Fluorescence Spectroscopy
	Number of components
	Light scatter
	Ways of removing Rayleigh

	Stabilizing the PARAFAC decomposition

	Chemometrics and LF-NMR
	Exponential fitting
	Distributed exponential fitting
	Matrix fit
	SLICING
	Applications of SLICING
	Regression analysis on LF-NMR data

	Second order prediction
	Uncertainty estimates in second-order prediction

	Validation
	Split-Half
	Cross-validation
	Jack-Knifing
	Bootstrapping


	Practical perspectives
	Reference list
	Paper I
	Abstract
	Introduction
	Method
	Results
	Conclusion
	Appendix

	Paper II
	Abstract
	Introduction
	Materials and methods
	Results and Discussion
	Conclusion

	Paper III
	Abstract
	Introduction
	Materials and Methods
	Results
	Conclusion

	Paper IV
	Abstract
	Introduction
	Experimental
	Results and Discussion
	Conclusion

	Paper V
	Abstract
	Introduction
	Materials and Methods
	Results and Discussions

	Paper VI
	Abstract
	Introduction
	Materials and Methods
	Data analysis and methods
	SLICING
	Results and discussions
	Conclusion

	Paper VII
	Abstract
	Introduction
	Theory and methods
	Data analysis and modeling
	Results and discussions
	Conclusion

	Paper VIII
	Abstract
	Introduction
	Theory
	Experimentation
	Results and discussion
	Conclusion

	Paper IX
	Abstract
	Introduction
	Theory
	Experimental
	Results and discussion
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 2400
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 2400
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [4000 4000]
  /PageSize [481.890 694.488]
>> setpagedevice




