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Summary

The purpose of this PhD study has been to estimate critical process parame-
ters and quality attributes of pectin production, both in-line, on-line and at-
line on process liquids and precipitated pectin press cake, and off-line on the
final pectin product. The approach taken is that of Process Analytical Chemis-
try (PAC) whose concepts have later been adopted into the broader term
Process Analytical Technology (PAT). PAT deals with the integration of proc-
ess analyzers (e.g. spectroscopic instruments) and multivariate data analysis
e.g. chemometrics for process control and continuous improvement.

The thesis consists of six chapters followed by one poster and three papers.
The first chapter of the thesis gives an introduction and framework for the
thesis. The second chapter deals with the basics of spectroscopy followed by
an introduction to chemometrics exemplified by data from the three papers.
The fourth chapter describes pectin and the benefit from implementing PAT
into the pectin production. The final two chapters conclude the thesis and
provide a perspective for future developments of PAT and chemometrics.

Paper I describes the development of on-line near infrared based measure-
ment points for the determination of ammonia (and isopropyl alcohol) with
focus on on-line control and dosing of the ammonia for the pectin amidation
process. Poster I and Papers II-III describe a novel method developed to
measure the carboxylic acid distribution corresponding to the intramolecular
ester distribution (i.e. the blockiness) of pectin. The presented setup is an off-
line method capable of analysing finished pectin. The poster was presented
at the 9" Conference on Chemometrics in Analytical Chemistry, Lisbon, 2004
and the papers were all published in the international peer reviewed scien-
tific journal Chemometrics and Intelligent Laboratory Systems during 2005-2006.

The research presented in this thesis has revealed a deeper insight and un-
derstanding of commercial pectin processing and the structure of pectin.
New value has been created through improved product functionality, qual-
ity, quantity, and processing capability.
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Resumeé

Formaélet med dette PhD-studie har veeret at estimere kritiske procespara-
metre og kvalitetsegenskaber i pektinproduktionen, bade in-line, on-line og
at-line pa procesveesker og udfeldet pektinpressekage samt off-line pa feer-
digvare af pektin. Den benyttede indfaldsvinkel er Proces Analytisk Kemi
hvis koncepter er blevet adopteret i det noget bredere udtryk Proces Analy-
tisk Teknologi (PAT). PAT omhandler integration af analyseinstrumenter i
processen (f.eks. spektroskopiske instrumenter) og multivariat dataanalyse
(f.eks. kemometri) til at kontrollere og lobende forbedre processen.

Afhandlingen bestar af seks kapitler efterfulgt af en poster og tre artikler.
Det forste kapitel i athandlingen giver en introduktion og ramme for athand-
lingen. Det andet kapitel omhandler basal spektroskopi efterfulgt af en in-
troduktion til kemometri eksemplificeret med data fra de tre artikler. Det
fjerde kapitel beskriver pektin og fordelene ved at implementere PAT i pek-
tinproduktionen. De to sidste kapitler konkluderer afhandlingen og giver et
perspektiv for fremtidig udvikling indenfor PAT og kemometri.

Artikel I beskriver udviklingen af et on-line neer infrarods-baseret male-
punkt til bestemmelse af ammoniak (og isopropylalkohol) med fokus pa on-
line kontrol og dosering af ammoniak i amideringsprocessen af pektin. Po-
ster I og Artikel II-III beskriver en ny metode udviklet til at bestemme car-
boxylsyrefordelingen, svarende til den intramolekyleere esterfordeling (dvs.
om esterne sidder blokvis) i pektinen. Den praesenterede opstilling er en off-
line metode, der kan analysere feerdigvare af pektin. Posteren blev praesente-
ret pa den 9. konference om kemometri i analytisk kemi, Lissabon, 2004 og
artiklerne blev alle publiceret i det internationale videnskabelige tidsskrift
Chemometrics and Intelligent Laboratory Systems i perioden 2005-2006.

Forskningen preesenteret i denne afthandling har dbenbaret en dybere indsigt
i og forstdelse af kommerciel pektinproduktion og pektins struktur. Ny veer-
di er blevet skabt igennem forbedret produktfunktionalitet, kvalitet, kvanti-
tet og produktionsevne.
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1. Introduction

The purpose of this Industrial PhD study has been to estimate critical proc-
ess parameters and quality attributes of pectin production, both in-line, on-
line and at-line on process liquids and precipitated pectin press cake, and
off-line on the final pectin product. The parameters in focus are the concen-
tration of the critical process parameters Ammonia (NHs) and Isopropyl Al-
cohol (IPA; which is a common name for propan-2-ol); and critical quality
attributes of pectin: Degree of Esterification (DE), Degree of Amidation (DA)
and Carboxylic Acid Distribution (CAD). Monitoring these parameters has
yielded a deeper understanding of pectin processing conditions. Feedback
control of these parameters has created new value through improved prod-
uct quality, quantity and process capability. Specifically, raw material grad-
ing and selection, extraction, amidation and process optimisation have been
addressed. Prediction during time of processing enables rapid process feed-
back and an increase in the proportion of production that meets quality
specifications. Included in the dissertation are one poster and three papers.
The poster was presented at the 9" Conference on Chemometrics in Analyti-
cal Chemistry, Lisbon, 2004 and the papers have been published in interna-
tional peer reviewed journals. The thesis will give a basic introduction to
Process Analytical Technology (PAT), spectroscopy, chemometrics and pec-
tin production with examples of measuring and controlling the pectin pro-
duction using these tools.

PAT is a system for designing, analyzing, and controlling manufacturing
through timely measurements (i.e. during processing by spectroscopy or
other process sensors) of critical process parameters and quality attributes of
raw and/or in-process materials and processes with the goal of ensuring fi-
nal product functionality. Near Infrared (NIR) spectroscopy is well suited
for rapid at-line and on-line determination of critical process and quality
attributes in pectin production. Chemometrics, i.e. multivariate data analysis
of chemical systems provides the necessary link between the spectroscopy
and the information sought.

The concentration of ammonia to be used in the amidation step of Low Me-
thylated Amidated (LMA) pectin production is a Critical Process Parameter
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(CPP) for the control of DA. Likewise the IPA concentration — the IPA/water
ratio — is critical for optimal precipitation; therefore both IPA and ammonia
are considered CPP’s. Furthermore, vast amounts of IPA are used through-
out the factory in many processes, and control of IPA concentration and its
regeneration in distillation columns play a vital role for the overall energy
and cost efficiency of the process. Hence, monitoring and control of IPA
process streams have an impact on economy and environment. Paper I de-
scribes the development of on-line NIR based measurement points for the
determination of ammonia (and IPA) with focus on on-line control of the
ammonia for the amidation process. Use of chemometric tools such as spec-
tral pre-processing and variable selection is crucial for the success of the ap-
plication.

Also developed is an in-line and at-line system for the determination of DE
and DA in wet High Methylated (HM) and LMA pectin press cake by re-
mote diffuse reflectance NIR spectroscopy. This system measures critical
pectin quality attributes directly. The measurement is on the pectin itself,
rather than the amidation liquid which can be regarded as a process chemi-
cal. The DE and DA of pectin can be controlled by manipulating the peel
extraction conditions (i.e. pH, time and temperature) and further on the
temperature and ammonia concentration for the amidation reaction. The
direct measurement of pectin quality attributes in-line and at-line makes
rapid feedback to the process possible. These results have not been pub-
lished in scientific literature.

Poster I and Papers II - III describe a novel method developed to measure
CAD corresponding to the intramolecular DE distribution (i.e. the blockiness)
of pectin. The presented setup is an off-line method capable of analysing
finished pectin. Contrary to other published methods, it involves little sam-
ple preparation and manipulation, and can easily be upgraded to at-line if
desired. The measurements can be used to assess the citrus peel used as raw
material (by using samples generated from a test extraction, which is done
routinely to measure other raw material attributes on the peel) and as a final
product. As presented in Paper III, the CAD analysis can be used for HM
pectins (with a DE > 50%) only, but can in principle be extended to include
Low Methylated (LM) and LMA pectins. Advanced multi-way chemomet-
rics and Multivariate Curve Resolution (MCR) are applied to the data in or-
der to develop predictive models.
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Spectroscopy

Improved instrumentation for performing in-line, on-line and at-line spec-
troscopy has become available during the last decade, and combining input
and knowledge gained from several measurement points is now commer-
cially feasible. The instruments yield chemical, physical and structural in-
formation about the pectin being produced. Recent advances in NIR detec-
tors, combined with radically improved fibre optics and probe technology
make long distance solid-state diffuse reflectance spectroscopy possible us-
ing multiplexing NIR spectrophotometers. Thus, it is now possible with one
NIR instrument to acquire spectra from pectin at several measurement
points on the production line. This can involve designing and inserting
probes in harsh process environments. Furthermore, sampling procedures
have to be developed for retrieving representative process samples and pre-
senting them in a suitable form to mentioned equipment in order to measure
and calibrate the instruments towards pectin structure and functionality
measured for instance in the Quality Control (QC) laboratories. The imple-
mentation of in-line, on-line and at-line sensors directly on the production
line has revealed profound new insights in raw materials for pectin, pectin
structure, pectin processing and relationship to pectin functionality in CP
Kelco customer applications.

Chemometrics

The development of non-destructive food analysis with the aid of spectro-
scopic screening measurements goes hand in hand with explorative data
analysis/chemometrics. Work has been done to apply, develop and substan-
tiate chemometric algorithms, based on multiple sensor input and key proc-
ess variables. The available spectroscopic, process and raw material informa-
tion has been integrated for overall optimisation of production lines in terms
of pectin quality and/or quantity. While (single) on-line sensor optimisation
on single unit operations is well described in literature, not much informa-
tion has been published on optimisation of an entire production line.

The synergistic effect of combining advanced chemometric algorithms with
advanced spectroscopic sensors has had a great impact on the Danish food
industry, which over the last ten years has implemented the methods for at-
or on-line quality control to a large extent. This effort has brought the Dan-
ish food industry to the technological forefront.
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Multi-way models are developed to handle data arrays with more than two
dimensions. Data of this sort comes up in e.g. fluorescence spectroscopy or
hyphenated methods such as Gas Chromatography-Mass Spectrometry or,
as in the case presented in this thesis, UV-VIS spectra recorded during a di-
lution gradient. Higher order data structures are found in many process ap-
plications as well. E.g. the analysis of batch productions runs — organized in
batches times local batch time times process variables — will produce a data
cube. Multi-way factor models can analyze these data arrays using the
smallest amount of parameters, giving robust models and leaving the natu-
ral structure of the data intact.

Process Analytical Chemistry and Technology

The purpose of Process Analytical Chemistry (PAC) is “to supply quantita-
tive and qualitative information about a chemical process” and furthermore
to utilize such information “...not only to monitor and control processes, but
also to optimize its efficient use of energy, time, and raw materials.” (Callis,
1987). Those thoughts were formulated 20 years ago as a result of 1) the ad-
vances in materials science in the 1970’s and 1980’s; 2) the improved under-
standing of process monitoring and control; 3) the emergence of chemomet-
rics as a discipline 4) the availability of chemical and electronic sensors and
hardware, especially “microcomputers”, which in the terminology of the
1980’s are stand-alone computers rather than terminals connected to a main-
frame computer.

PAC really matured in the 1990’s and the process analytical approach taken
was quickly adopted by many industries (Blaser, 1995; Hassell 1998). This
led to the introduction of Process Analytical Technology (PAT) where the
process analytical part is in focus, and chemistry has been replaced by the
broader term technology. It is no longer significant which kind of sensor pro-
vides the signal or which particular process is involved. In some PAC appli-
cations the chemistry part did not really apply so PAC became too restric-
tive. For this reason the use of the abbreviation PAT has prevailed, even
though many scientists and engineers are actually doing PAC.

In September 2004, the United States Food and Drug Administration (FDA)
launched a new paradigm for the Quality Control (QC) in the pharmaceuti-
cal industry. FDA published the PAT guidance document (FDA, 2004),
where PAT is defined as: A system for designing, analyzing, and controlling
manufacturing through timely measurements (i.e. during processing) of critical
quality and performance attributes of raw and in-process materials and processes

14



with the goal of ensuring final product quality. It provides a framework for un-
derstanding and controlling pharmaceutical manufacturing processes, an
area which is heavily regularized by the authorities, but the standards and
practices can readily be adopted by other industries. In fact many industries
including the chemical and food industry have been conducting PAT-like
activities before FDA formalized it. It marks a paradigm shift from releasing
the final product based on rigorous post-process quality control by off-line
analysis, to releasing products by meeting the specifications in process design
or by in-, on- or at-line analysis of process data and measurements. The
paradigm shift is that “quality cannot be tested into products; it should be built-in
or should be by design.” (FDA, 2004).

In order to achieve this, FDA has recognized four categories of tools to en-
sure effective and efficient means for acquiring information to facilitate
process understanding and provide continuous improvement. The catego-
ries are:

e Multivariate tools for design, data acquisition and analysis

e DProcess analyzers

e Process control tools

e Continuous improvement and knowledge management tools

And FDA continues with the statement: “...an appropriate combination of some,
or all, of these tools may be applicable to a single-unit operation, or to an entire
manufacturing process and its quality assurance.” (FDA, 2004). It is obvious to
realize the importance of chemometrics as a multivariate tool for data analy-
sis, the relevance and potential of spectroscopy as (rapid) process analyzers
and the need to continuously extract the relevant information in order to
provide control and give feedback, not only to the process itself, but also to
improve product recipes and facilitate further knowledge acquisition. The
relevant information can for instance be the quantification of known or un-
known compounds, to ascertain reaction pathways and kinetics, to monitor
the integrity of process hardware/equipment, or simply to do on-line feasi-
bility studies.

It has been suggested that PAC does not imply or require the knowledge or
management level required by PAT, and that PAC is only used for isolated
applications within a process environment. In my opinion, the whole con-
cept was grasped by Callis et al. in their 1987 paper (Callis, 1987).
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The modern food industry has many similarities with the pharmaceutical
industry. Food products are produced in larger quantities, are moved over
longer distances and in longer chains of distribution. This calls for a demand
for increasing shelf life but also more rigorous regulations to ensure food
safety. Also food products become more sophisticated in their design of tex-
ture and consistency, not only to improve the quality, but also to replace the
building blocks of food: Carbohydrate, protein and fat with water or air in
order to lower the prices or to reduce the energy content of the food, so even
more food may be ingested. Public awareness and concern for food safety
therefore makes the food industry as tightly regulated as the pharmaceutical
industry.

There are notable differences however. It is usually possible and customary
to reprocess off-specification food materials. This is rarely accepted in the
pharmaceutical industry. This lowers the penalty for producing products
off-specification in the food industry. Rigorous testing of pharmaceutical
products (raw-materials, in-process products and final products) are there-
fore carried out in order to minimise waste production. The demand for
rapid testing methods is essential to lower production time and storage re-
quirements of products not yet released for further processing.

The system described in Paper I is a PAT system by FDA’s definition be-
cause it provides timely measurements of the ammonia content in the pro-
duction of amidated pectin during processing. The ammonia concentration
is a critical process parameter, as it affects the final product quality of pectin.
The estimated ammonia concentration is used directly to dose ammonia in
the reactor tanks thus providing a direct feedback into the process. The ap-
plication takes advantage of all four categories of tools mentioned before:
Multivariate tools were used for the overall design and are used in the data
acquisition and analysis of the process analyzer chosen. The results are used
to control the process, and long term experience has been used to continu-
ously improve the amidation process and increase the knowledge of it.

In Figure 1, from Paper I, the essence of PAT is captured. Before the process
analyzer was taken in use, the pectin amidation process was controlled by
hourly samples titrated by process operators. Based on the desired set point
and the result of the titration, the process operator would dose ammonia
into the process tank by manually opening a valve, dosing more or less, for a
shorter or longer period of time, only based on experience. As the process
analyzer (a properly calibrated NIR instrument) became available, meas-
urements were available every 40" second. This made it possible not only to
dose ammonia much more controlled and carefully, which was the original
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challenge and task at hand. It also revealed that the effect of dosing only
once every hour resulted in sharp ammonia peaks 15% above the desired set
point, an effect much greater than anticipated.

857”””””””””’””””””””””T ””” [ R
Process titration
NIR predicted values

80

75

70

65

60

Predicted ammonia concentration (scaled)

55

50

Time (days)

Figure 1 NIR predicted values superimposed on manual ammonia titrations before
and after a process set point change taking place at day 2. The hourly titrations do
not capture the full dynamics of the manual ammonia dosing process.

The application presented in Papers II and III is not a PAT system as it is not
at-line or on-line in the process in its current setup. It does not provide
timely measurements during processing. However, it was deliberately de-
signed as a flow injection system, making it possible to move at-line if de-
sired. It would be a mere question of providing an appropriately condi-
tioned pectin sample to the injection loop.
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2. Spectroscopy

Spectroscopy is the study of the interaction between matter and electromag-
netic radiation. Spectrometry is the measurement of such radiations as a
means of obtaining information about the systems and their components
(McNaught, 1997). Electromagnetic radiation is a combination of an electric
and a magnetic field. Depending on the energy of the electromagnetic radia-
tion, a number of different processes may take place when the radiation in-
teracts with matter, namely atoms and molecules. The radiation may be
transmitted, absorbed, scattered or a combination of all. A molecule or an
atom can only absorb energy corresponding to the difference between two
energy levels within the atom or the molecule. This will lead to a transition
in the state of energy. The allowed states or levels are discrete or quantized
and specific for the interacting molecules or atoms. The information can be
examined qualitatively or quantitatively and will therefore be of interest in
the study of matter.

Electromagnetic radiation can be understood in terms of a wave model as
the radiation propagates through a media as waves. Electromagnetic radia-
tion can also be understood as a photon model, where the energy of the ra-
diation is seen distributed as photons, small “packages” of energy, which
cannot be divided any further. This duality in the understanding of electro-
magnetic radiation manifest by the physics of spectroscopy being explained
by the wave model introducing terms like wavelength, period, frequency,
velocity and amplitude, while concepts from the photon model are em-
ployed to define absorption and emission.

The electromagnetic spectrum

Electromagnetic radiation is described by the wavelength, A, or frequency, v.
The wavelength and frequency of electromagnetic radiation are related
through the equation

c=Av 1)
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where c is the velocity of light in vacuum, 2.9979-10% m-s'. The energy, E, of a
photon, which is the quantum charge of radiation is

E=hv @)

where & is Planck’s constant 6.6261-10- J-s. Typical units of energy for spec-
troscopy are the electron volts (eV = 1.6022-10° J) or kilo joule per mole
(kJ-mol). The number of particles in a mole is defined by Avogadro’s num-
ber Na, which is 6.0221-10%. This corresponds to the number of carbon-12
atoms present in 12 grams. The wavelength is defined as the length of one
passage of the propagating wave of radiation, and for the purpose of chemi-
cal spectroscopy is measured in nanometres (nm) which is 10° m or
wavenumbers (0) which is number of waves per unit, commonly reported as
waves per cm (cm™). The frequency is measured in Hertz (Hz), which is
number of wave cycles per second. See Box 1 for an example of conversion
of spectroscopic units.

Box 1: Conversion of spectroscopic units:

The radiation perceived as red light in the visible part of the electro-
magnetic spectrum corresponds to a wavelength, A, of 700 nm.

Its wavenumber o is: 1/A = 1/700-10° m = 14,300 cm?

Its frequency v is: ¢/A =2.9979-10° m-s/700-10° m = 428 THz

Its energy E is: hv = hc/A = 6.6261-10* J-s*2.9979-10% m-s7/700-10° m
=2.84-10"]=1.77 eV =171 kJ-mol*

The electromagnetic spectrum (Figure 2) is usually classified in regions by
wavelength into electrical energy, radio, microwave, infrared, the visible
region (light), ultraviolet, X-rays and gamma rays. For the purpose of chemi-
cal spectroscopy, a number of different processes may take place when the
radiation interacts with a molecule or atom. In Table 1 a summary of these
processes (quantum changes), type of spectroscopy used, and in which part
of the electromagnetic spectrum they appear, is shown. The choice of spec-
troscopy is tightly related to the specific application, the information sought,
required precision and accuracy, physical and chemical conditions of the
sample and possible interferences. As seen in Table 1, radiation in the UV-
VIS region interacts with the electrons on the outer shells of atoms and the
bonding electrons in the orbitals of molecules only.
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Figure 2 Chart of the electromagnetic spectrum illustrated with radiation sources
and applications (reproduced from SURA, 2007).

More energy-rich radiation (Extreme-UV and X-ray radiation) interacts with
the inner-shell and non-bonding electrons whereas less energy-rich radiation
(near infrared, infrared, microwave, etc.) interacts with the rotational and
vibrational states of molecules.

Table 1 List of different types of spectroscopy used and induced quantum change
in molecules by electromagnetic radiation of different wavelengths.

Type of spectroscopy Wavelength range Induced quantum change
Gamma rays 100-0.5pm Atomic nuclei excited
X-ray spectroscopy 10-0.1nm Inner electronic transitions
Ultraviolet (UV) 400-10nm Outer electronic transitions
Visible (VIS) 780 —400 nm  Outer electronic transitions
Near infrared (NIR) 2500 - 780 nm  Molecular vibrations

Mid infrared (mid IR) 50-2.5um Molecular vibrations

Far infrared (far IR) 1-0.05mm Molecular rotations
Microwave 1-0.1cm Molecular rotations
Electron spin resonance (ESR) 100-1cm Change of electronic spin
Nuclear magnetic resonance (NMR) 10-1m Change of nuclear spin
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Figure 3 shows the quantum changes induced when radiation is absorbed by
a molecule in the UV-VIS region, the NIR region, and in the mid IR region.
The type of spectroscopy chosen for the application presented in Paper I is
NIR spectroscopy, while UV-VIS spectroscopy is used in Papers II and III.

Vo

] ]
UV-VIS ' NIR ' mid-IR
absorption ; absorption; absorption
] ]
i i
( '
Higher electronic level : :
b '
i i
hw . '
] ]
JAVAVAVS : :
a s
[l J ] V3
. i i V Vibrational quantum number
(Ellzt\::/r;n;fegtrl?c?nr}g :2:/’2:) : : ‘I\? Vi within the electronic ground level
i i
] ]
o

Figure 3 Absorption of light (energy) by a molecule in the UV-VIS region (left), in
the NIR region (middle), and in the mid IR region (right).

Basics of quantitative spectroscopy

Quantitative determination of absorbing analytes is approximated by Beer’s
law, which can be written as

A =log(Po/P) = abc 3)

where A is the absorbance, Po and P the incident and transmitted radiant
power, a is the absorptivity proportionality constant, b is the (effective) sam-
ple path length and c is the concentration of the analyte (not the speed of
light as defined in the previous equations). When a is expressed in the units
L-mol'-cm, it is called the molar absorptivity and ¢is used instead of a. As a
replacement for the radiant power Po and P the radiation intensity Io and I
may be used. The power is the energy of radiation in joules hitting 1 m? of
detector area per second, while the intensity is the joules per second hitting a
specific detector.

Beer’s law is a first-order approximation that only holds for dilute solutions
(as a rule-of-thumb, the analyte concentration should be less than 0.01M =
0.01mol-L). If several absorbing species are present in a solution, their con-
tribution is cumulative and additive if no interactions between the species
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are present. Deviations from Beer’s law can also be seen as a result of chemi-
cal deviations such as association, dissociation and reaction with solvent.
Experimentally, measured absorbance may suffer from instrumental imper-
fections, such as scattering of light from the surfaces of prisms, lenses, filters,
windows, the sample itself or the presence of stray light, all of which con-
tribute negatively to the measured absorbance. There may also be deviations
from Beer’s law due to the fact that a monochromator will never isolate
unique monochromatic light, but a band of wavelengths, which may be
more or less symmetric depending on the wavelength range.

Instrumentation

The basic principle of spectroscopy is to convert electromagnetic radiation
into an electronic, analytical signal. If the electromagnetic radiation interacts
with the matter of interest, then the radiation will undergo transition or
change. Spectroscopy is divided in two classes: Absorption and emission
spectroscopy. In absorption spectroscopy the radiation — or rather the energy
from the radiation — is absorbed by the sample. In emission spectroscopy
radiation emitted from the sample is measured.

Instruments for spectroscopy have five basic components (Figure 4):

1) Alight source

2) A wavelength selector that isolates a region of the spectrum for
measurement

3) One or two sample containers holding the sample and optionally a
reference

4) A detector that converts radiation to electric energy

5) A signal processor that amplifies, processes and displays or relays
the measurements

Light o Wavelength o Sample o
> > » Detector

Source Selector Container Processor

Signal

\ 4

Figure 4 Schematic overview of the basic components in spectroscopic instruments.
The wavelength selector can be placed before or after the sample container.

In instruments based on the Fourier transform (FT) principle, the wave-
length selector is replaced with an interferometer as explained in the follow-
ing paragraph.
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Instrument design

The most inexpensive instrument designs are the single-beam instruments.
The sample is measured against a reference (usually the pure solvent with-
out the analyte, if possible) and the sample and reference will have to be
switched. In the more expensive double beam instruments the radiation is
passed through the sample and reference simultaneously, and is thus to a
large degree free from drift in the light source or detector. The wavelength
selector is usually placed before the sample to avoid illuminating (and heat-
ing) the sample too much. In case of UV radiation, the powerful source may
damage or alter the sample. In diode array instruments, the wavelength se-
lector is after the sample to measure all wavelengths simultaneously on the
diode array chip. A prism based instrument fitted with a diode array detec-
tor is used to acquire the data presented in Papers II and III.

All NIR and NIR/IR instruments at CP Kelco, also the one used for collecting
the data presented in Paper I, are based on the Fourier transform (FT) prin-
ciple and are manufactured by ABB. A diagram of such an instrument is
shown in Figure 5, and on a photo in Figure 6. The heart of an FT-NIR/IR
spectrometer is the interferometer. In a standard Michelson interferometer,
light from the source enters the interferometer and is divided into two equal
beams by a beamsplitter. One beam is reflected towards a fixed mirror,
which reflects it back towards the beamsplitter. The other beam is transmit-
ted towards a moving mirror, which also reflects it back towards the beams-
plitter. The moving mirror introduces a continuously changing optical path
difference between the two beams. As the moving mirror is scanned, the two
returned beams interfere with different phases. This creates intensity varia-
tions due to interference. At a given optical path difference, the interference
is constructive for some frequencies and destructive for others. Because the
optical path difference is constantly changing, the various frequencies pre-
sent in the beam are modulated at different rates. The intensity reading at
the detector as a function of the mirror displacement gives an interferogram.
ABB instruments are however not fitted with a standard interferometer.
They are fitted with a so-called double-pendulum interferometer, where two
cube corner mirrors (or reflectors) are mounted on a wishbone scan arm. The
scan arms are mounted on a pivot and by moving at small angles this in-
duces a varying optical path difference. When one cube corner advances
towards the beamsplitter, the other one moves away from the beamsplitter.
The optical path difference corresponds to four times the mirror displace-
ment. Due to symmetry, this type of interferometer is particularly robust
towards mechanical distortion (ABB, 2001; Meyer, 2006).
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Figure 5 Instrumental setup of an FT-NIR instrument. The beamsplitter is the yel-
low rod in the centre. An ADC is an Analog to Digital Converter (ABB, 2001).

Figure 6 Interior of the ABB MB-160 FT-NIR instrument used in the quality control
laboratory at CP Kelco. The light source is at the top centre. Immediately below is
the interferometer. Further below is the reference laser ensuring wavelength accu-
racy. The sample area and detector are not shown.
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The spectral information contained in the interferogram is retrieved using a
Fourier transformation. A Fourier transformation is a mathematical opera-
tion that can be used to relate the interferogram to the spectrum of the sam-
ple as it transforms the interferogram from a resolution in time or mirror
displacement to a spectrum resolved by frequency.

Sample interfaces

The standard approach is to measure the samples using transmission spec-
troscopy. The light from the source enters on one side of the sample and is
collected on the other side directly across. This is a useful approach for sam-
ples which are not opaque, and should be used for a sample path length that
does not cause too much absorption; gases and liquids are often sampled
this way. In both applications presented in Papers I to III, the samples are
measured using transmission. In situations where only a single point of en-
try of the light to the sample is desired or the path length in the sample con-
tainer is too large, transflection measurement is an option. In transflection, a
mirror is inserted in the light path reflecting the light at the same or almost
the same angle as the incident beam. The light thus makes a double pass and
is collected close to the entry light. In diffuse reflection spectroscopy, the
light leaving the sample surface is collected for measurement. It is used
when measuring scattering samples or thick or highly absorbing samples
e.g. solids, powders or mixtures that do not allow any transmission. The
reflected light is collected at an angle to the incident beam usually between 5
and 85 degrees. If the diffuse reflection is not intense enough, the energy can
be increased by using diffuse transflection. Similar to regular transflection
the light is reflected by a mirror and passes the sample twice, but contrary to
regular transflection the light will be diffusely reflected, scattered or trans-
mitted through part of the sample. Diffuse reflection and transflection is of
particular importance for NIR spectroscopy.

Sampling modes

The timing of process measurements is crucial. Analyzers can be referred to
as being in-line, non-invasive, on-line, at-line or off-line. In-line systems
have the sensor integrated within the process line (Figure 7). The sensor may
not cover the entire process line or stream, but all process material should
have an equal probability of being sampled directly at the point of meas-
urement (Gy, 1998). As measurements are made directly on the process
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stream, no delay before analysis is expected and the result can be made
available immediately. The analyzer and the sensor can be separated physi-
cally; it is the position of the sensor that is important. An example of a sensor
placed in-line is when mounted directly in the process, in reactor tanks or in
process pipes or tubes.

Non-
invasive

NIR analyzer NIR analyzer NIR analyzer NIR analyzer I'>
NIR probe @

On-line At-line Off-line

ov
¢
NIR analyzer

In-line

Process stream

Figure 7 Places on the process stream where spectroscopic techniques (e.g. an NIR
instrument) can be implemented. The degree of integration of the NIR analyzer de-
creases from left to right, whereas the measurement time increases in this direction
(modified from Hassell, 1998).

If only a fraction of the process stream is selected prior to measurement e.g.
in a side stream sample (fast) loop which has the sensor integrated, the ana-
lyzer is said to be on-line. The reasons for choosing on-line rather than in-
line are usually practical. It may not be feasible to perform the measure-
ments directly within the process, on a process scale. The physical environ-
ment may be unfavourable (subjected to weather conditions outdoors, vibra-
tion, sterility requirements, etc.), or the sample needs to be conditioned (e.g.
homogenization or the sample needs to be settled for instance to remove
bubbles) before measurement. It is also much easier to control the physical
environment (e.g. temperature) which would be impractical or costly on a
process scale. On-line systems may induce a slight delay e.g. by sample con-
ditioning or by dead volumes. But the sample is always introduced auto-
matically to the analyzer (Blaser, 1995). The results presented in Paper I is
from an on-line system as amidation liquid is separated from the main proc-
ess stream in a side stream sample loop and measured before returned to the
process tank.

Sensors in in-line or on-line systems may either be invasive or non-invasive.
Invasive sensors are sensors which extend into the process and are in direct
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contact with the sample, for instance a fixed or retractable optical probe in-
serted directly in a process line or reactor. Non-invasive sensors do not have
(physical) contact with the sample. Examples could be transmittance spec-
troscopy through viewing glasses, passive acoustic collection of vibrations or
remote sensing applications where diffuse light reflected from the sample is
collected at a distance. Optical probes embedded rather than inserted into
process equipment constitute borderline examples.

At-line analyzers are usually dedicated instruments with the sensor located
near or at a process. Sample extraction may be more or less automated, but
the sampling and/or sample presentation requires at least some manual
handling. The analyzer should not only be near the process in a physical
sense, but also in a time-wise fashion. The time taken from extracting the
sample to the point when it has been analysed and the results made avail-
able or used, should ideally be short and a continuous process, but minor
delays can be acceptable. Only a few persons are involved, and most often,
the same person extracting the sample is doing the analysis.

Off-line analyzers are situations where the instruments are located away
from the production line. Often the time from sample extraction to meas-
urement is not under strict control, timing is not critical and several persons
from several departments can be involved, thus passing the responsibility of
the sample and its validity. Sample identification, labelling, transport, queu-
ing, prioritizing and registration become important parameters. An example
is samples extracted at the process line and measured in a centralized labora-
tory environment e.g. a Quality Control (QC) laboratory. There can be sev-
eral good reasons for not committing instruments at-line or on-line. The in-
strument might be expensive and therefore shared among several applica-
tions. The instruments may not be robust or otherwise suitable for a process
environment. It may be an advantage to analyse samples in bulk, or spe-
cially trained or otherwise qualified personnel may be required to analyze
the sample (Vidrine, 2000).

Principles of visual spectroscopy

The UV-VIS region is not defined unambiguously. Most sources will define
the UV region as starting between 1 nm and 200 nm and ending between 380
nm to 400 nm. The visible region is defined as starting between 380 nm and
400 nm and ending 750 nm to 780 nm. For the purpose of food spectroscopy,
the UV region will be defined in this text as ranging from 180-400 nm, and
the VIS region as ranging from 400-780 nm. This definition of the UV region
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excludes what commonly is referred to as the Extreme or Far-UV region,
which could be defined as ranging from 10-180 nm. A limited number of
functional groups exhibit absorption in the UV-VIS wavelength range. Such
active functional groups are called chromophores. Examples of chromopho-
res are aromats, conjugated alkenes, amines, carboxylic acids, esters, amides,
thiols, polyenes, peroxides, nitrites, ketones and aldehydes.
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Figure 8 Energy levels of molecular orbitals (modified from Pavia, 2001).

When a sufficiently energy rich photon is absorbed, electrons in appropriate
molecular orbitals can be excited from the occupied bonding levels to the
unoccupied non-bonding levels. Figure 8 illustrates this process schemati-
cally; while Figure 9 lists some commonly observed orbital changes in vari-
ous compounds.

o — o* In alkanes

oot In carbonyl compounds

Increasing energy In alkenes, carbonyl compounds, alkynes,

*
Ton azo compounds, and so on

" In oxygen, nitrogen, sulphur, and halogen
n—ao compounds
n—rt In carbonyl compounds

Figure 9 Observed molecular orbital changes in different compounds (modified
from Pavia, 2001).
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Principles of infrared and near infrared spectroscopy

Molecules are in a constant state of vibration, and each bond is having its
characteristic stretching and bending frequency. The characteristic stretching
and bending mode vibrations for the -CHz— group are shown in Figure 10.
Molecular vibrations are not purely harmonic. As a result infrared absorp-
tion can also occur at multiples of the fundamental frequency. Particularly
multiples of the C-H stretch frequency found in all organic molecules (at
multiples of ~2900 cm™), are often used for infrared analysis. These frequen-
cies, which occur above 3000 cm, are in the near infrared region of the spec-
trum. Near infrared spectra may also exhibit absorption due to combinations
of overtones and of other fundamental vibrations. Usually, typical regions of
the spectrum are selected to be used for analysis.

The choice of spectral regions is normally determined by the limitation of
sampling. In the mid IR region, including the C-H stretch region (4000 cm!
to 400 cm™), the pathlength through samples consisting of solids or semi-
solids are generally in the range of a few micrometers to 0.1 mm. In the mid
IR region, absorption bands due to different functional groups are least over-
lapping. Here it is possible to detect small concentrations in mixtures of ma-
terials by increasing the pathlength such that the bands of the main compo-
nents are highly absorbed while the weak features of the low concentration
component occur between the dominating main components. Some selecti-
vity in the wavelength region is typically required of some of the functional
groups of the low concentration component.

In the region where combination frequencies occur (5000 cm™ to 4000 cm™),
the pathlength is usually less than 1 mm. In the 1% overtone region (7000 cm™
to 5000 cm™?) the pathlength is typically 3 to 5 mm. In the 2" overtone region
(10000 cm to 6000 cm™, still in the NIR region) the pathlength is often as
much as 10 mm. The longer possible pathlength in NIR than IR makes it
possible to have a high degree of flexibility in the sampling so little or no
sample preparation or conditioning is required. Fibre optical cables are vir-
tually transparent in the NIR region and can be used over long distances,
making it possible to separate the instrument from the sampling area. As IR,
NIR measurements are rapid, non-destructive and reproducible. Therefore
NIR is well suited for PAT applications. In Figure 11 a chart of common NIR
functional groups in wavenumbers can be seen. NIR can fingerprint all or-
ganic molecules and are ideal for pharmaceutical or food analysis.
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Figure 10 Modes of vibration of a -CHz—-group and their approximate frequencies.
The non stretching vibrations are also referred to as bending and deformation vibra-

tions (modified from Silverstein, 1991).
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3. Chemometrics

The world around humans is a continuous evolution of complicated phe-
nomena. The nature that surrounds us is multivariate in the sense that all
phenomena depends on multiple factors. Some factors are immediately rec-
ognizable to humans, as the brain is capable of processing data multivari-
ately. Other factors are hidden - latent — because their causalities are com-
plex and not immediately presentable nor interpretable. The use of lan-
guage, which is a rather new innovation in light of the human evolution, is
an expression for (a simplification of?) the thoughts and feelings, that inter-
relate humans. These relations can be attempted to be reproduced by more
or less refined expressions as gesticulations, speech, writing, poetry and art
with varying degrees of success. The written language that humans have
developed, where the spoken word is recorded with simple symbols in the
shape of letters and signs are even further away from the inductive thought
process. There are obvious limitations when variables and objects are re-
duced to data tables. It is difficult to depict objects in three dimensions, let
alone four. To portray eight variables (dimensions) in a table is conceptually
difficult. Traditionally this is solved mathematically by computing figures of
merit (e.g. mean, deviation, skewness, etc.) for each variable, or graphically
by inspection of one variable at a time. This however puts emphasis on the
individual variables themselves and could lead to wrong conclusions be-
cause the relationships between the variables, which may be much more in-
teresting for the problem at hand, is ignored. In chemometrics emphasis is
given to the covariation among variables. Chemometrics originates from
chemeia (Greek, chemistry) and metros (Greek, measure).

Rather than using deduction — by disregarding the overall impression which
is not fully understood, and breaking nature down into subunits which can
be modelled using hard modelling — chemometrics is a tool for induction.
Empirical data can be analysed without constructing a hypothesis of the rela-
tionship between the variables prior to commencing. This makes it possible
to perceive entire soft modelled phenomena (latent structures) rather than
individual subunits (Munck, 1998; Munck, 2006). The definition of chemom-
etrics is still under debate, but the ICS (International Chemometrics Society)
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conference chair offers the following definition: Chemometrics is the science of
relating measurements made on a chemical system or process to the state of the sys-
tem via application of mathematical or statistical methods.

Chemometrics to a high degree makes use of projection based data analyti-
cal methods, which make it possible to reduce the dimensionality of com-
plex problems, if they can be expressed in data tables or arrays. This enables
an intuitive graphical presentation of even large data sets, and makes it pos-
sible to understand and interpret the latent structures otherwise hidden in
the measurements. Therefore, chemometrics relies heavily on the use of
computers and graphics. Microcomputers were becoming available in the
seventies and eighties, and since then personal computers have been mass
produced and fitted with memory and processors that have increased their
capacity and speed thousand fold since the beginning of the 1990’s (Levy,
1988). Multivariate data analysis requires a lot of computing power, and
even though the principles were described in the start of the twentieth cen-
tury they were not commonly employed before the seventies. To illustrate
the leap in computer power: One of the most popular chemometric software
packages, The Unscrambler, required an IBM PC with 386, 40MHz proces-
sor, 4Mb RAM and 1,5Mb free hard disk space (for the programme itself) in
the 5.5 DOS version available in the mid-nineties. Today this has increased
roughly thousand fold. The complexity of chemometric problems that can be
reasonably solved have likewise increased.

The purpose of multivariate data analysis can be divided into three main
categories:

Exploratory data analysis: Screening of data, projection on latent factors and
identification of clusters (groups) and outliers (single observations) in the
data set.

Classification: Discrimination between groups in the data set and/or pattern
recognition. Pattern recognition methods do not require prior knowledge to
groups or classes in the data. Classification and discrimination methods re-
quire predefined classes and will be allocating membership of new objects
(samples) into these predefined classes. The classes might be very well de-
scribed using exploratory data analysis.

Regression and prediction: The purpose of regression methods is to link
two groups of variables. If the variables can be divided into independent and
dependent variables, a regression or calibration from the independent to the
dependent variables can be estimated. Independent variables are the quanti-
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ties measured or computed, with values chosen by exploratory data analysis
or by design when performing the calibration process. It is usually supposed
that the independent variables carry negligible error. The dependent vari-
ables are the quantities measured or computed as the function of the inde-
pendent variable. The dependent variables are usually subject to errors and
deviations. The main purpose of the calibration is usually to predict or esti-
mate the dependent variables from new sets of measurements of the inde-
pendent variables.

Analytical chemistry and chemometrics

An example of the use of traditional analytical chemistry based on deduc-
tion, and a hard mathematical model being developed, is the previously
mentioned Beer’s law (Equation 3). This is a hypothesis of the interaction
between the incident and transmitted radiant power, the absorptivity con-
stant of the analyte(s), the sample path length and the concentration of the
analyte(s). This equation can be applied to observations made, and the pa-
rameters can be estimated in experiments. But as mentioned, the equation
only applies to dilute solutions. It does not take into account any interaction
between the absorbing species, other electrostatic interactions, and last but
not least, interferences. Especially in nature, interference from many sources
may be present, known or unknown. The traditional way of eliminating
these have been selection, to make the analytical signal as selective as possi-
ble. This usually involves a lot of unit operations on each sample such as
extraction, precipitation, masking and so on. The result is one expensive sig-
nal per sample, e.g. weight of precipitate, absorption at 420 nm, specific rota-
tion of polarized light, etc. Low speed — high cost is the trademark of most wet-
chemistry methods. There are few variables and many samples. The data
structure is said to be vertical and classical statistics is suited to this structure.
The parameters can be estimated; means, standard deviations and confi-
dence intervals can be calculated.

Many measurement methods are being transferred from the traditional wet
chemistry methods to instrumental analytical methods. New computer con-
trolled instruments are capable of producing large quantities of data in short
time. The instruments are to a higher degree fitted with auto samplers en-
suring around the clock capability. The need for sample preparation is
minimized and the analysis time per sample is commonly short. Often the
capital cost of the instruments is high but the cost in use for each sample is
typically low. So, after the initial investments, instrumental analysis is often
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high speed — low cost. Examples of such instrumental analysis are IR, NIR and
UV-VIS spectroscopy, Mass Spectrometry (MS), Nuclear Magnetic Reso-
nance (NMR) spectroscopy, Image Analysis, Gas Chromatography (GC) and
High Performance Liquid Chromatography (HPLC). In these examples, the
number of variables measured is usually larger than the number of samples,
and the data structure is said to be horizontal. Often, however, the measured
variables are not selective with regard to the problem at hand. They are only
indirect measurements, but by measuring hundreds, thousands or even mil-
lions of indirect variables it may still be possible to establish a correlation to
the desired properties. The key is multivariate data analysis. Chemometrics
is tailor-made to analyze horizontal data structures e.g. 50 samples and
thousands of variables. The catch is that the relative “safety” of classical sta-
tistics is lost. The estimations of uncertainty, standard deviations and confi-
dence intervals are less well defined. This is circumvented by using alterna-
tive measurements for the reliability of the estimated results, approximated
under certain assumptions, which will be elaborated upon in the section
about validation. All in all, the combination of modern analytical instru-
ments combined with chemometrics, makes it possible to measure directly
on nature with simple or no sample preparation, and relate the measure-
ments to the desired properties.

Order of chemical measurements

Chemical measurements can be of different order. For instance the earliest
analytical instruments were zero order instruments. They produce a single
data per sample measured; a zero order tensor. Examples are pH electrodes,
temperature sensors, absorbance at one wavelength, etc. For instance the
amount of total organic carbon in source water and drinking water can be
determined by specific UV absorbance at 254 nm (Potter, 2005). The method
is capable of measuring a single analyte (carbon) in known mixtures before
applying the method to an unknown mixture. To ensure selectivity of the
signal, the sample is acidified and the inorganic carbon is removed prior to
analysis for organic carbon content. There is no way to detect errors due to
the presence of interferents (e.g. inorganic carbon) with a zero order instru-
ment. It is not even possible to tell if there is an interferent present.

First order instruments produce a vector of data for each sample run. Exam-
ples are multi-wavelength spectroscopy (MS, NIR, IR, UV-VIS absorbance,
etc.), chromatography (e.g. liquid or gas chromatography), capillary electro-
phoresis, sensor arrays, etc. The application presented in Paper I is using a
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first order instrument and gives first order measurements. The advantage of
first order measurements compared with zero order measurements is that
the presence of interferents can be detected. But it can only be corrected for,
if the interferents are known at least to the level that they can be spanned in
the calibration set, and therefore part of the calibration procedure. Second
order instruments produce a matrix of data for each sample run, for instance
excitation-emission fluorescence spectroscopy or hyphenated instruments
obtained by combining two first order instruments. Examples can be combi-
nations of Gas Chromatography and Mass Spectroscopy, (GC/MS); High
Performance Liquid Chromatography (HPLC) with multi-wavelength UV-
VIS absorbance (HPLC/UV-VIS), etc. The presence of unknown interferents
can be detected and mathematically eliminated using second order
chemometric methods. Thus, interferents do not have to be part of the cali-
bration standard. This is referred to as the so-called “second order advan-
tage” (Booksh, 1994; Bro, 1998; Prazen, 1998). Also, some forms of instru-
mental run-to-run drift can be corrected. Even higher order measurements
are possible, for instance fluorescence excitation-emission-time decay meas-
urements or GC/MS/MS. As the information content of measurements in-
crease going from zero to higher order analysis, so does the complexity of
the data. This limits or complicates the visualization and choice of data
analysis methods available, as will be illustrated later in this chapter.

When many samples are analyzed together the data dimensionality will in-
crease. Many samples with zero order measurements will give a data vector
to be analyzed. Likewise, samples with first order measurements give a ma-
trix (2-dimensional array) of data, where samples are one of the dimensions.
Confusion can arise of the fact that the data dimensionality can be higher
than the dimensionality (order) of the measurements.

The setup used in Papers II and III features a Continuously Stirred Tank
reactor (CSTR) where the analytes (pectin and dye) is retained while chemi-
cal reactions between the analytes occur. This setup has features from Flow
Injection Analysis (FIA; Riizicka, 1988) and HPLC. The concentration of pec-
tin changes during the sample run and a first order instrument, a diode ar-
ray detector (DAD), records the UV-VIS spectra during the dilution. The
sample matrix will have the format retention (or dilution) time x wave-
length. When several samples are analyzed as a whole, a three-dimensional
array will be the starting point.

The setup used in Paper I does not give two-dimensional data although the
timely measurements of the on-line system could be regarded as a dimen-
sion. It can be argued that if the measurements could be split into different
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batches and a separate batch would constitute a sample as a whole, then a
matrix of local batch time (of individual measurements) x wavelengths can
be constructed. But it is not the purpose of the application to analyze the
ammonia content or consumption of a batch as a whole, it is rather the pur-
pose to make a determination of the ammonia content in each individual
measurement, independent of other measurements. Therefore, the individ-
ual measurements constitute a sample. Likewise, combining two sensors
which cannot meaningfully be arranged in a matrix does not give a higher
order measurement. For instance combining a NIR and IR sensor on chemi-
cal measurements does not give a second order measurement; rather the two
sensors are extensions of each other. A collection of several zero order de-
scriptors does not constitute separate dimensions unless they directly influ-
ence each other. The Excitation-Emission Matrix (EEM) of fluorescence
measurements is of second order, as the emission is a direct property of the
excitation wavelength.

Visualization of second order data

The complexity and sheer size of second order data can be illustrated with
the data presented in Papers II and III. The raw data matrix from one sam-
ple consists of 333 spectra, each with the absorbance recorded from 2048
specific wavelengths. This translates to 333 time points x 2048 absorbencies,
in total 681,984 data points. This can be reduced by cropping wavelengths
and spectra with no relevant information and by reducing the data by aver-
aging wavelengths and time points. The dataset presented in Paper III con-
sists of 33 samples measured in triplicates, and each sample matrix is sized
77 time points x 145 wavelengths. This accounts for 99 sample runs of 11,165
data points per sample run — still more than one million data points in total.
Table 2 illustrates the point made in the introduction to this chapter, that
letters and numbers may not be the most efficient way of communicating
information. The table shows one sample run of a specific sample (please
refer to Papers II and III for specifics regarding the sample and sample
naming). Clearly there is a need for multivariate visualization and data
analysis. The origin of the data is UV-VIS spectra recorded from a Diode
Array Detector. It records the transmittance expressed in absorbance units.
The absorbance can be regarded as a function of wavelength and spectra
number which corresponds to the retention or dilution time of the system.
This can be plotted as a three-dimensional system with (Time, Wavelength,
Absorbance) on the three axis, a so called spectral landscape.
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Table 2 The data matrix from sample "B36.0 R0.0" (already reduced to 1.6% of the
size of the raw data collected). The numbers are the absorbance recorded as a
function of time and wavelength channel. The actual numbers may not be legible
due to printer resolution limits or picture compression in the document.

To visualize this on a flat surface is already a challenge, but is partly feasible
through the use of perspective, overlap and colour. The bottom left part of
Figure 12 shows a pseudo three-dimensional view of the data matrix. The
individual spectra as recorded by the DAD (following the before mentioned
data reduction) can be seen on the top left part of the figure. The wave-
lengths (on the x-axis) are recorded simultaneously and presented as a vec-
tor with absorbance on the y-axis. This is the traditional way of viewing UV-
VIS spectra. The first spectra recorded are coloured blue and the last spectra
are coloured red. On the top right side of the figure is a plot of each individ-
ual wavelength as a vector with time on the x-axis and absorbance on the y-
axis. Wavelength 1 is coloured blue and wavelength 145 is coloured red. On
the bottom right side of the figure is what will be the preferred way of pre-
senting the three-dimensional data. It is reduced to a two dimensional plot
with time on the x-axis and wavelength on the y-axis. It does not have (false)
perspective or overlap, and the absorbance is translated to colour. All parts
of the spectra are readily seen and can be appreciated by all with a normal
colour vision — it will prove a challenge for those who are colour blind; my
apologies!
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Figure 12 Different ways of illustrating the data from one sample run. The top part
of the figure shows to the left, spectra coloured by time; on the right time profiles
coloured by individual wavelengths. The colour absorbance legend is shared be-
tween the bottom parts of the figure showing pseudo three-dimensional and two
dimensional views with absorbance values translated into colour. Absolute wave-
lengths and times cannot be disclosed for reasons of confidentiality.

In literature it is the convention in the western culture to start reading in the
top left corner and proceed across to the top right corner and work this way
across to the bottom. In mathematics it is the convention to have origin of a
coordinate with the primary axis (the x-axis) going horizontally across from
left to right, while the secondary axis (the y-axis) is extending vertically up.
The origin is thus placed in the lower left corner, if only the first quadrant of
a cartesian coordinate system is considered. It is chosen by the author to
adopt the mathematical convention. Furthermore, it is chosen to have
“Time” on the primary x-axis as then progression in time (and spectra) can
be seen going from left to right in agreement with both literature (in the
western culture) and mathematics. The first wavelength is therefore placed
on the bottom row and the last wavelength is placed at the top. This is in
agreement with the mathematical convention and opposed to the literary
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convention. It is for this reason that Table 2 has wavelength number 145 in
row number 1 and declining towards wavelength number 1 in row number
145. The absorbance is seen as a function of Time and Wavelength, so Ab-
sorbance is on the third axis (the z-axis) and commonly reduced to represen-
tation by colour in two dimensional plots. This is, by the way, a common
way to depict heights on physical geographical maps. Colours are still sub-
jectively perceived, shown differently on various monitors and printed dif-
ferently on individual printers. If not otherwise specifically mentioned, the
absorbance colour scale goes from 0 (deep blue) to 0.7 (dark red) and the
colour scale in words (if such is to be used) will be an 8 level scale of dark
blue, blue, cyan, green, yellow, orange, red and dark red although reference
to absorbance in numbers rather than colours will be preferred for reasons of
objectivity. The colour scale corresponds to the colours of the visible part of
the electromagnetic spectrum except that the violet part is omitted. In this
way, the numbers in Table 2 have been translated to a two-dimensional im-
age (or landscape) where absorbance is translated into colour and spectral
peaks or heights with high absorbance will have a redder colour.

Unfolding of second order data

The dimensionality of the data can influence or restrict the type of chemom-
etric methods available (Escandar, 2006). For the analysis of several samples
with first order measurements, the data can appropriately be arranged in a
matrix with samples in the rows and the measurements in the columns. The
matrix can then be analyzed with common chemometric methods such as
Principal Component Analysis (PCA; Wold, 1987; Jackson, 1991) or Partial
Least Squares Regression (PLS; Wold, 2001). Likewise one sample with sec-
ond order data can be analyzed with the before mentioned chemometric
methods or Multivariate Curve Resolution (MCR; Tauler, 1995a) can be ap-
plied. Several samples with second order measurements can be organized in
a three-way array exemplified with the data from Papers II and III on the
bottom right part of Figure 13. Three-way arrays can be analyzed using
three-way or multi-way chemometric methods such as PARAFAC (Bro,
1997), PARAFAC2 (Kiers, 1999) or multi-way Partial Least Squares regres-
sion (N-way PLS or N-PLS; Bro, 1996a). The different chemometric methods
will be presented in more detail later in this chapter. It is however also pos-
sible to unfold a three-way or multi-way array into a two or one dimensional
array by a process known as unfolding or augmentation in general, or more
specifically matricizing. This makes use of the more common two-way
chemometric methods possible.
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Figure 13 On the bottom right is a three-way data array (a cube) of data. Each slab
consist of the two-dimensional matrix of Time x Wavelength. Such three examples
of sample slabs are illustrated on the top and bottom left side of the figure.

Unfolding a multi-way array is not trivial. For instance a three-way array
can be unfolded in six different ways each looking at a different type of vari-
ability. Three of the six ways will be identical result-wise when analyzed by
PCA or PLS, as they will only have their rows or columns rearranged
(Westerhuis, 1999), but they will appear differently for interpretative pur-
poses. As an example, three samples from Paper II have been matricized in
two ways (Figure 14) using the convention in the paper by Anna de Juan et
al. (de Juan, 2003); therefore in this plot wavelength is on the x-axis and the
time of the unfolded landscapes are numbered from the top left corner of the
y-axis. A third way of matricizing is vectorizing the individual samples.
Samples can then be put in the rows of the matrix and the vectorized meas-
urements in the columns. Again this can be done in two ways, keeping ei-
ther the individual spectra together and augmenting the spectra recorded at
various times, or the other way, augmenting the wavelength channels. The
PCA and PLS models will remain the same, but the interpretability and
modelling focus will change. If spectra recorded at specific times should be
excluded from the modelling — preference should be in unfolding in the way
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that keeps the individual spectra together. As an example one sample from
Papers II and III is vectorized both ways as seen on the bottom right part of
Figure 15. The length of the vector is 77 x 145 = 11,165 data points in total.

Unfolded by warelength Unfolded by time

= |

Tirne

20 40 60 0 120 140 40 80 120 1 40 80 120 1 40 81 120
Wavelength Wavelength

Figure 14 Two ways of unfolding three sample runs from a cube to a matrix with
the wavelengths on the x-axis. On the left is the column-wise augmented matrix and
on the right is the row-wise augmented matrix.
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Figure 15 The sample on the top left side is vectorized either by augmenting verti-
cally, keeping the individual spectra together, or horizontally by preserving the
wavelength channels. Part of the resulting vector can be seen on the bottom right
side of the figure as the blue and red line, respectively.
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Methods in chemometrics — Theory and examples

Principal Component Analysis (PCA)

Principal Component Analysis (PCA), also called Singular Value Decompo-
sition is one of the most commonly used methods in chemometrics (Wold,
1987; Jackson, 1991; Beebe, 1998; Umetrics, 2006). PCA is capable of decom-
posing observations (made on a number of objects or samples) into a struc-
tural part and a noise part. If it is assumed that:

Observations = Data structures + noise (4)

Then the noise is imposed on data structures and the purpose of a PCA is to
split the observations into a structural part and a residual part containing
the noise. If the observations can be organized in a matrix X (of size Kx])
with K observations (or samples) in the rows and ] variables in the columns
(see Box 2 for the notation used), then the mathematical rank or dimension-
ality of the matrix is defined as the minimum of K and J. But if the variables
(or samples) exhibit some degree of covariation, the effective rank of the
matrix is said to be lower than the minimum of K and J. The structural part
with the systematic variation forms a subspace of X. The chosen subspace
has F dimensions corresponding to the effective rank. F is thus smaller than
the minimum of K and J.

Box 2: Notation used in the thesis:

Running indices have lower-case italic fonts: x

Scalars have upper-case italic fonts: X

Vectors have lower-case bold fonts: x

Matrices have upper-case bold fonts: X

Multi-way matrices have upper-case, underlined bold fonts: X

The transpose is marked with a superscript T: XT
Elements in matrices can have subscript italic running indices for clar-
ity: Xk, implying that X is of dimension Kx].

The notation in the spectroscopy chapter deviates from this due to conventions
established within spectroscopy.
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In order to split the observations in X into a structured part and a residual
part (commonly referred to as the residuals) containing the noise, principal
components (PC’s) are extracted from the observations. PC’s are constructed
from scores and loadings. Loadings define the relationship between the origi-
nal variables measured and the PC’s. For every PC there are | coefficients
corresponding to the number of variables. These coefficients are called load-
ings. | loadings form a loading vector p, which is a linear combination of vec-
tors defined by the measured parameters in the multivariate direction that
span the most variance. This is the same as minimizing the least squares
distance from all the samples to the loading vector that eventually will form
part of the PC. When the first principal component (PC#1) is identified, all
samples will be projected orthogonally on to this loading vector. The infor-
mation about the position of the individual samples along this axis is called
the score of the sample with respect to the PC. Information about all K sam-
ples can be compiled into a score vector t. After the first PC is identified, the
information about the direction of the first PC and the scores of the samples
are subtracted from X. Subsequently, the second principal component (PC#2)
is identified. As the information from PC#1 has been removed the direction
of PC#2 will be orthogonal to the direction of PC#1. The third principal com-
ponent (PC#3) will be orthogonal to both PC#1 and PC#2, etc. PC’s can con-
tinue to be extracted until all the information in X is completely described.
This will happen at the mathematical rank — which was the minimum of K or
J. In that case, all the information in X is rotated from the original variables
to a new set of variables defined by the loading vectors (which are linear
combinations of the original variables), which are orthogonal to each other
and sorted according to the variance in X they describe. X can now be split in
a structural part with only the PC’s describing “large” or systematic varia-
tion, and a noise part with the PC’s responsible for “small” variation, less
systematic and more random. If it is later chosen to describe X with just the
PC’s responsible for the structural variation, the dimensionality — and the
noise — of X can be reduced, while the main variation of X is preserved. The
benefit may not seem obvious if only a few variables are measured, but in
the multivariate situation, a reduction from several thousand variables to a
three or seven dimensional subspace, the benefit can be immense.

All loadings combined in one principal component form a loading vector, p.
Several loading vectors can be combined to form a loading matrix, P. A load-
ing plot is one or more loading vectors plotted against each other with the
loadings on the axis, or the original variables on one of the axis, usually the
x-axis. A loading plot is a map of the original variables and represents by
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which weight the original variables form part of the principal components.
Scores are the orthogonal projection of the objects on to the individual load-
ing vectors. The scores are the coordinates of the axis as defined by the load-
ings. All scores from one principal component combined form a score vector,
t. They can be calculated as the inner product of the vector defining the ob-
jects position in the original variable space and the loading vectors. All score
vectors are orthogonal to each other and can be combined to form the score
matrix, T. A score plot is a map of the objects’ scores usually plotted against
each other in a scatter or (pseudo) three dimensional plot. A score plot can
be interpreted as a map of the objects (Esbensen 2000). By convention, the
length of the loading vectors is set to one, i.e. they are ortho-normal. The size
of each PC is preserved in the length of the score vectors to eliminate the
scaling ambiguity.

For computational purposes the measurements are often centred. Centring
can lead to reduced effective rank of the model, increased fit, remove irrele-
vant offsets and simplify the calculations. Centring two-way matrices is
comparable to removing the levels of the variables from the elements in X so
that the average of the columns in X is 0:

X = Xjik — Zk(xjx)/K (5)

Where the last term is the average of column j in X. One offset is subtracted
from every element in each variable column. Centring of multi-way matrices
is not so trivial, but two-way and multi-way centring can be generalized to a
projection step, where the data are projected onto a chosen sub-space within
a given mode (Bro, 2003). Figure 16 shows the effect of centring on the spec-
troscopic data as presented in Paper I.

The data used is the “Synthetic” samples and the “Process calibration set” —
see the paper for full details. On the left hand side of the figure, a spectro-
scopic offset in the measurements from “Tank 1” is identified. This is due to
an unintended larger path length in the sample cell measuring amidation
liquid from Tank 1. As seen on the right hand side of the figure centring
does not remove the offset. Centring allows PCA to use the first principal
component to actually describe the variation between the samples rather
than the variation of the samples to an imaginary “no absorbance” sample at
the centre of gravity of the original variable space).
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Figure 16 Spectra of amidation liquid from the calibration set presented in Paper I.
To the left are the raw spectra and to the right are the centred spectra with the mean
spectra removed in the centring calculations overlaid.

In matrix notation, the PCA model can be written as:
X=TPT+E (6a)

X is the raw data (of size Kx]), T is the score matrix with the same number of
rows (K) as X, P is the loading matrix with the same number of rows (J) as
variables as X. E (also of size Kx]J) is the residual matrix holding whatever is
left unexplained by the model which is the matrix product of TP™.

CZPI-CC

X Model| + E

1
=

Figure 17 Illustration of a PCA model.
If (6a) is written using individual vectors for TPT, then when F principal
components are extracted:

X=tipi" + top2" + ... +trpr” + Er (6b)

Figure 18 illustrates the PCA model vector-wise i.e. with the individual
principal components. The outer product of t1 and pi” gives the first princi-
pal component’s contribution to X, the outer product of t. and p2' gives the
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second principal component’s contribution to X and so on. Er is the residual
matrix (of the same size as X) when F components are extracted.

1 P2 |
X =I + -+ eee + L= —+ EF

Figure 18 Graphical illustration of a PCA model. t: and p1 are the score and loading
vector to the first principal component respectively.

Even though the residuals are not part of the PCA-model, the analysis of the
residuals is as important as the analysis of the model itself. The optimal
number of principal components to extract is determined by analyzing the
residual matrix after extraction of each principal component; that is Ei, Es, ...
in principle up to the full rank of X. The squared sum of all elements in E can
be compared with the squared sum of all elements in X. When X is fully de-
scribed by the PCA model, E will be a matrix of zeros. A plot of the squared
sum of all elements in E as a function of the number of principal components
extracted will disclose if there is an effective rank of X lower than the mathe-
matical rank. Residual analysis on rows and columns of E also indicate
whether all objects or variables are described well by the model or if outliers
in the objects exist or if some variables are poorly explained by the model.

An example of a PCA

Figure 19 shows the explained variance in percent of a PCA on the full spec-
tral region of the “Synthetic” samples and the “Process calibration set” from
Paper I. It is a PCA on the spectra presented in Figure 16. The first four prin-
cipal components explain 85.9%, 9.8%, 2.6% and 1.1%, respectively. The in-
formation from the 402 samples and 740 wavelengths can be compressed to
four principal components, while retaining 99.4% of the original variance in
the data, compared to the centred NIR spectra. Eight principal components
account for 99.99% of the total variance.

The loading plot can be seen as a map of the variables. A loading plot of the
PCA can be seen in Figure 20. It reveals which of the originally measured
variables are important for the principal components.
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Figure 19 The explained variance in percent as a function number of principal
components from 1 to 8 extracted from the calibration set from Paper I. The bars are

the explained variance by each component, the curve is the cumulative variance
explained in percent.
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Figure 20 Loading plot of PC#1 to PC#4 and PC#40. Even though the 40% PC
appears more noisy than the first four PC's, some degree of structure is still evident.
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Several distinct features from the mean spectra as seen on the right side on
Figure 16 can be identified. These can be related to spectral fingerprints of
water (PC#2), ammonia (PC#3) and Isopropyl alcohol; IPA (PC#4). See also
the following chapter on pectin; especially Figure 46. Even though the first
four PC’s capture 99.4% of the total variance, there is still a lot of structure
left in the residuals. As an example, PC#40 is also shown in the plot. PC#40
accounts for only 0.000011% of the total variance and the first 40 PC’s ex-
plain 99.9998% of the variance in total. Albeit noisy, it is far from white (ran-
dom) noise. Some spectral features, especially between 5300 and 6500 cm,
as well as proportional noise are present.

A score plot can be seen as a map of the samples. Various score plots as
combinations of PC#1 to PC#4 can be seen in Figure 21. From the appearance
of the loading plot combined with knowledge of the samples, the sample
acquisition, NIR spectroscopy and other available information, an interpre-
tation of the principal components can be made. PC#1, the most dominant
variation by far is associated primarily with the absorbance level or baseline
of the spectra. As seen in Figure 16, measurements from Tank 1 have a
higher absorbance than the other samples. This is probably because the
measurement cell from Tank 1 inadvertently has a longer path length than
the other measurement cells. PC#1 therefore reflects the physical conditions
of the measurements rather than the sample itself. PC#2 has positive load-
ings in the water region and negative loading in the IPA region. The
amounts of water and IPA are inversely correlated. PC#3 reflects ammonia
and PC#4 has information associated with all three components of IPA, am-
monia and water. Not surprisingly measurements from Tank 1 form a sepa-
rate cluster along PC#1. PC#4 separates measurements from Tank 2 from the
other measurements, while PC#3 vs. PC#4 show a reasonable distribution of
both the Synthetic (laboratory prepared) samples as well as the measure-
ments from the tanks. It compares relatively well with the PLS score plot on
Figure 9 in Paper I. The residuals, the part which is not modelled by the
principal components, often contain as much information as the model itself.
The sum of the squared sample residuals can be seen on the left part of
Figure 22, and the same sum the other way in the residual matrix gives the
variable residuals on the right. The sample residuals reveal that the first 152
samples which happen to be the Synthetic samples have high residuals.
There are still unexplained features left. Measurements from Tank 1 on the
other hand, have low residuals and are therefore well explained by the four
PC’s. The sample residual plot is important for the identification of outliers;
samples which are not modelled well and possibly do not belong to the
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PCA component 3 vs. 4

PCA component 1 vs. 2

same population as the rest of the samples in the study. The variable residu-
als reveal that the shoulder right at 5300 cm™! is poorly explained by the first

four PC’s as well as part of the water peak from 6600 to 7200 cm.
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Sample number

Figure 22 The sum of the squared sample residuals (left) and the variable residuals

(right) after four principal components are subtracted. The sample/variable residu-
als are a measure of how much of each sample/variable remains to be accounted for

by the model.



Multivariate Curve Resolution (MCR)

Multivariate curve resolution (MCR), see Figure 23, is a commonly used
technique that can resolve multi-component mixtures into a simple model
consisting of a composition-weighted sum of the signals of the pure com-
pounds (Tauler, 1995a; Tauler, 1995b; de Juan, 2003). As such, MCR analyses
one sample characterized by second order data. The multivariate curve reso-
lution model can be written as:

D=CS™+E )

It is a bilinear method to resolve an experimental data matrix D (Ix]) into the
product of a column matrix C (IxF) usually associated with concentration
profiles, and a matrix of row profiles ST (Fx]), usually associated with spec-
tra. The matrix E (Ix]) is the residuals i.e. what is not explained by the model
CST. The entries in matrix E should be small and random compared to the
numbers in D and the model CST. The scalars [ and | are the total number of
time points in the data set studied and wavelengths of the data set, respec-
tively, and F is number of components to be resolved. This general descrip-
tion can fit a wide range of applications, processes, mixtures, elutions, im-
ages and environmental data monitored by multivariate instrumentation
(Jaumot, 2005; de Juan, 2003). The model parameters are estimated using an
Alternating Least Squares (ALS) algorithm that iteratively fits the C and ST
matrices to the experimental data D. The model is fitted with a pre-defined
number of components, F, using initial estimates of either the C or the ST
matrix.

Exploratory data analysis using Singular Value Decomposition/PCA, Evolv-
ing Factor Analysis (EFA; Maeder, 1986, Maeder, 1987; Keller, 1992) or Sim-
ple-To-Use Interactive Self-Modeling Mixture Analysis (SIMPLISMA; Win-
dig, 1991) can provide knowledge used for the initial estimates. The MCR
algorithm and constraints that can be applied during iterations is further
discussed in Paper II.

A powerful extension of MCR is multi-sample MCR, where it is possible to
resolve several independent samples and/or several independent measure-
ment techniques by augmenting the input matrix appropriately (Tauler,
1995a; Tauler, 1995b; Jaumot, 2005). Extending the concentration matrix col-
umn-wise to estimate concentration profiles of several samples will facilitate
the resolution of a global solution. This is taken advantage of in Papers II
and IIL
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Figure 23 The Multivariate Curve Resolution model extended to several samples
and assuming that the same spectra are present in all the samples, but with different
concentration profiles.

Parallel Factor Analysis (PARAFAC)

PARAFAC is an acronym of PARallel FACtors. The algorithm was simulta-
neously developed by Harshman (Harshman, 1970) and Carroll and Chang
(Carroll, 1970) and originally developed for psychometrics, the measure-
ment of "psychological” aspects of a person such as knowledge, skills, abili-
ties, or personality. PARAFAC has later been applied to chemometrics (Ge-
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ladi, 1987; Bro, 1997). The PARAFAC algorithm can be seen as a multi-way
extension of PCA. In the three-way case, the algorithm models a three-
dimensional array X. The elements of X can be computed the following way
by PARAFAC:

F
Xi = z Ay bjf Cyr + i (8)
f=1

where xik represents an element in X, in the position given by i, j and k. 4, b
and c are the loadings and eij is the residual; the unmodelled part of the
data. The rank of the PARAFAC model is given by the number of factors, F,
needed to describe the variation in the data array. Vector-wise a three-way
PARAFAC can be seen as a summation over outer products of F triads of
vectors (Figure 24), and the similarity with PCA is obvious. In PARAFAC,
the term scores are some times still used for the loadings in sample mode
but most often just loadings are used irrespectively of which mode is re-
ferred to. In PARAFAC it is necessary to compute all factors simultaneously,
and because of the second-order advantage it will give unique solutions.
This makes PARAFAC an excellent tool for curve resolution (Bro, 1997).
PARAFAUC, as it is, is however not able to handle time or retention shifts and
is not used in Papers II and III.

Mode

Figure 24 The PARAFAC model. The triads of vectors are here combined to load-
ing matrices A, B and C.
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PARAFAC2

PARAFAC2 (Figure 25) is an advanced variant of the PARAFAC algorithm
developed to handle the situation where the number of observations in one
mode varies or where shifts or shape-changes of profiles along one mode are
anticipated. This makes the algorithm appropriate to handle, for instance,
retention time shifts (Bro, 1999). The scalars I, | and F hold the number of
time points and wavelengths of the data respectively, and the number of
components to resolve. The scalar K holds the number of samples. The ma-
tricized notation of the PARAFAC2 model can be written as:

Xi= AD«(PH) +E, k=1,., K (9)

Where Xk represents the data related to one sample (one slab from the origi-
nal data cube) of size (JxI) in which I can vary with k. K is the number of
samples. A (JxF) holds the first-mode loadings, in this study the resolved
spectra. D« (FxF) is a diagonal matrix that holds the k'th row of Cr: in its di-
agonal. The notation D« is maintained for consistency with literature, but
note that D« is not related to the Dk used in the MCR model. Cr2 (KxF) holds
the third mode loadings, usually the sample scores. H is an FxF scaling ma-
trix, and Px is an IxF ortho-normal matrix (I can vary with k). The matrix Ex
holds the residuals. Px and H have no direct chemical or physical interpreta-
tion but their product will be an estimate of the time profiles.

The PARAFAC2 model differs from a Principal Component Analysis (PCA)
of the unfolded array X by the requirement that the spectral loadings ADx
must be proportional for every value of k (running from 1 to K). Further-
more, it is assumed that the cross-product (P«H)T(P:H) is constant for all val-
ues of k (Kiers, 1999; Wise, 2001). This condition is sufficient for the
PARAFAC2 model to be unique if some other mild uniqueness conditions
are met, as further discussed in depth in Kiers et al. (Kiers, 1999). Even
though the matricized notation of PARAFAC2 is presented, it should still be
considered a multi-way method with an independent sample mode. In
MCR-ALS, the sample mode is only implied through extension of the con-
centration matrix.

The PARAFAC2 model is more flexible, compared to the PARAFAC model.
It allows for deviations of the inherent trilinearity imposed by the
PARAFAC model. The concentration profiles resolved on the time axis are
allowed to vary as long as the before mentioned cross-product is constant
over different samples. More about PARAFAC2 as well as the similarities
and intricate differences between PARAFAC2 and MCR are discussed in
Paper II and (Smilde, 2004) and in references therein.
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Figure 25 The PARAFAC2 model. The advantage of PARAFAC2 over PARAFAC is
that it can be applied on data of unequal length in one of the dimensions, and that it
can handle time shifts. Only one model matrix is shown.

Partial Least Squares (PLS) Regression

The purpose of Partial Least Squares regression (PLS) is to model a set of
dependent variable(s) y or Y, from a set of independent variables X, charac-
terised in the same manner that was valid for the description in the section
of PCA. The purpose of this is to estimate Y from future measurements of X
only. This requires a calibration set with known values of X and Y. The cali-
bration set should be representative (Gy, 1998; Gerlach, 2003; Petersen, 2005)
for future populations of X and Y with regard to known and foreseen varia-
tions, which should also be spanned as well as possible.

PLS is a commonly used and well described method in chemometrics
(Sjostrom, 1983; Esbensen, 2000; Wold, 2001). In PLS there are two simulta-
neous decompositions, see Figure 26. As in PCA the X matrix is decomposed
into T and P, the score and loading matrices respectively. Y is similarly de-
composed into U and Q, which are the score and loading matrices in the Y
space, respectively. The difference between PLS and merely two PCA de-
compositions of the X and Y blocks is that the decomposition of Y influences
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the decomposition of X and the opposite way around. This is done by esti-
mating PLS components that capture and maximize the variance and corre-
lation between X and Y.

X 1L

e
<

:::Q_f::

Figure 26 The matrices involved in the PLS-algorithm. T and P together with U and
Q are score and loading matrices for the X and Y block, respectively. W are the load-

ing weights that express which variables in X are important for the description of Y.
The residual matrices are not shown.

The PLS model can be regarded as consisting of an outer relation and an inner
relation, where the outer relation describes the X and Y block, while the inner
relation links the two blocks together. The outer relations are given by:

X = TPT + Ex (10)
Y = UQ" + By (11)

Where Ex and Ey are the residual matrices for X and Y, respectively.
The inner relations are given by:

U=BoT+H (12)

where Bp is a diagonal matrix with the regression coefficients from the inner
relation and H is the inner relation residual matrix. The loading weights, W,
can be computed from the estimation of the scores, T, in the X-block:

W=TrX (13)
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The loading weights, W, are related to the PLS regression coefficients B by:
B = W(PTW)1Q" (14)

The regression coefficients B can be used to predict new Y values from new
X values:

Ynew = XnewB + EY,new (15)

For further details of the PLS algorithm, the reader is referred to (Haaland,
1988; Bro, 1996b; Wold, 2001; Smilde, 2004) and references therein. PLS has
successfully been applied to higher order data both of X and Y. This is called
multi-way Partial Least Squares regression (or simply N-way PLS or N-PLS;
Bro, 1996a; Smilde, 2004).

Validation and error measures

An important element in chemometric data analysis is the validation of the
calculated models. This is to avoid false/chance correlations, determine the
optimal number of PCA or PLS components to use in the final model and to
ensure that the estimated model reflects the reality. If not, no conclusions
should be drawn from the model. The best validation is a completely inde-
pendent set of new objects or samples — a so-called test set — that if it reflects
the variation in the calibration set and the future samples, will give a realistic
estimation of the error. This is also referred to as external validation. If an in-
dependent test set is not available, it could be defined from the available
objects. This should be done by spanning the variation in population as well
as in time. An independent test set is used after the final model is computed
for assessment or calculation of e.g. the prediction error. If an “independent”
test set is used in phases of the modelling, it is no longer independent.

If no independent test set is available, for instance if the number of samples
is limited and/or during the model development using the calibration set,
some sort of internal validation is needed. One example is cross validation. Pre-
defined segments of the sample set are excluded in the modelling phase, and
the model is calculated on the remaining data. The excluded data are then
fitted and/or predicted on the model developed on the segmented data.
Other data are then in turn left out until all predefined segments have been
kept out. For the final model all samples are used, but the error measures
computed during the cross validation step is used for performance evalua-
tion. In PCA, the size of the sample residuals can be used as a measurement
of the modelling error, and in PLS, the prediction error of the Y data is used.
The recommendations how to divide a sample set into test set and calibra-
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tion set as well as when to use cross validation and test set validation, and if
cross validation is to be used, then how to define the segments, are much
debated in scientific literature (Wold, 1978; Martens, 1989; Martens, 1998;
Louwerse, 1999; Esbensen, 2000; Smilde, 2004). It will always be related to
the data set at hand and the purpose of the modelling.

A commonly used way of estimating the prediction error is in terms of the
Root Mean Square Error (RMSE):

D Yip = Vir)’
RMSE =12 - (16)

where yip for sample number i is the predicted value, yir the actual reference
value for sample number i, and n the total number of samples. The RMSE-
values are in the same units and scale as the reference values. Depending on
how the model is used for estimating the predicted values, terms like
RMSEC (Root Mean Square Error of Calibration), RMSECV (Root Mean
Square Error of Cross Validation) and RMSEP (Root Mean Square Error of
Prediction) are used. Occasionally RMSEP is used interchangeably with
RMSECYV, but RMSEP should only be used with test set validation.

Pre-processing of spectra

As seen in Figure 16 and Figure 21 baseline shifts, scatter effects and other
physical phenomena may interfere with the chemical information recorded
in the spectra. Spectral pre-processing may be used to correct for these ef-
fects, and improve performance and interpretation of calibration models.
Many such methods exist, and in the following section some of the most
common will be presented. Multiplicative Signal Correction (MSC; Geladi,
1985) corrects for additive (a level correction) and for multiplicative differ-
ences in the spectra. The method was originally developed to the correction
of scatter effects (and is hence also known as Multiplicative Scatter Correc-
tion) that is commonly seen in spectral measurements of powders, particles
of different size distribution and slurries, but has also proved effective in
correcting for instrument and temperature drift and other physical interfer-
ences. MSC could be done on the entire spectra, but often selective regions
without absorbing species should be selected as a basis for estimating the
additive and multiplicative effects (Esbensen, 2000). One disadvantage with
MSC is that the mean spectrum has to be stored for future MSC transforma-
tions, and if suddenly new spectra changes significantly, the MSC will not
handle them in a proper way. Recently the method has been further devel-
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oped to Extended Multiplicative Signal Correction (EMSC; Martens, 2003;
Thennadil, 2006) which corrects for quadratic effects as well. The Standard
Normal Variate (SNV) pre-processing is theoretically related to MSC
(Dhanoa, 1994). The SNV pre-processing is done for each individual wave-
length in each individual spectrum and is not dependent on a global mean
spectrum.

A different approach to eliminating the additive and multiplicative signal
effects in the spectra is by computing the derivatives. The first derivative
will remove additive effects and taking the second derivative will remove
both additive and multiplicative effects. In order not to amplify noise in the
spectra a smoothing filter is often applied simultaneously. The most used
method for computing derivatives is the one proposed by Savitzky and Go-
lay (Savitzky, 1964). The algorithm fits a polynomial for each individual data
point in a pre-defined window size symmetric left and right of the data
point of interest. Thus, some parameters have to be decided upon before
applying the algorithm. Obviously, taking the derivatives changes the ap-
pearance of the spectra, and complicates spectral interpretation.

Figure 27 shows the effect of the above mentioned spectral pre-processing
methods on the NIR spectra from Paper I. Only the most interesting spectral
region from 5300 to 9000 cm™ is shown. That pre-processing can assist in
removing unwanted information can also be seen by relating the individual
wavelengths of the spectra in a calibration set to the property of interest. In
Figure 28 it is clearly seen how the direct correlations between the individual
wavelengths and the property of interest improve by pre-processing the
data. The data used are the calibration set from in Paper I, and the property
of interest is ammonia. There are also pre-processing methods that actively
use information about the property of interest. Orthogonal Signal Correction
(OSC; Wold, 1998), Direct Orthogonalization (Andersson, 1999) and Net
Analyte Signal Correction (Lorber, 1997) all use some PLS-like variants in a
pre-processing step to remove unwanted variation from X that does not cor-
relate to Y. The effect of various pre-processing methods on the prediction of
ammonia on the data set of Paper I can be seen in Figure 29. The various
models are computed using the calibration set and applied on the test set.
This is only done for illustrative purposes for this thesis. To make plots like
these during the modelling stage would be improper use of the test set. The
performance improvement by pre-processing can clearly be seen as the Raw
(not pre-processed) prediction error is the highest in most instances. Note
that the EMSC pre-processing leads to a dramatic increase in prediction er-
ror when seven PLS components are used in the full spectrum model.
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Figure 27 The effect of different pre-processing methods on NIR spectra. Second
degree polynomials are fitted to the individual data points using a window size of
11 (5 points to the left and right of the data point in question) to compute the deriva-

tives.
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Figure 28 The squared of the correlation coefficient (?) of the NIR spectra in the
calibration set to the ammonia content. When no pre-processing is done the 12 is
below 0.5 at all times while it is close to 1.0 in certain wavelength regions when the
spectra have been pre-processed with SNV. The average spectra in the figures are
not to scale.
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Figure 29 The effect on various pre-processing methods on the prediction of am-
monia. The prediction error (RMSEP) estimated using test set validation is plotted as
a function of the pre-processing method and the number of PLS components used.
To the left is models calculated using the full spectral region, on the right is only the
spectral region of 5423 to 6658 cm™ used.

For reasons of confidentiality, the concentrations of IPA and ammonia have
been rescaled to 0-100% following the convention used in Paper L.

Variable selection

As can be gathered from the right hand side of Figure 28, and what is known
from the theory of spectroscopy, certain wavelength regions contain specific
information about the analyte of interest. In Figure 30 this is further illus-
trated by colouring the spectra in a scatter plot according to the amount pre-
sent of the analyte of interest.
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Figure 30 The NIR data from the calibration set of Paper I is pre-processed using
SNV and the individual NIR spectra are coloured by the content of Isopropyl alco-
hol (IPA, left) or ammonia (NHs, right). The region from 5423-6650 cm! is plotted.
Several peaks which correlate to the analytes can be identified.
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It is seen that calibration performance can be improved by eliminating re-
gions with no relevant information. Several approaches can be taken to vari-
able selection, for instance genetic algorithms (Leardi, 2001) or interval PLS
(iPLS; Nergaard, 2000). A simple, but efficient way is to plot all combina-
tions of one-region selections of the wavenumbers. In Paper I however, 740
wavenumbers are recorded in the region of 5300 to 11001 cm. 274,170 dif-
ferent regions can be picked, but by taking the iPLS approach and combin-
ing intervals of wavenumbers, the number of models to compute can be re-
duced significantly. By combining 15 wavenumbers equivalent to about 115
cm™ intervals, the number of combinations of regions is lowered to 1225. In
Figure 31 an “error surface” for all combinations of continuous intervals giv-
ing RMSEC (using the calibration set) and RMSEP (estimated using the test
set) values is compiled for each PLS component and represented as a col-
oured pixel. The spectra are pre-processed by taking the first derivative us-
ing a quadratic Stavitzky-Golay algorithm using a window size of 11 points,
and the property of interest is ammonia. In each of the plots the start
wavenumber is indicated on the y-axis and the end wavenumber is on the x-
axis. In the lower left corner of each figure is the first row of (in this case 49)
pixels representing the models computed starting at 5300 cm. In the lower
right corner is the full spectrum model starting at 5300 cm™ and ending at
11000 cm™. In the row above are the 48 pixels representing the error of mod-
els starting at ~5415 cm. In the top right corner is the sole pixel representing
the model starting at ~10820 cm™ and ending at 11000 cm.

The regions with low prediction error are the blue areas, and in general the
more PLS components that are used the lower is the prediction error. If the
RMSEC error surface using 2 PLS components (placed upper-right) are scru-
tinized several interesting regions can be identified, notably the region start-
ing from 5400 to 6000 cm and ending at 7000 cm™. But other interesting re-
gions with low RMSEC is the region starting from 7500 to 7700 cm™! and end-
ing at 11000 cm. The red regions have high RMSEC and do not hold infor-
mation of the ammonia content.
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4, Pectin

An industrial commodity

Pectin is a polysaccharide found in the primary cell walls and intracellular
regions of all higher order plants. Pectin was first isolated and described in
1825 by the French chemist and pharmacist Henri Braconnot. He also sug-
gested the French name pectine based on the Latin word pectis, which means
coagulated. The original Greek word péktos is derived from pegnunai, to co-
agulate. Pectin has excellent gelling, thickening, texturizing and stabilizing
properties and is widely used for commercial applications, primarily in the
food industry. Commercial production of pectin is done using mainly citrus
peel and apple pomace available as a by-product from industrial juice and
cider manufacturing (Rolin, 1990; FAO, 2001; Rolin, 2002). Annually 4000
million litres of orange juice and 450 million litres of grape fruit juice are
produced (leaving theoretically more than 600 million tons of dried peel).
Furthermore, 5 million tons of apples are processed into juice every year
(Madden, 2000). Apple pomace contain about 10-15% and citrus peel about
20-30% pectin on a dry weight basis. A small amount of commercial pectin is
produced from sugar beet pulp, primarily used to stabilise emulsions. Pectin
has always been part of human foods. As pectin is considered safe, the Ac-
ceptable Daily Intake (ADI) of pectin is “not specified” by the Joint
FAO/WHO Expert Committee on Food Additives (JECFA) as well as in the
EU, and the US Food and Drug Administration renders pectin the Generally
Recognized as Safe (GRAS) status. In the International Numbering System
(INS) pectin has the number 440. In the EU it is further differentiated into
E440(i) for non-amidated pectins and E440(ii) for amidated pectins (further
details given below). The pectin world market has doubled the last 20 years
and has a growth rate of approximately 3.5% per year. The annual sales vol-
ume of pectin is estimated at 34,000 metric tons (Brejnholt, 2007), and the
global market value is estimated to be at least 400 million Euros (Savary,
2003).

Pectin is used for the production of jams and jellies, fruit beverages, confec-
tionery products, bakery fillings, bread and dough production, dairy appli-
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cations including acidified milk drinks and yoghurts, as well as pharmaceu-
ticals and personal care products (Thakur, 1997; Rolin, 2002; Brejnholt, 2007).

Botanical origin

Pectin is found in the middle lamella and primary walls of plant cells. It is an
important structural element giving both strength and flexibility to plant
material. In Figure 32 the cellulose microfibrils are tied by cross-linking
hemicellulose polymers. An important part of these are the xyloglucans that
cross-link two or more cellulose microfibrils by hydrogen bonding. These
cellulose-xyloglucan domains are embedded in an independent matrix of
pectin polysaccharides.

middle lamelia

primary wall

Figure 32 Simplified and schematic drawing of the arrangement of the three major
structural polymers in a plant cell wall (reproduced from McCann, 1991).

Pectins present in the middle lamella are cross-linked to each other by Ca?"
and serve multiple functions. They limit the porosity of the cell walls, regu-
late the intracellular adhesion, add charged surfaces to the cell walls modu-
lating the pH and ion balance and act as antigens signalling response to-
wards symbiotic organisms, pathogens and insects (Carpita, 1993; Ridley,
2001; Willats, 2001).

Structure
Pectin consists of what is recognized as a family of oligosaccharides and
polysaccharides which have common features. Pectin is one of the most
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complex polymers known. It can be divided into three classes of polysaccha-
rides all containing galacturonic acid (GalA) in various amounts. Pectin has
been divided into “smooth regions” and “hairy regions”. The smooth re-
gions - called homogalacturonan (HGA) - consist of a linear chain of poly-a-
(1—>4)-D-GalA of 100-200 units where the GalA to a varying degree are
methyl-esterified at the C-6 position (see Figure 33) and to a lesser degree
acetylated at the O-2 or O-3 position (Schols, 2002). The hairy regions consist
of rhamnogalacturonan I (RGI) and rhamnogalacturonan II (RGII). RGI con-
sists of the repeating disaccharide [—4)-a-D-GalA-(1—2)-a-L-Rha-(1-]
where Rha stands for Rhamnose. Attached to the rhamnose residues are one
or more glycan side chains, primarily arabinan and galactan. The chain
lengths may be up to 15 units and can be branched themselves. The chain
lengths, branching and sugar composition of RGI can be highly heterogene-

ous.
COOCH,
COOCH COOH 3
OH o o OH o o OH (o] )
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Figure 33 A fraction of a homogalacturonan (HGA) chain, which is partly
methylated at C-6 positions.

The RGII has a backbone of HGA rather than rhamnogalacturonan contrary
to what the name suggests. On the GalA residues, a complex arrangement of
ordinary and very rare sugars is identified. RGII is nevertheless thought to
have a highly conserved structure across different plants (Pérez, 2003). Until
recently it was widely accepted to view pectin as having a “backbone” of
HGA with hairy regions of RGI and RGII inserted as seen in part A in Figure
34. A newly proposed structure (B in Figure 34) has an RGI chain with HGA
and RGII as long side chains (Vincken, 2003). Domains of xylogalacturonan,
arabinan, arabinogalactan and apiogalacturonan may also be present. The
exact composition and arrangement of HGA, RGI and RGII and other struc-
tural elements is very complex, and for this reason, no two pectin molecules
are the same. The average molecular weight of pectin also varies a lot de-
pending on plant origin and extraction conditions, but an average of 200
kDa as determined by liquid chromatography with light scattering detection
is reported for commercial pectin (Rolin, 2002). This corresponds to a degree
of polymerisation (DP) of ~1000 carbohydrate units. For a thorough discus-
sion of the pectin structure, the reader is referred to (Thakur, 1997; Willats,
2001; Ridley, 2001; Schols, 2002; Willats, 2006) and the sources therein.
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Figure 34 Two suggestions of the pectin structure: The structure in A consists of a
“backbone” of HGA with hairy regions of RGI and RGII inserted. The newly pro-
posed structure in B has an RGI chain with HGA and RGII as long side chains (re-
produced from Willats, 2006).

The above described structure applies for native pectin also referred to as
protopectin, which is pectin with the structure that is believed to exist in in-
tact plants. In commercial preparations of pectin, part of the “hairy” regions
is lost during industrial processing i.e. the side chains of neutral sugars
and/or some of the RGI and RGII domains. Commercial pectin is therefore
often simplified to partly methylesterified o(1—4) linked anhydrogalactu-
ronic acid only. But this may be an oversimplification as the hairy regions
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may be more or less retained. Recent research argues, that the HGA part of
different acid extracted citrus pectins are quite homogeneous with respect to
composition and molecular weight, and that the only significant difference
were to be found in the RGI domains as only a minor RGII fraction was
identified. In this research, a mass partition HG/RGI/RGII of ~88/11/1% was
found (Yapo, 2007). In Table 3 the composition of typical commercially avail-
able pectins can be seen. There are still neutral sugars left and some phenolic
and protein residues. Both types of pectins have been found to be slightly
acetylated. The degree of acetylation (DAc) is estimated to 1.5 and 5.0% for
lemon and apple pectins, respectively. The pectin extracted from apple con-
tains more neutral sugars and more phenolics but less protein than lemon
pectin.

Table 3 Composition of typical commercial pectins stated as percentage weight of
dry matter (Kravtchenko, 1992). Values in parenthesis refer to degree of methyl es-
terification (DE) and degree of acetylation (DAc).

Component (%) Lemon Apple
Anhydrogalacturonic acid 76.4 60.8
Methyl ester groups (%DE) 4.4 (71.5) 3.6 (74.3)
Acetyl groups (%DAc) 0.26 (1.4) 0.72 (5.0)
Total neutral sugars 8.5 27
Proteins (N*6.25) 3 1.6

Total phenol 0.18 0.59

Ash 2.38 1.89
Total 95.1 95.9

Pectins are divided into subgroups depending on their degree of esterifica-
tion (DE) which is the ratio of the esterified galacturonic acid groups to the
total galacturonic acid groups. At times, the more specific degree of methyl
esterification (DM) and the degree of acetyl esterification (DAc) are used,
where DE = DM + DAc. In commercially prepared pectin from lemon or ap-
ple the DAc is assumed to be negligible. When the DE is higher than 50% the
pectin is called high methoxyl or high methylated pectin and abbreviated
HM pectin. Pectin with a DE lower than 50% is referred to as LM pectin for
low methoxyl or low methylated pectin.

Commercial pectin preparations typically have more than 70% by weight of
galacturonic acid groups where, depending on the pectin origin and quality,
75% are methylated. The degree of esterification highly impacts the func-
tionality of the pectin such as solubility, gelling ability and gelling tempera-
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ture. HM and LM pectins combined are referred to as pectinic acids and the
salts thereof are called pectinates. Polygalacturonic acid with no or almost no
methyl ester groups (DE < 10) is called pectic acids and the salts thereof are
called pectates.

If pectin is subjected to ammonia in aqueous/alcoholic suspension amidated
pectin is produced. Some of the C-6 methyl ester groups are converted to
amide groups, see Figure 35. The resulting degree of amidation (DA) is the
ratio of the amidated galacturonic acid groups to the total galacturonic acid
groups. Usually, HM pectin is amidated resulting in pectin with a DE < 50%
and a DA > 10%. The resulting pectin is therefore called Low Methylated
Amidated (LMA) pectin. This is in practice used for all types of amidated
pectin, though pectins with a DE > 50% and a DA between 5 and 10% exist,
and thus strictly should be referred to as HMA pectins. Pectins with DA >
25% are not considered food grade pectin and are not commercially avail-
able.

OH OH OH
4 ¢ 011" 4 017" 4 (3 071"
L’io o) o) o 1'Lo o
COOH COOCH; CONH,

Figure 35 The three building blocks of the homogalacturonic backbone in a pectin
molecule. Shown from left to right is a de-esterified, a methylated and an amidated
galacturonic acid unit.

Physical/chemical properties

Pectins are soluble in water, but insoluble in aqueous solutions where gel-
ling would occur if dissolved at a higher temperature and left to cool. The
viscosity of the solution is related to the molecular weight of the pectin, DE,
concentration of the pectin, pH and presence of cations. Monovalent cations
will typically induce a decrease in viscosity whereas di- and trivalent cations
increases viscosity. Viscosity, solubility and gelling are related properties.
Factors that increase gel strength will increase the tendency to gel, lower
solubility and increase viscosity. Pectin is a polycarboxylic acid due to the
presence of GalA and is negatively charged at neutral pH. The dissociation
of the individual carboxylic acid group is not independent of the other car-
boxylic acid groups. At 50% dissociation of the acid groups, the pH is likely
to be between 3.5 and 4.5 (Speiser, 1945), so the pKa value of pectin is there-
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fore reported as between 3.5-4.5. The lower the pH, the less dissociated the
carboxylic acids will be.

As seen in Figure 36, pectins in aqueous solution will undergo deesterifica-
tion and depolymerisation. Best stability is found at pH around 4. At higher
or lower pH both reaction rates will increase. In neutral and alkaline condi-
tions the homogalacturonic backbone depolymerises by B-elimination. The
ester group is furthermore prone to saponification (not shown in the figure).
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Figure 36 Common pectin degradation reactions.

Functionality

The primary functional property of pectin is its ability to form a gel in the
presence of Ca?" ions, sugar and acid. Pectin gels provide a desirable tender,
short texture with excellent clarity combined with good flavour release
properties (Engelsen, 1996). Several extrinsic factors affect the ability to form
a gel: Temperature, concentration of pectin, pH, concentration of soluble
solids (e.g. sugar) and the presence of ions, divalent ions such as Ca? in par-
ticular. The intrinsic factors of the pectin itself for gelling properties include
molecular weight, the degree of esterification (DE) and amidation (DA), the
presence of acetyl ester groups on O-2 and O-3 and possibly the presence of
hairy regions. A gel may be regarded as a three dimensional network of
cross-linked polymer molecules and as such an intermediate state between a
solution and a solid. A pectin gel is an aqueous solution in which less than
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4% pectin chains are cross-linked by hydrogen bonds, calcium bridges and
other van der Waals forces and thereby trapping more than 96% water.

It is generally recognized that pectin forms at least two types of gel: Acid
and calcium gels with different mechanisms of gel formation. Intermediates
between the two also exist. The gel formation mechanism is depending pri-
marily on the degree of esterification. HM pectin with a DE > 50% gels if the
pH is below 3.8 and the concentration of soluble solids (typically sugar) is
above 55% by weight. The function of the soluble solids is to lower the water
activity, and thereby promote the pectin-to-pectin interactions. The low pH
ensures that the carboxylic acids on the homogalacturonan backbone of the
pectin are not dissociated thereby avoiding electrostatic repulsion between
the pectin molecules. The result is that junction zones of hydrophobic inter-
actions and hydrogen bonding between the methyl ester groups of different
pectin molecules are stabilized. The non-covalent bonding of the junction
zones forms the three-dimensional network of the gel. Increasing the degree
of esterification and lowering the pH enhance the gelling ability (Speiser,
1946). Gels are normally made by mixing the hot ingredients above the so-
called gelling temperature, the highest theoretical temperature that causes a
gel to form in a particular system if kept infinitely long. When the system is
cooled below a certain temperature gelling will occur after a certain delay
which is short with pectin of high DE and longer with pectin of lower DE.
For this reason HM pectin is divided into “ultra rapid set” (DE 74-77%),
“rapid set” (DE 71-74%), “medium rapid set” (DE 66-69%), “slow set” (DE
58-65%) and “extra slow set” (DE 50-58%; Thibault, 2003). Table 4 gives an
example of the required time before gelling has occurs in a typical gelling
system. Pre-gelling is a state where an undesired, imperfect, lumpy gelling
has occurred because the gelling process has been too fast. This leads to a
broken set gel which exhibits syneresis (exudation of water after gel setting).

Table 4 Gelation of HM pectins with different degrees of methyl esterification at
pH 3.0, soluble solids 65% and pectin concentration is 0.43%. Gelling time needed
when cooled after boiling and held at indicated temperature (CP Kelco, 2003).

Degree of methyl 95°C 85°C 75°C 65°C
esterification (%)
Rapid set 73.5 60 min 10 min Pre-gelling  Pre-gelling
Medium rapid set 69.5 No gelling 40 min 5 min Pre-gelling
Slow set 64.5 No gelling ~ No gelling ~ No gelling 30 min
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The calcium gelling of LM pectin, be it amidated or non-amidated, differs
substantially from the acid gelling mechanism, as it is the carboxylic acids on
the homogalacturonan backbone that is the functional group of the pectin.
The pectin is still forming a three dimensional network, but the links involve
ionic cross-links between two (dissociated) carboxylic acids and cations, cal-
cium in particular. In the 1970’s the “egg box” model was proposed (Grant,
1973). It involves two chains of homogalacturonan sufficiently deesterified
so that it is possible for several Ca* ions to form coordination complexes
with the carboxylic acids. Ca?-ions are then the “eggs” within two egg boxes
formed by the homogalacturonan chains (Figure 37). As cations differ in
valence number, ionic radii and electronegativity, their affinity for the elec-
tronegative gaps formed by the pectin differs. Ca?* is the ion that has the
largest influence on pectin performance apart from H* (Rolin, 2002).

LM pectins gel in the absence of sucrose. Therefore, LM pectins can be used
to gel also low-calorie jams and jellies. Apart from DE and calcium concen-
tration; molecular weight, presence of amide groups, pH, ionic strength and
temperature also influence the gelling of LM pectins (Axelos, 1991).

Figure 37 Representations (stick and van der Waals structures) of the chain-Ca?*-
chain associations of galacturonate chains; green circles represent calcium ions. On
the right hand side the structure on the left is viewed down along the chains (repro-
duced from Braccini, 2001).

LM pectins (both amidated and non-amidated) are thermo reversible as op-
posed to gels made from HM pectins. Thermo reversible gels will re-melt
upon heating and will be able to gel again upon cooling without a significant
loss of gel strength. Table 5 sums up key functionalities of the various pectin

types.
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Table 5 Key features of high methylated (HM), non-amidated and amidated low
methylated (LM) pectin (Brejnholt, 2007).

HM LM Amidated LM
pH gelling range 2.5-3.8 2.5-6.0 2.5-6.0
Soluble solids range 55-85% 25-55% 5-65% (75%)
Gel setting temperature 25-90°C 40-100°C 30-70°C
Thermal reversibility No Yes Yes
Gel texture at pH lower Firm Spreadable with Semi firm, similar
than 3.5 increase in firmness to HM but more
as pH is lowered rubbery
Gel texture at pH higher No gel is formed  Spreadable, slightly =~ Spreadable, similar
than 3.5 but viscosity is soft to non-amidated
provided LM

Recent studies reveal that the calcium gelling mechanism of LM pectins also
influences the gelling of some HM pectins. Some HM pectins with a blocky
rather than random DE distribution, i.e. having a group of neighbouring de-
esterified galacturonic acids, have a higher gelling temperature in the pres-
ence of calcium. Such pectins are called calcium sensitive pectins, and have a
different functionality (Rolin, 2002; Willats, 2006). It is a novel method for
characterizing these pectins with a different intramolecular deesterification
pattern that is the topic of Papers II and III. Gelling and gelling mechanisms
are still highly debated in scientific literature. For a review of the discussion
the reader is referred to (Thakur, 1997) or (Morris, 2007).

Pectins with high acetyl content, notably sugar beet pectins, do not form gels
either with calcium ions or at high sucrose concentrations. They have been
shown to be an effective stabiliser of oil emulsions (Williams, 2005).

Applications

Use of pectin in jams and jellies account for more than a third of the com-
mercial production (see Figure 38). Before pectin was an industrial commod-
ity, the natural pectin in fruits was used, and jams of low-pectin fruits were
fortified by adding e.g. orange or apple to the recipe. Controlling the texture
of the gel and setting temperature of jams and jellies are important to ensure
uniform consistency, avoid fruit flotation and allow air bubbles to escape.
Jellies and jams for baking will have to be thermally stable and are often re-
quired to withstand shear as many (industrial) applications require the jam
to be pumped. Pectin is also used directly in bakery and other frozen prod-
ucts to retain water, minimise drip loss, improve bread volume and stabilise
the food product e.g. the starch. Use of pectin for fruit toppings and fruit
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preparations for yoghurt often calls for a soft LM pectin gel and care must be
taken to avoid colour migration into the yoghurt’s white mass phase. Con-
fectioneries with pectin include low water content fruit jellies, foams and
aerated confectionery products like marshmallows.
Bakery Miscellaneous Food
2% 3% Dairy

5% Confectionery
5%

High Sugar, Low Sugar and
Baking Jams

37% Pharma and Personal Care

6%

Fruit Beverages
9%

Fruit Preparations
12%

Acidified Milk Drinks
21%

Figure 38 Estimated world market (by weight) of pectin applications (modified
from Brejnholt, 2007).

Acidified and fermented milk drinks are the fastest growing application area
of pectin. The negatively charged pectin molecules can bind to proteins car-
rying a positive charge and prevent them from coagulating when heated.
The role of pectin is to stabilise the protein at low and intermediate pH and
at the same time provide a desired mouthfeel. Careful control of the HM
pectin is necessary to achieve this; therefore there is an increasing need for
tailor-made pectin with tight specifications for the deesterification pattern
(Willats, 2006). This necessitates the development of simple and rapid meth-
ods for quantifying this, as presented in Papers II and III. Other dairy appli-
cations utilize the natural calcium content in milk to create gels, spreadable
or foamy milk or yoghurt desserts. In fruit beverages, pectin is used to in-
crease viscosity and mouthfeel, mimic the presence of sugar or stabilize es-
sential oils. The latter is an important use of sugar beet pectin. The non-food
applications of pectin primarily include use in pharmaceutical and personal
care products. Pectin is very skin friendly and highly biocompatible and is
therefore used in cosmetics, lotions, breath strips, hair and skin care prod-
ucts as well as ostomy and wound care products. The functionality of pectin
makes it suitable for pharmaceutical emulsions, anti-diarrhoea and anti-
reflux products. Pectin is not degraded in the stomach and pectin is used for
drug encapsulation for specific colon release formulations (Brejnholt, 2007)
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Industrial pectin production

The first commercial production of a liquid pectin extract was established in
1908 in Germany, and the process spread rapidly to the United States, where
a patent was obtained by Robert Douglas. This was followed by a rapid
growth of the pectin industry in the United States and also, somewhat later,
in Europe (IPPA, 2007). Douglas patents a “pectous concentrate...adapted
particularly to be used in the making of jellies and which is adapted either
for the use in a domestic manner by the housewife or in the more extensive
manufacture of jellies, jams and preserved fruits or vegetables for public
sale” (Douglas, 1913). Modern commercial pectins are almost exclusively
produced as a precipitated dried powder for easy handling and improved
shelf life. The raw materials are almost exclusively citrus peel (primarily
lime, lemon and orange), and then some apple pomace and sugar beet pulp.
As citrus fruit is the principal raw material for pectin production, it will
serve to exemplify the process. The main producers of lime and lemon fruit
are Mexico, India, Argentina, Iran, Brazil, and Spain in descending order, see
Figure 39 for a complete overview.

UR DON E'ST A2

Figure 39 Global distribution of lemon and lime output in 2005 as a percentage of
the top producer Mexico producing annually 2 million tonnes (FAO, 2007).

The raw materials are either used fresh or dried. As soon as the fruit is har-
vested, a decline of the fruit and pectin quality begins. At the juice process-
ing facility, the fresh citrus fruits, in most cases, have their essential oils re-
moved before juicing. The juicing leaves the albedo (see Figure 40), the fruit
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interior (lamella, core and seeds)
and the flavedo more or less in-
tact. Following juicing, the qual-
ity deteriorates. The peel is

Flavedo
chopped and washed to remove Albedo
water and soluble solids and
should be processed for pectin as
soon as possible, or dried to ex-
tend the storage stability. An

overview of the pectin produc-

Lamella
PR DAt

Core

tion process is seen in Figure 41.
The peel is suspended in hot (50-
90°C) acidified water (pH typi- Figure 40 Different parts of lemon fruit.
cally 1-3) for 3-12 hours. Mineral

acid (usually nitric acid) is chosen. The peel to water ratio is chosen, so that
the resulting pectin concentration after extraction is 5-10g/l corresponding to
~ 0.5-1%. Depending on the extraction conditions and raw material, the pec-
tin DE will vary between 80 and 55%. Large variation in the average molecu-
lar weight is also seen depending on the raw material and extraction condi-
tions. The solution is filtrated, often in several steps to remove the solids.
The resulting pectin thin juice may be ion-exchanged (to remove Ca?" ions)
and concentrated to pectin thick juice by evaporators or membrane filtration.
The pectin is then precipitated in alcohol, typically ethanol or IPA (Isopropyl
alcohol or 2-propanol). The pectin precipitate is washed in fresh alcohol, is
pressed hard to a press cake, dried, milled, sieved and standardized to uni-
form gel strength usually by diluting with sugar which also facilitates the
dissolution of the pectin for the user. Some types of pectin may contain suit-
able food grade buffer salts required for control of pH and desirable setting
characteristics. An overview of some of the processing steps in pilot plant
scale can be seen in Figure 42. If pectin with a lower DE than 55% is re-
quired, a further deesterification step is needed after the extraction. This step
is done just before or right after the pectin precipitation. Amidation of LM
pectins produces a firmer gel with less calcium than conventional LM
pectins.
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are omitted, HM rather than LM or LMA pectin is produced (CP Kelco, 2003).
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Figure 42 Various processing stages of pectin in pilot plant scale. From top left to
bottom right: Raw material (oranges), chopped peel, extraction, filtration (filter aid),
ion exchange (resin), precipitation, precipitated pectin and wet pectin press cake.
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Establishing a PAT approach to pectin production

In order to establish process analytical technology (PAT) in a production
environment, more than just the chemistry (e.g. spectroscopy) and the ana-
lytical side (e.g. the chemometrics) need to be understood and reviewed. In
its broadest sense, a PAT approach comprises the full product chain from
raw materials to consumer applications, as well as decision making layers
involved in the process. This is illustrated in Figure 43. The product moves
from right to left. Based on the raw material quality, certain raw materials
are deliberately chosen for certain batches and appropriate process parame-
ters are chosen. This will result in pectin with measurable fundamental
qualities (e.g. DE, DA, molecular weight and intramolecular DE distribu-
tion). The pectin is however not sold or valuated based on the fundamental
qualities but rather on its functional capabilities such as gel strength, calcium
sensitivity and viscosities expressed in more or less elaborate grading or
strength tests (Rolin, 2002). What matters for the customer is the pectin per-
formance in their individual specific applications. For this quality, and not
less important consistency, a pectin supplier is chosen, and value is given to
the pectin by the customer (and thus pectin supplier).

For this reason it is a deliberate choice to have the raw material on the right
hand side of the figure and double arrows between the boxes. Just as impor-
tant as the product is moving from one side to the other in the chain, are
information, knowledge, feedback and decisions moving in the opposite
direction. It is far beyond the scope of this PhD thesis to elaborate on the
entire pectin product chain in detail. Focus in this thesis will be on identify-
ing some of the Critical Quality Attributes (CQA), the Critical Process Pa-
rameters (CPP) and identifying suitable techniques to measure specific proc-
ess parameters and/or quality attributes. As already pointed out in the para-
graph on functionality, the DE and DA and the intramolecular distribution
of DE (and DA) are very relevant for the functional properties of pectin
(Guillotin, 2006; Willats, 2006). It is an established fact that Raman, Infrared,
and Near Infrared spectroscopy are appropriate techniques to characterize
pectin and that the latter two are highly suitable to measure the overall DE
and DA in pectin (5éné, 1994; Engelsen, 1996, Gnanasambandam, 1999;
Synytsya, 2003). So far no papers have been published that clearly demon-
strate that any of the mentioned techniques are able to determine the DE
intramolecular distribution, however.
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Figure 43 The pectin product chain from raw material to customer applications.

Figure 44 shows Fourier transform infrared (FT-IR) spectra recorded by the
Attenuated Total Reflectance (ATR) technique of typical unstandardized
powdered HM and LMA pectin samples. Tentative assignments of the fun-
damental vibration functional groups in pectin can be seen in the figure.
Combination bands and overtones of the fundamental vibrations can be
measured by NIR spectroscopy, and both FT-IR and FT-NIR have been es-
tablished for more than a decade as off-line quality control (QC) methods to
predict DE and DA in dry pectin powder at CP Kelco.

08—

——HM
—— LA

07 b

w(andmer, COH)

0B

o
i

=)
=

Arbitary Absorbance

D v(CH, eeten !

o
[

o1 <o wG=0); amide 4

wG=0, astar)

0 1 | 1 i 1 1 1 1 i 1 1 | 1 i 1 1 | |
600 850 900 950 1000 1050 1100 1150 1200 1250 1300 1360 1400 1450 1500 1450 1600 1650 1700 1740 1800

Wavenurnber (cm"‘)

Figure 44 FT-IR-ATR spectra of typical HM and LMA pectin samples with tentative
assignments partly based on (Engelsen, 1996) and (Synytsya, 2003).

The concentration of ammonia to be used in the amidation step is a critical
process parameter for the control of DA. Likewise, the alcohol (IPA) concen-
tration, the IPA/water ratio, is critical for optimal precipitation; therefore
both IPA and ammonia are considered Critical Process Parameters, CPP’s.
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Furthermore, vast amounts of IPA is used throughout the factory in many
processes and control of IPA concentration in process streams, and regenera-
tion in distillation columns play a vital role for the overall energy efficiency
of the process. Hence, monitoring and control of IPA streams have an impact
on economy and environment. Ammonia directly relates to the DA of the
pectin and its influence is well understood (Kim, 1978). IPA influences pre-
cipitation and thus indirectly influences secondary physical pectin quality
attributes such as powder characteristics and specific gravity of the pectin.
These relations are not well understood yet. Paper I describes the develop-
ment of an on-line NIR based measurement point for the determination of
ammonia (and IPA) with focus on real-time control of the ammonia for the
amidation process.

Also developed during this project was an in-line and at-line system for the
determination of DE and DA in wet HM and LMA pectin press cake by re-
mote diffuse reflectance NIR. This system measures critical pectin quality
attributes directly. The measurement is on the pectin itself rather than the
amidation liquid which can be regarded as a process chemical. As described,
the DE and DA of pectin can be controlled by manipulating the peel extrac-
tion conditions (i.e. pH, time, temperature) and e.g. ammonia concentration
and temperature for the amidation reaction. The direct measurement of pec-
tin quality attributes in-line and at-line makes rapid real-time feedback to
the process possible. These results have not been published in scientific lit-
erature.

Papers II and III describe a novel method developed to measure the in-
tramolecular DE distribution (i.e. the blockiness) of pectin. Actually, the
method measures the Carboxylic Acid Distribution (CAD). Blockiness and
intramolecular DE distribution are defined with respect to the ester groups,
while this method measures the position of the unesterified galacturonic
acids. In the presented setup it is an off-line method capable of analysing the
end product. Contrary to other published methods, it involves little sample
preparation and manipulation and can easily be taken to at-line. The CAD
measurements can be used to assess the citrus peel used as raw material (by
using the sample generated from a test extraction, which is done routinely to
measure other raw material attributes). As presented in Paper III, the CAD
analysis can be used for HM pectins (with a DE > 50%) only, but can in prin-
ciple be extended to include LM and LMA pectins.

An overview of the above mentioned applications implemented on the LMA
pectin process line can be seen in Figure 45.
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Figure 45 An overview of the NIR and CAD measurements as implemented on the
LMA pectin process line.

Individually the applications may be seen as Process Analytical Chemistry
applications, but together and combined with more traditional process
measurements (pH, specific gravity of fluids, etc.) they provide the basis of a
holistic overview of the pectin production. Then the individual measure-
ments and applications unify to a technology which provides the control
tools for the process and enables continuous improvement and knowledge
management.

Controlling the amidation process

LMA pectin is typically produced by amidating HM pectin by ammonia in
an alcoholic suspension (Bryant, 1949; Joseph, 1949; Kim, 1978; FAO, 2001).
The amidation process at the CP Kelco facility at Lille Skensved, Denmark,
takes place after precipitation on wet LMA Precursor, which actually is wet
HM pectin press cake with a specified DE. The wet HM press cake is ami-
dated in reactors in a suspension of ammonia, water and IPA. The process
used to be controlled by hourly manual sampling and titration for ammonia
in the main reactor tank. The dosing of ammonia was done manually, by
turning a valve based on experience. No regular determination of IPA was
done.
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Fluctuations in the feed of ammonia to the amidation reactors, and loss of
ammonia from the reactor during amidation, lead to less controlled amida-
tion and thereby undesired product quality variation. It is difficult to closely
monitor and act upon the fluctuations in ammonia concentration with suffi-
cient accuracy. It could therefore be anticipated that an automated on-line,
high frequency determination of the ammonia concentration during amida-
tion, coupled with an automated dosing of ammonia, would result in a
closer control of the process. This will in turn improve process capability,
product consistency and improve adherence to product specifications. Fea-
sibility studies were made in the laboratory. It was considered if it could be
done and, if so, how it should be done. Also initial cost/benefits were con-
templated. Several feasible paths were considered. Previously, an on-line
UV-VIS based Flow Injection Analysis (FIA) system, based on the addition
of indicator substances to the amidation liquid had been surveyed, but it did
not perform adequately due to scaling of equipment, precipitation in tubing
etc. It functioned in the laboratory but had insufficient on-line capability.
NIR transmission spectroscopy was suggested as a possible more robust
solution. A feasibility study revealed that it was possible to separate the
main components of the amidation liquid by NIR spectroscopy (Figure 46).
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Figure 46 NIR transmission spectra of the main components in the amidation lig-
uid and some rudimentary mixtures.
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“Synthetic” (laboratory prepared) amidation liquid samples were made
from a mixture design of IPA, ammonia and water. The advantage of NIR
compared to IR is the higher energy of NIR light compared to IR light. This
is a definite advantage in process transmission spectroscopy where the opti-
cal pathlength can be millimetres rather than micrometers. NIR light can
also be transmitted through fibre optic cables at longer distances (30-100m),
thus separating the NIR instrument from the process sampling area. A labo-
ratory instrument was mounted with a fibre launcher, so measurements
could be done with fibre optic cables in order to mimic the process spectros-
copy as closely as possible. Later, the laboratory environment was substi-
tuted with the production environment in an experimental on-line setup,
where additional design features were tested in-situ and invaluable experi-
ence was acquired regarding the process sampling environment. An option
was put forth to use a new side stream sample cell with Teflon® tubing in-
stead of the traditional stainless steel flow cell. The design is simple: A Tef-
lon tube is mounted in a suitable housing. Teflon does (almost) not absorb
near infrared light and the optical path length is adjustable by spacers. Tef-
lon is chemically robust and only the tube is in contact with the product in
adherence with a no glass policy in food production environments. The
working range is up to 6.9 bar and 100°C, and the measuring cell can be
mounted in a waterproof house.

The sample acquisition and chemometric modelling are thoroughly docu-
mented in Paper I and the preceding chapter on chemometrics in this thesis.
Careful choice of spectral pre-processing and wavelength selection could
eliminate a temperature dependency, which had to be solved or the predic-
tion performance would be impaired. Similar successes are reported else-
where in scientific literature on a somewhat similar data set (Wiilfert, 2000).
When the on-line NIR ammonia predictions were compared to the manual
titrations done by process operators, the results were surprising. The process
operators routinely analyzed a sample approximately once an hour to moni-
tor the ammonia concentration. If the level was assessed as low or if a new
amidation was forthcoming, the operators would feed ammonia to the main
tank by manual operation, based on process experience. The operational
effect would be evaluated from the next titration one hour later, as titrating a
sample immediately after dosing would give an “unreliable” (i.e. out of
specifications) result. Figure 47 shows the results of the NIR predicted con-
centrations superimposed on the process titrations. When only the process
titrations are considered, the process appears stable and within the specified
ammonia concentration set point. The NIR predicted results, however, re-
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veal that the dosing of ammonia by the operators results in strong concentra-
tion increase (reaching levels of more than 15% above target point), which is
rapidly consumed in the amidation reaction. The magnitude of the concen-
tration peaks and the rapid consumption were unknown to process engi-
neers before implementing the process analytical measurement system. For
reasons of confidentiality, the concentrations of IPA and ammonia have been
rescaled to 0-100% following the convention of Paper I. This has the inherent
advantage that Root Mean Squared Errors will be expressed in dimen-
sionless % of the calibration range, which enables calibration performance
comparison to other applications.
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Figure 47 NIR predicted values superimposed on manual ammonia titrations be-
fore and after a process set point change taking place at day 2. The hourly titrations
do not capture the full dynamics of the manual ammonia dosing process.

The NIR predictions are extremely precise and very stable from one meas-
urement to the next (best observed in a time span where no dosing of am-
monia occurs). This implies that the spectroscopy plus process interface as
well as the PLS model are very robust, and noise levels are very low.
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After an evaluation period, the NIR predictions proved reliable and process
control engineers phased in an automated dosing system based on the NIR
predictions. An automatic valve, capable of dosing ammonia in short bursts,
replaced the manual valve. The automatic dosing was introduced slowly
over a period of 14 days, in order to gather experience and not to upset pro-
duction quality. Figure 48 shows NIR predicted ammonia values from the
production during that period. It is clearly observed that the ammonia con-
centration is much more in control, being kept at an almost fixed level with
near continuous automatic dosing, rather than manual dosing every other
hour. Concentration set points can now be readily changed within minutes,
compared to several hours before the introduction of the new system.
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Figure 48 NIR predicted ammonia concentrations during a period of 14 days where
on-line control and dosing of the ammonia concentration was implemented. A proc-
ess set point change was imposed after 12 days and the dosing system responds
immediately.

The benefits of the improved control of the ammonia dosing system have
been numerous. It is now possible to regulate the concentration of ammonia
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very precisely and reproducibly. This removes an important source of varia-
tion from the amidation reaction, and at the same time it offers a possibility
to make minute changes to ammonia concentration to improve product
quality. If troubleshooting of the production becomes necessary, process
engineers can assume or quickly verify that the ammonia concentration has
been constant.

While Paper I describes the measurement, determination and control of a
critical process parameter, it does not measure the pectin itself. Nor is it pos-
sible to control or predict the DA of the finished LMA pectin solely by ad-
justing the ammonia concentration. Other factors such as amidation time,
temperature, initial DE of the HM pectin precursor before amidation and
physical characteristics of the wet press cake before and during amidation
may influence the process. For this reason, an in-line and at-line system for
the determination of DE and DA in wet HM and LMA pectin press cake by
remote diffuse reflectance NIR has been developed. Owing to the fact that
off-line NIR determination of DE and DA in the QC laboratory on finished,
dried and milled pectin powder has been implemented for more than a dec-
ade, a NIR solution was chosen. A fibre optical probe was designed and fit-
ted in a screw press in the production. From Figure 49 it can be gathered that
the process environment is quite harsh, and it literally calls for implementa-
tions of robust methods in all senses of the word!

P

F
Sne 7

Figure 49 Fibre optical probe embedded in a pectin screw press (left). The lid is off
and the brownish mass is wet pectin press cake. On the right is the probe with the
fibre bundle in the middle on the tip. Visible light accompanies the NIR light from
the light source.

These results have not been published in scientific literature, but pertinent
results will be discussed in the following chapter.
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Measuring the Carboxylic Acid Distribution

The exact distribution of ester groups on the pectin backbone is a property
that can only be defined for an individual pectin polymer, and this informa-
tion is of no commercial interest as it is not possible to extract or produce
identical pectin polymer molecules from natural sources. On the other hand,
a method for measuring average intramolecular distribution of ester groups
in bulk pectin is highly desirable. In the quest for new and improved pectin
functionality, the design, control and manufacturing of tailor-made pectins
are important (Willats, 2006).

Two different types of pectin esterases are known to deesterify pectin in ei-
ther a predominantly “Random” or “Blocky” fashion. The terms Random
and Blocky are loosely defined terms, but it has been suggested to define a
blocky group as a sequence of four or more deesterified galacturonic acids
next to each other in the pectin carbohydrate backbone (Daas, 2000; Limberg,
2000), while Random groups in this context may cover truly random or more
systematic (sequential) deesterification patterns, see Figure 50.
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O Free GalA monomer ® Methyl ester ‘ Esterified GalA monomer

Figure 50 Idealized diagram of three sections of pectin backbone (GalA = galactu-
ronic acid). The pectins are deesterified 50% but the distribution of ester groups is
different (modified from Winning, 2007).

Pectin esterase (sometimes referred to as pectin pectylhydrolase EC 3.1.1.11,
pectin methylesterase, pectin demethoxylase, pectin methoxylase or pectase)
de-esterifies the methyl esters of the carboxyl groups, producing methanol
and low methylated pectin. The enzyme is produced by higher plants and
micro organisms. Pectin esterases derived from plants (Solms, 1955; Miller,
1971) are thought to attack either at the non-reducing end or next to a free
carboxyl group and to proceed along the molecule by a single chain mecha-
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nism, creating blocks of unesterified galacturonic acids that are very calcium
sensitive (Kohn, 1968). Irregularities in the pectin galacturonan chain inhibit
the activity of the pectin esterase. Irregularities could be acetylated mono-
mers, the occurrence of carbohydrate side-chains (e.g. hairy regions) or ester
groups that are transformed into amides (Solms, 1955). Pectin esterase is
highly specific for the methyl ester of polygalacturonic acid. The rate of pec-
tin deesterification depends on chain length; trimethyl trigalacturonate is not
attacked at all (McCready, 1954). Most fungal pectin esterases differ from
plant pectin esterases by obeying a multi chain mechanism, removing
methyl groups at random (Ishii, 1979).

Most methods for determining the distribution of ester groups or the inverse
property, the free carboxyl group distribution, involves enzymatic digestion
of pectin. Tuerena et al. suggests blocking the free carboxyl groups by glyco-
lation and do a hydrolysis of the methylesterified regions with a mixture of
pectic enzymes. The hydrolysis products are separated from the glycolated
regions on an ion exchange column and the resulting oligomers are analyzed
(Tuerena, 1982). De Vries et al. degrade pectin with purified pectin lyase and
separate the fragments by gel permeation chromatography and HPLC (de
Vries, 1986). The pioneering work was followed up by Daas et al. using
high-performance anion-exchange chromatography (HPAEC) introducing
the term ‘degree of blockiness” (DB) which is the total amount of non-
esterified GalA liberated as the percentage of the total number of non-
esterified GalA present in pectin (Daas, 1999). This approach is still used
extensively (Guillotin, 2005) but can be very time consuming because of the
deesterification and digestion steps involved. As an alternative Capillary
Electrophoresis (CE) have been explored as a tool (Jiang, 2001; Guillotin,
2007) and also 'H NMR and *C NMR has been used to quantify the distribu-
tion pattern (Grasdalen, 1988; Westerlund, 1991; Rosenbohm, 2003; Winning,
2007). Needs et al. degrades pectin chemically, rather than enzymatically, in
six steps before analyzing the using high-performance size exclusion chro-
matography (HPSEC; Needs, 2001). Recently sophisticated molecular meth-
ods have found their way to the analysis of food matrices such as matrix-
assisted laser desorption/ionization time-of-flight (MALDI-TOF) and Ion-
Trap mass spectroscopy (MS) for characterization of the pectin digests. Use
of monoclonal anti-pectin antibodies with specificities for pectin side chain
and homogalacturonan backbone domains have increased and combined
with high throughput microarray technologies (Willats, 2006). Common for
most of the above mentioned methods are that most involves many prepara-
tive steps and can be very time consuming.
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How “Blocky” or “Random” pectin is, is not easily expressed as a single
number, the before mentioned degree of blockiness is the most successful. A
method will also have to take into account that the average total degree of
esterification (DE) will vary from sample to sample. As several “highly mul-
tivariate” questions are posed, a multi-way, multivariate method is sug-
gested to utilize the established multi-way advantage. But in order to cali-
brate the method properly, reference pectins with known deesterification
patterns have been made. As natural citrus pectins have a DE typically lower
than 80% when extracted, almost 20% of the galacturonic acid groups are
already deesterified in an unknown pattern. Therefore it is necessary to re-
methylate the pectin to a DE as close to 100% as possible. A DE of 93.8% was
achieved in the laboratory. The remaining 6% were impossible to remethy-
late and it is possible that the remaining 6% are neutral sugars in between
the galacturonic acids, so that the homogalacturonan domains are flawed or
remains of RGI (see Figure 34).

The remethylated pectin is deesterified in a controlled fashion with plant
and fungal esterases inducing blockwise or random deesterification patterns,
respectively, see the upper half of Figure 51. If in theory the pectins could be
deesterified completely (to a DE of 0%), the resulting polymer would be a
pectate and similar regardless of the fashion in which it was deesterified. In
reality the enzyme activity drops to 0 before the pectin is completely de-
esterified. Somewhere in between a DE of 100% and 0% the two types of
pectins are most different with respect to functionality. It does not have to be
at a DE of 50% as suggested in Figure 51.

An exploratory experimental study was set up using a pectin binding dye, in
which — during a controlled dilution gradient in a liquid system — a diode
array detector (DAD) has recorded UV-VIS spectra, yielding a three-way
matrix of samples x wavelength x dilution time. It is readily observed that
transmission spectra of dye and pectin in different concentration ratios en-
hance the information, as the 2D spectral fingerprints (landscapes) of the
pectins are very different, see the bottom half of Figure 51. The feasibility
studies were also presented (Poster I) at the 9" Conference on Chemometrics
in Analytical Chemistry, Lisbon, 2004.

In principle, the ratio of blockwise to randomly distributed acid groups
could be identified in a known amount of pectin without having a dilution
gradient, but such a method would depend on the DE. The DE could be
measured by conventional methods e.g. NIR or titration. But in order to
quantify truly unknown samples, multi-way data will have to be collected at
different concentrations.
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Figure 51 The sample set is generated from a “Mother pectin” extracted with a DE
of ~72%. The pectin is remethylated to DE ~94% and subsequently deesterified con-
trolled with pectin esterases known to deesterify in either a random or blockwise
fashion. The wavelength x dilution time landscapes (seen at the bottom half of the
figure) of two resulting samples (with a DE of 71 and 65%) have distinct features
(pointed out) reflecting the different deesterification patterns.

92



A 0.5% (weight by volume) solution of pectin is injected by a sample loop
connected to an injection valve into a carrier stream flowing continuously
and containing a dye in a fixed concentration. The stream leads into a con-
tinuously stirred tank reactor with a fixed volume, large compared to the
flow rate of the carrier stream. The reactor is initially filled with the carrier
stream containing the dye. The injection volume of the pectin solution is
small compared to the reactor volume, so the concentration of dye can be
assumed to be constant. The exit from the reactor leads to a flow cell where
the UV-VIS transmission of the stream is measured. After the measurement,
the stream is led to waste. The reactor gives the system a large dead volume
that retains the injected pectin, which is only slowly washed away by the
carrier stream, see Figure 52.

()

Flow cell

Waste

 IS— |

Reactor

N Carrier with

dye in fixed conc.

Figure 52 Overview of the setup to measure the Carboxylic Acid Distribution
(CAD). On the bottom right hand side of the figure is a 6 port rotating valve that
sends either the carrier or the contents of the sample loop to the reactor.

The dye is known to bind to the pectin irreversibly (within the time frame of
the experiment) with a high affinity, and changes conformation (i.e. absorb-
ance) depending on whether it is bound or not bound to the pectin. It is ob-
served from initial studies that the dye, when bound to the pectin, also
changes conformation depending on whether the neighbouring galacturonic
acid on the pectin backbone contains an ester group or an acid group (with
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another dye molecule attached), i.e. the dye conformation is different if the
molecule binds to a blocky or to a random pectin environment.

The concentration of pectin injected is initially high compared to the concen-
tration of dye in the reactor. It is therefore assumed that the dye binds pref-
erably to the easily accessible sites on the pectin. As the pectin (with dye
attached) is washed away from the reactor by the continuously flowing car-
rier stream (still containing the dye in a fixed concentration), the concentra-
tion of pectin decreases exponentially. As the concentration of pectin drops,
the dye will also bind to the less accessible sites on the pectin. At the end of
the sample run, the pectin concentration will be close to zero and negligible.
Hence, only the unbound dye will be spectroscopically active at that stage.
The different spectral landscapes that are recorded can be reduced to three
basic features. First the spectra fingerprint of the random acid groups, then
the blocky acid groups and at last the unbound dye appear. Papers II and
III describe the sample set, the sample naming conventions and the ad-
vanced multi-way chemometrics in detail, but the conclusion is that the
spectral profiles can be modelled, quantified and related to the pectin de-
esterification pattern as suggested in Figure 53.
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Figure 53 Resolved concentration profiles for the unbound dye, the blocky and the
random spectra profiles. The concentration profiles have been resolved by a three
component MCR-ALS model with non-negativity constraints. The actual recorded
spectral landscapes can be seen inserted for reference.
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Benefits from implementing PAT (in pectin production)

When implemented, PAT is expected to reduce the risk of scrap and recalls,
reduce production cycle times and enhance capacity utilization, thereby in
the long run, deducing product development time (Hussain, 2002). This is
due to the emphasis not only on process analytical chemistry tools, but also
information management tools, feedback process control strategies, product
and process design and optimization strategies (Workman, 2005).

Integrating information from several sensors in- or on-line

As an example of the benefits from implementing a unified PAT strategy can
be that a synergy can arise between different sensors placed in- or on-line. In
Figure 54, the on-line predicted and controlled ammonia concentration in
the amidation liquid and the in-line predicted %DA values of the wet pectin
press cake after the amidation, are seen. See Figure 45 for sensor placements.

10— - -—-——————F-—————F—————|————— 7 -—————F—————\—————5-=—————p—-=—=-+
NH; conc.

%DA
%DA (mov.awy. 10)
‘= 0,DA (press cycle)

90

80

70

60

501 —f — L —}» - L YN || A

Scaled index

40

30

0~ = -

Time (Days)

Figure 54 On-line ammonia prediction in the amidation reactors (blue) and in-line
predicted %DA in pectin press cake (red, and moving average of 10 %DA observa-
tions is green, average of entire press cycle is black) in the screw press following the
amidation. Both have scaled values on the y-axis. See the text for further details.
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In-line %DA data are only collected when the screw press is running i.e.
when the amidation reactors are emptied. The measurement to measure-
ment variation on the %DA determination is quite large, but the moving
average of the on-line measurements correlates well to the reference meas-
urements. This is an example of the in-line or on-line advantage in the case
that the measurement is “imprecise but accurate”. Since the in- or on-line
measurements are fully automated, a high number of measurements can be
taken which improves the accuracy if the measurements are not biased rela-
tive to the imprecision. Also immediately noticed is that lagging is evident.
The pectin press cake is first subjected to ammonia in the amidation reactors,
then several washing steps follows before the pectin is pressed in the screw
press. The highest cross correlation between the ammonia concentration and
the %DA is 0.80 at 9 hours and 50 minutes of lag. This means that material
from the amidation reactors (several reactors running batch-wise) can be
seen on average about 10 hours later in the screw press as the batch is emp-
tied. This corresponds to approximately 3 screw press cycles. At time point
“a”, as indicated on Figure 54, the ammonia set point is increased in order to
ensure better adherence to pectin functionality specifications. The %DA is
seen to increase 3 press cycles later reflecting the lag. At time point “b”, the
%DA falls back slightly. This is due to a change of the raw material (another
citrus peel lot has been taken in use) at an earlier time in the extraction proc-
ess that affects the resulting %DA, even though the amidation conditions are
unchanged. At time point “c” the campaign is finished, and a new pectin
recipe with higher %DA is to be produced and the ammonia concentration is
increased significantly. Some residue of the previous campaign can be seen
at time point “d” at the beginning of a screw press cycle just before the %DA
increases. This is carry-over material from the previous campaign. At time
point “e” the ammonia concentration is lowered as yet another pectin recipe
is to be produced. The product produced at set point “f” is an intermediate
product between the second and third pectin recipe. It resembles %DA-wise,
the first pectin recipe produced rather than the second or third pectin recipe.
At time point “g” some more carry-over material can be identified. At time
point “h” some batches with an apparent larger measurement imprecision
can be identified. This could for example be because the pectin in reality is
more inhomogeneous or because process or sampling conditions in-line in
the screw press are varying more during the particular screw press cycles. In
conclusion a lot of information can be gathered when combining the sensor
responses rather than keeping information from different unit operations
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separate. This gives a holistic view into the production on-line, and visual-
ises ways to analyze, improve and validate the process.

Detecting abnormal process conditions

As mentioned in the chemometrics chapter, one of the benefits of using mul-
tivariate statistics is the extensive diagnostic and error measures that are
available. One of these error measures is the “F-ratio”. The F-ratio relates the
spectral residual of a sample to a model reconstructed spectrum i.e. a recon-
structed spectrum using the loadings of the PLS model used for the calibra-
tion, and the computed score values of the sample spectra in question. The
spectral residual is the difference between this spectrum and the actual pre-
diction spectrum and is calculated as:

J
— 2
Ereconstructed - Z (Aoriginal,j - Apredicted,j ) (17)
j=1

where | is the number of wavelengths in the spectrum, Aoriginai are the origi-
nal spectrum absorbances, and Apredicted are the model predicted spectrum
absorbances. For spectral residuals, the F-ratio is calculated as:

= _(K-DE

ratio,new

reconstructed (1 8)

K
Z Ecalibration set,k
k=1

where K is the number of samples in the calibration set, Eciration se1j are the
spectral residual value of sample k in the calibration set and Erconstructet are the
spectral residual value of the sample in question (Haaland, 1988).

The F-ratio should normally be low (typically less than 10, depending on the
application). An increase in the F-ratio may indicate abnormal measure-
ments, and the cause may be the product itself, the sampling system or the
process analyzer. In Figure 55 an increase of the F-ratio during 10 days of
both the ammonia and IPA can be seen. At the same time the precision of the
predictions is deteriorating. The measurements are from of the auxiliary
tanks mentioned in Paper I, not the main tank responsible for the on-line
dosing of ammonia.
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Figure 55 Deteriorating F-values over time of the on-line determination of ammo-
nia and IPA lead to lower precision in the NIR predicted determination. The reason
was identified as a malfunctioning valve, which was replaced on day 17.

The reason was identified as a malfunctioning valve in the on-line sampling
system itself (as seen on Figure 1 in Paper I). It can obviously be argued that
if no on-line system was in place, no valve could be malfunctioning. But the
principle still applies and the cause of variation could very well be related
elsewhere than the sampling system itself.

Recovering production from breakdowns

Even though highly automated systems always imply highly complex sys-
tems it can also prove beneficial during major breakdowns. September 24"
2003, the eastern part of Denmark suffered from an unusually large and ex-
tensive power failure for more than 6% hours. The implications of such a
long power failure in a pectin factory can be serious if pectin starts to gel in
the production equipment, pipes, tanks and so on, because of cooling or lack
of agitation, etc. For natural reasons, it is complex to restart an entire factory
that was suddenly switched off rather than shut down in a controlled man-
ner. But in that case, automation can be beneficial as it (once properly
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started) it can provide measurements and assume control and relieve the
operators to pursue other duties.

During the power failure, the ammonia dosing valve did not automatically
close, leading to massive dosing of ammonia in the main tank. This is seen
immediately after the system is put on-line in Figure 56 as a sharp increase
in the predicted ammonia concentration. As the sensor is on-line rather than
in-line directly in the main tank, a small dead volume of ammonia will need
to be discarded before the actual amidation liquid reflecting the content in
the main tank reaches the sensor.
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Figure 56 Scaled ammonia concentration before and after a 6% hour power faliure
affecting the factory.

It took more than half a day for the ammonia concentration to reach the de-
sired set point. During that period an increase is seen in the F-ratio, warning
that the spectral residuals are high as the ammonia concentration is above
the calibrated window. The predicted ammonia concentrations are therefore
a result of extrapolation.
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Challenges in implementing PAT — Playing the PAT symphony

There are numerous challenges in implementing PAT in an operational form
in a company. In a column in the magazine Spectroscopy Europe, it has been
suggested that PAT is an abbreviation for “Possible Analytical Theory”
rather than “Process Analytical Technology” (Davies, 2004). In order to be
tully operational, PAT requires a fully orchestrated ensemble playing in
tune. This is why introducing PAT can be compared to setting up a sym-
phonic concert.

The musicians

PAT is a truly interdisciplinary field, and in order to successfully implement
it, there is a need for solid teamwork. A multitude of skills is necessary: Op-
erators, chemical and process engineers, chemometricians and statisticians,
chemists, laboratory technicians, mechanical and automation engineers, the
blue collar brigade (smiths, electricians and automation technicians), quality
control and assurance professionals, and informatics and control experts,
just to name a few who will be likely to find themselves involved. General
knowledge of chemical unit operations, specific product and process knowl-
edge, skills in data base mining, signal processing, multivariate data analysis
and how to make structured input to and output from process data bases are
required expertises. Obviously, there will be no music in time if there is no
conductor (be it cracking the whip or swinging the baton). Management
support on all levels is essential to focus on the overall goals rather than in-
dividuals or single department sub-goals.

The instruments

The instruments are not only the NIR instruments as some may believe, but
all tools required to do the job. The categories of tools were mentioned in the
introductory chapter such as multivariate tools for design, data acquisition
and analysis, process analyzers, process control tools and the continuous
improvement and knowledge management tools. In fact all the tools the mu-
sicians mentioned above are required to perform.

The sheets of music

Notes are the language of music. Notes are a standardized way of preserv-
ing and communicating music. Information needs to flow unhindered with-
out the use of interpreters. Unfortunately, this is rarer than often seen in
PAT solutions. Figure 57 shows the logistics, software and responsible com-
panies involved in the on-line ammonia PAT implementation at CP Kelco.
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Figure 57 Overview of the logistics and software packages involved (top) and the
responsible companies involved (bottom) in a PAT application. See the text for fur-
ther details.

The “Process”, which in this case is the on-line sample cells, appears in the
lower left side of the top part figure. It is connected to the NIR instrument by
fibre optics. The NIR instrument is controlled by the software package “En-
ablir” or FTSW100 as it is also called. Enablir translates the acquired NIR
spectra to predictions which are fed to CP Kelcos process databases. As an
extra challenge, Enablir sold by ABB does not support the “Profibus” field
bus standard implemented at CP Kelco sold by Siemens, a competitor of
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ABB. When converted, the data can then in turn be extracted from the proc-
ess data base and visualized. This is the on-line loop. In the off-line loop lies
the calibration maintenance. Enablir stores the NIR spectra in a proprietary
file format called *.spectrum files. These have to be converted to another pro-
prietary file format called *.spc files, before they can be read into a chemom-
etric software package called PLS/IQ (virtually not updated since 1997)
which can write the calibration files (also in a proprietary file format) that
Enablir can read and process. If use of more modern chemometric software
is desired, additional conversions back and forth are necessary. The bottom
half of Figure 57 shows the companies responsible for the individual proc-
esses — clearly some interfaces to define.

As suggested above there is not a free flow of information. There is a need
for universal instrument drivers, the use of non-proprietary file formats, a
seamless exchange of data in data bases and the ability to handle spectral
data in data bases, and to develop chemometric models on different plat-
forms. Companies like Siemens/Profibus, ABB, Galactic, OSI soft, Umetrics
and Mathworks (to name a few) need to define open standards and custom-
ers should demand them.
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5. Conclusions

The research presented in this thesis has revealed a deeper insight and un-
derstanding of commercial pectin processing. Applications have been devel-
oped to measure ammonia and Isopropyl alcohol, which are identified as
critical process parameters in the pectin production. The (near) real-time
determination of the process parameters enables closed-loop control of the
production systems. Furthermore, in-line, at-line and off-line applications
that measure critical pectin quality attributes, such as the degree of esterifi-
cation (DE) and its distribution and the degree of amidation (DA), have been
devised and implemented. Feedback control of these parameters has created
new value through improved product quality, quantity and processing ca-
pability. Specifically, raw material grading and selection, extraction, amida-
tion and process optimisation have been addressed.

Spectroscopy

Two FT-NIR process analyzers with multiplexing capabilities, in total seven
in-line, on-line and at-line measurement points have been implemented in
the pectin production. Both transmittance and remote diffuse reflectance
spectroscopy are employed, pushing the instruments, detectors, software,
computers, probes and vendors to the edge of their capabilities — while at the
same time pushing their edges. Furthermore, one off-line FT-NIR instrument
for routine QC analysis and one off-line FT-NIR/IR instrument for method
development have been supported.

For all applications correct sampling is crucial. New sampling protocols and
devices have been developed. It is not always feasible, possible or practical
to do everything flawlessly, but estimation of the sampling errors is impera-
tive; both the unavoidable and also the avoidable sampling errors. Only then
can fair compromises between how things should be done, and how they are
done, be made.

The spectrometers have proven to be an eye into the production detecting
normal process conditions most of the time fortunately. They have also been
in place during process upsets providing reliable data far beyond normal
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process conditions. This proves that spectroscopy and chemometrics can be
robust and extrapolate when process conditions are out of specifications.
This is an important aspect giving the applications credibility and allowing
decision makers to have confidence in the numbers and focus on getting
things right. Unfortunately, the applications have also been the cause of
process upsets. Often, with a few notable exceptions, the instruments them-
selves have not been the cause of the problems, though they have taken most
of the blame. It is usually the infrastructure around the instruments, primar-
ily the software and operating systems, but also hardware, network and vi-
ruses that have grinded the applications to a halt. The sampling points them-
selves have failed as well as the interface to the control systems of the fac-
tory. It would be useful to have a pectin factory simulator as a test environ-
ment, before implementing new equipment, but this fails to be a stock item.
Therefore, the hours one spends on foreseeing potential problems that may
arise, figuring out how to counter them, and building logics and safeguards
into systems, are hours well spent.

For the CAD analysis, a new generation of small and rather inexpensive UV-
VIS spectrometers has been introduced. Based on a prism and diode array
detector technology, they have no moving parts, expensive stepper motors,
advanced optics or gratings to align and adjust. Their resolution is very high
and while sensitivity is not the best compared to bench-top instruments,
they certainly can do the job if the application allows sufficient light to get to
the detector array. This type of instrument was interfaced in a novel applica-
tion developed to estimate the deesterification pattern by measuring a dilu-
tion gradient of pectin in the presence of a dye with different affinity for acid
groups, depending on whether they have ester groups or other acid groups
as nearest neighbours. The setup is generic and can readily be used for other
dye binding studies.

Chemometrics

Experimental design and multivariate data analysis is the cornerstone for
extracting information from not only chemical problems, but a wide variety
of investigations. Chemometrics can extract information from vast amounts
of data and present them in a graphical format that most can perceive and
relate to. Without chemometrics this study would not be feasible.

With chemometrics and experimental design, the significant can be sepa-
rated from the insignificant. Methods have been devised to eliminate spec-
tral artefacts, discard insignificant, redundant or noise-filled variables, and
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detect outliers. A careful choice of spectral and chemometric pre-processing
and variable selection eliminated the influence of temperature on the trans-
mittance spectra of the amidation liquid. This removed the need for thermo-
static control of the sampling points, which would have been expensive, not
only to implement, but also to operate. In the thesis, an approach combining
interval PLS with an exhaustive search of all one-region intervals in a spec-
tral domain has been presented with the on-line ammonia data set used as
an example. By grouping neighbouring variables into intervals of reasonable
sizes, the computation time can be reduced appropriately.

Multi-way chemometrics has been applied to industrial data in order to re-
solve the dilution profiles generated in the CAD analysis. Common spectral
profiles were identified for 33 samples with different DE and intermolecular
distribution of ester groups and unique concentration profiles were resolved
for the individual samples. Both PARAFAC2 and Multivariate Curve Reso-
lution (MCR) could successfully resolve different components depending on
the deesterification pattern induced in the pectins. An equation for estimat-
ing concentration profiles directly from a PARAFAC2 model has been pro-
posed. The improved flexibility of MCR as compared with PARAFAC2 im-
proves the fit of the resolved concentration profiles of MCR to the acquired
data. Information with regard to amount and dilution time resolved in the
concentration profiles can be related to the deesterification pattern of the
pectins, and models quantifying the amount of random and blocky acid
groups using the CAD approach have been implemented at CP Kelco. The
resolved concentration profiles enhance the understanding of the system,
but unfold PLS on the whole sample matrix was equally efficient in predict-
ing the deesterification pattern. However, with an added risk of overfitting
in the unfolded PLS models due to an inherent higher number of variables.

PAT in pectin production

PAT has not been implemented at CP Kelco as an overall strategy — it has
been exemplified and evaluated by the research carried out during this PhD
study. In 2003, CP Kelco was recognized with Siemens Technology Services
for implementing a large automation solution based on a common Fieldbus.
Virtually all sensors, classical as well as “new” multivariate sensors, are
connected to the PI process database solution from OSI-soft. Thus, the infra-
structure at CP Kelco is in place, and PAT is being done every day.

In that regard, a NIR instrument is just another sensor, albeit more expen-
sive and more complex than the average pH electrode, but just like a pH
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electrodes needs calibration and maintenance, so does a NIR instrument.
And that may initially be a bit more elaborate and resource demanding than
the pH electrode.

On the other hand, a NIR instrument is a highly versatile sensor, capable of
measuring things most other sensors fail to see. It is crucial to have the vi-
sion and dare go where others have backed off and put these “ambitions”
sensors on-line. On top of implementing a NIR based system providing
“just” accurate, precise, stable, fast and reliable predictions of ammonia far
beyond the initial expectation, much has been learned about the pectin proc-
ess. Quality has been built in by design rather than by post-process testing in
QC. Not just a quick responding, reproducible and reliable ammonia dosing
system has been implemented removing a tedious task of titrating process
samples once an hour around the clock. Quicker turnovers from one pectin
recipe to another are now a reality. This makes production planning more
flexible, a great benefit for any supply chain organisation. Smaller changes in
ammonia concentration can reliably be made enabling further optimization
of the yield without compromising the desired pectin quality. As a spin-off,
the NIR instrument was capable of measuring the Isopropyl alcohol (IPA)
content in the amidation liquid as well. As a consequence a process parame-
ter regarded as not critical and considered within control was, as a result of
timely and reliable measurements around the clock, identified as critical for
the process and hereto new process relations were suddenly grasped. This
further enabled the elimination of unwanted process variation and provided
new knowledge of the pectin production.

The in-line and at-line DE/DA measurement on wet pectin press cake has
been implemented by using optical fibre probes and remote diffuse reflec-
tance spectroscopy. The measurement to measurement variability is high,
but the moving average of the measurements is accurate compared with
tinal QC measurements on the dry pectin powder. This illustrates the benefit
when many measurements are made and a large amount of material is sam-
pled. The CAD application is not a PAT system as such, but it has been de-
signed to go at-line if desired. It requires minimal sample preparation, is
highly automated, and the analysis time per sample is low enabling a high
possible sample throughput.

106



6. Perspectives

PAT as a tool will impact all industries in the 21 century. More and more
sensors will be interfaced into production environments and more and more
data will automatically be harvested into large process data bases. Compa-
nies which are better at turning data into information and decisions, will
prevail. Turning data into useful information requires the data to be di-
gested. Chemometrics is crucial in this process. Once the data has been
turned into information that information will need to be displayed in a user
friendly manner for the decision makers at all levels: Turning the informa-
tion into knowledge! Decisions will to a higher degree have to be made “on-
line” as things are happening rather than “off-line” on the basis of carefully
prepared reports analysing the process in retrospect, as it once was.

There will be a need for improved understanding of the value, process and
quality chain so the optimal process parameters can be chosen for different
quality and batches of raw materials. The identification of critical process
parameters and their influence on product attributes and product functional-
ities are important. Furthermore, companies which are better at relating their
product functionalities to their customers’ individual applications will be
winners.

There will be a need for educating process chemometricians and upgrading
current staff. The Quality and Technology group at University of Copenha-
gen has started a two-year MSc programme in Process Analytical Technol-
ogy where the graduates obtain practical and theoretical competences within
experimental design, multivariate data analysis, on-line measurement sys-
tems and statistical process analysis.

Multi-way chemometrics will continue to become more and more important.
Not only hyphenated analytical instruments will be more common and in-
expensive, but also batch analysis will be the standard of tomorrow, where
entire batches are seen as a sample with local batch time and process vari-
ables (perhaps multi-way?) constitute the other modes. The benefit will be a
more unified understanding of the process.
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Background -

. . . . . . . Maximum Pectin with; blocky ester groups
Pectin mainly consists of a linear chain of poly-a-(1—4)-D-galacturonic acid /“ ki
with varying degree of esterification (%DE). The distribution of the (methyl) \

ester groups on the pectin carbohydrate backbone is an important structural
parameter that affects pectin functionality in customer applications. In a study
conducted at CP Kelco, the world’s largest pectin producer, different pectins
extracted from natural citrus peels are investigated. In order to span the
sample set beyond natural variation, artificial samples of re-methylated pectins
are enzymatically de-esterified by two different enzymes, de-esterifing the
pectin in a “Random” or “Blocky” fashion. et /
The exact distribution of ester groups on a pectin backbone is a property that Maximum

can only be defined for an individual pectin polymer, and this information is as \w Pmmmps
such of no commercial interest. It is impossible to extract or produce identical 10 o~ ~ m o 5
pectin polymer molecules from natural sources. However, a method for %DE

. . . . . P . . Blocky pectin, DE=60.3%
measuring average distribution of ester groups in bulk pectin is highly desired. Blocky de-esterification

How “Blocky” or “Random” pectin is, is'not easily expressed as a single

number. The method will have to take into account that the average total

degree of esterification (%DE) will vary from sample to sample. E
Analysis =

An exploratory study has been designed using a pectin binding dye, in which — S ) bl

during a controlled dilution gradient in a liquid system — a diode array detector -
(DAD) records UV-VIS spectra, yielding a three-way matrix of samples.x
wavelength x dilution time. - —]

Extracted
pectin

Pectate

Wavelength

i

Wavelength
Wavelength

In total 12 pectins have been analysed. The natural pectin extracted from
citrus peel (MO0), 6 pectins de-esterified from MO to varying %DE by an
enzyme known to de-esterify in a blocky manner (B1-B6) and 5 pectins de-

esterified from MO to varying %DE by an enzyme known to de-esterify in a ‘
random manner (R1-R5).

Random pectin, DE=64.9%

Wavelength

The uncentered 2D spectral fingerprints have been analyzed with a
PARAFAC2" algorithm? using non-negativity constraints imposed on the Random de-esterification
sample mode, with shifting loadings in the dilution time direction. The sample e
mode loadings from PARAFAC?2 correlate reasonably well (r = 0.73) to the o3
degree of esterification, although no information about the %DE is used in the
PARAFAC2 algorithm. This is a good indication that the spectra plus dilution
profiles contain relevant information about the pectin.

An uncentered multi-way PLS calibration3 on the degree of esterification
predicts %DE with a correlation of r = 0.95 using 4 PLS components. The
score plot from the multi-way PLS calibration fits the initial problem definition.

o
N
]

0.26

0.24

Conclusion

The very successful preliminary studies reveal that the use of multi-way PLS
to correlate the spectral landscapes to the degree of esterification yields
interpretable models. It resolves the dilution time dependent spectral profiles
and recovers information about the average distribution of methyl ester groups
so the average blockiness of a pectin sample can readily be assessed. 35 40 45 50 55 60 65 70 7
PARAFAC2 scores also correlate to the degree of esterification yielding 15
relevant information. Further work on an enhanced data set has already

commenced, in order to better understand the spectral profiles in relation to 10
the chemistry and kinetics of the system. Additional approaches to the spectral
resolution e.g. algorithms based on Alternating Least Squares will also be
investigated.

B4
0.22

PARAFAC2 sample mode loading #2
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Abstract

The development of an on-line process monitoring and control system for the automatic dosing of ammonia for production of Low
Methoxylated Amidated (LMA) pectin is described. The system is based on on-line optical fibre Near Infra-Red (NIR) transmittance
spectroscopy of the amidation liquid, consisting of ammonia, isopropylic alcohol, water and minor impurities. The focus in this paper is on
the chemometric calibration development and validation, and the improvement on the ammonia dosing for the production. Feasibility studies
revealed that the calibration for ammonia, based on NIR transmittance spectra (spectral region from 5300 to 11000 cm™") is highly
temperature dependent in the range —9-20 °C, but careful choice of spectral pre-processing and wavelength selection could eliminate the
temperature dependency. Using the first derivative of the NIR spectra and the selection of the spectral region 5423—-6658 cm ™', the average
Partial Least Squares regression prediction error was reduced to 1.75% of the full range of the initial calibration, as determined from an

independently validated data set one full year after initial implementation in the factory.

© 2004 Elsevier B.V. All rights reserved.

Keywords: NIR spectroscopy; Ammonia; On-line; Process monitoring and control; Pectin

1. Introduction

Low Methoxylated Amidated pectin (LMA pectin) is
typically produced by amidating conventional High
Methoxylated pectin (HM pectin) by ammonia in an
alcoholic suspension [1-3]. Fluctuations in the feed of
ammonia to the amidation reactors lead to less controlled
amidation and thereby undesired product quality variation.
In the traditional off-line measurements approach, the total
consumption of ammonia could not be estimated accurately
before amidation took place. Traditionally, the concentration
of ammonia in the amidation reactors at the CP Kelco pectin
manufacturing site in Denmark (Lille Skensved) was
measured once every hour, through titration by skilled
operators, in a non-laboratory environment. If judged

* Corresponding author. Tel.: +45 5616 5616; fax: +45 5616 9446.
E-mail address: Christian.Zachariassen@cpkelco.com
(C.B. Zachariassen).

0169-7439/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.chemolab.2004.10.005

necessary, the titrations would be followed up by manual
dosing of ammonia. For these reasons, it was not feasible to
closely monitor and act upon the fluctuations in ammonia
concentration with sufficient accuracy. It was anticipated
that an automated on-line, higher frequency determination
of the ammonia concentration during amidation, coupled
with an automated dosing of ammonia would result in a
better control of the process. This would in turn improve
process capability, product consistency and improve adher-
ence to product specifications. After thorough feasibility
studies, it was decided to pursue an on-line Near Infra-Red
(NIR) transmittance setup to monitor the amidation reaction
as input to a high frequency dosing-control of ammonia in
the reactor fluids, i.e. optimize the reaction conditions.
Based on the process and factory layout, it was decided to
establish on-line NIR measurement points at three different
tanks. Tank 1 and Tank 3 are auxiliary tanks; Tank 2
contains the liquids during the amidation reaction. Ammo-
nia can be fed to the process liquids in Tank 2 from external
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Fig. 1. Layout of the side stream sampling loop for Tank 1. TL denotes a temperature logger and FS denotes a flow switch. The loop can be rinsed by a CIP

stream (Cleaning In Place) when valves turn as indicated by arrows.

sources, making it the point most suitable to control the
concentration of ammonia. NIR has previously been
demonstrated to be useful for rapid off-line quality control
of the final LMA pectin [4,5], and by using optical fibres
one NIR instrument with multiplexer may control several
measuring points. The overall setup pursued was therefore
to continuously measure the concentration of ammonia in
the three tanks and to supply the measured ammonia
concentration to the manufacturing information system,
which can be programmed to dose ammonia into Tank 2 by
regulating valves.

For process design reasons, it was chosen to measure the
amidation liquid in a side stream sampling loop, rather than
in the production line or directly in the tank itself. The
layout of the side stream sampling loop for one of the
measurement points can be seen in Fig. 1.

This paper will focus on the feasibility studies (the “off-
line” development) before the installation of the sampling
loop, the chemometric calibration and validation of the
acquired NIR spectra to the ammonia concentration (the on-
line development) and the implementation of the automated
ammonia dosing system based on the subsequent on-line
determination of ammonia.

2. Materials and methods

Samples are measured with a Bomem NetworkIR FT-
NIR spectrometer (a similar instrument is now manufac-

tured under the name FTBA2000-200 by ABB Analyt-
ical). The instrument is fitted with 2.7-um InGaAs
detectors. The liquid flows in a PFA Teflon® 12 mm
OD (outer diameter)x10 mm ID (inner diameter) tube
fixed in a Bomem Side Stream Sample Cell. The sample
cell is equipped with a fitting to allow optical path-length
adjustment, and with connectors for optical fibre cables.
NIR spectra were acquired using BGrams32 v. 4.04
software from Thermo Galactic and CAAP (Continuous
Automated Analysis Program) v. 2.1 and 3.0 from
Bomem. Reference values for ammonia were determined
by titration in triplicate using an internal CP Kelco
control method. The multivariate NIR data were analyzed
using Guideline 7.6 SR-1 from Camo, PLSplus/IQ 5.09
from Thermo Galactic and Matlab 6.5 (R13) from The
MathWorks using the PLS-Toolbox, Version 3.0.3a from
Eigenvector Research and the Command Line iPLS
toolbox version 2.0 [6].

3. Off-line development
3.1. Experimental

To develop an initial calibration model between NIR
spectra and reference values, it was decided to use synthetic
samples of amidation liquids prepared in the laboratory,
closely resembling process liquids. A ternary mixture design
with water, isopropylic alcohol (IPA) and ammonia was
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constructed to span the calibration in the range for
established normal process operation. Known minor con-
centrations of impurities (<3% by weight) present in normal
process samples were also added. The concentration of the
compounds was estimated by weight with a precision error
less than 0.01%.

As a calibration set, 19 samples were prepared. A further
11 samples were prepared as an independent test set. The
selected variation of IPA in the samples was pseudorandom
to reflect the assumed composition of typical process liquids
in the three tanks, whereas the variation of ammonia in the
calibration set was systematically varied to cover the desired
calibration interval. Fig. 2 shows the mixture design. For
reasons of confidentiality, the concentrations of TPA and
ammonia have been rescaled to 0-100%, which has the
inherent advantage that Root Mean Squared Errors will be
expressed in dimensionless % of the calibration range,
which enables calibration performance comparison to other
applications.

Apart from the impurities added, the system can be
regarded as a ternary mixture consisting of ammonia, IPA
and water. In the laboratory, the same NIR instrument later
to be used in the process, as well as the process interface and
fibre optic cables were installed. The liquids were cooled to
approximately —18 °C and placed in the Teflon® tube
mounted in a Side Stream Sample Cell. The liquids were
measured in a temperature range starting at the sub-zero
level between —9 and —1 °C, and next at 0, 5, 10, 15 and 20
°C. In all, 152 spectra were acquired, as not all samples
were measured at all temperatures (primarily sub-zero and 0
°C measurements missing).

151

3.2. Results and discussion

Absorbance spectra were acquired in the spectral
region from 5300 to 11000 cm™', corresponding to
1887-909 nm. Below 5300 cm ™!, water absorbance was
too high for the chosen path length. Above wave number
11000 cm™", the signal to noise ratio was too low (the
average synthetic spectra can be seen in Fig. 5). To
investigate the quantitative performance of the instrumen-
tal setup, a Partial Least Squares (PLS) regression model
[7,8] of the mean centred spectra in the 5300-11000-
em™ ' region with ammonia as response variable was
calculated. The score plot of PLS component 1 vs. 2 is
shown in Fig. 3.

The score plot clearly reflects the synthetic sample
domain from Fig. 2. However, the most striking feature
revealed by Fig. 3 is the impact of temperature on the
score values. Temperatures within the sample run from
low (upper right corner) to high (lower left corner) in the
score plot in a systematic way. The temperature effect is
often more prominent than the sample-to-sample differ-
ence, and if not corrected for, the temperature dependency
will deteriorate the calibration performance. In the score
plot, high ammonia concentration samples (17-19 and 29)
are in the top right corner and low ammonia concen-
tration samples are in the lower left corner, opposing the
observed direction of temperature. The effect of increas-
ing temperature and increasing ammonia concentration
will therefore cancel out in the score plot. As a
consequence, low temperature samples will be predicted
to have a higher ammonia concentration, as reflected on
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Fig. 2. Synthetic sample domain in two dimensions. @, Calibration samples; O, test set samples.
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Fig. 3. Score plot of PLS component 1 (75%x-variance explained) vs. 2 (21%) of mean centred spectra (530011000 cm™) of the synthetic samples, measured
at different temperatures. Numbers indicate samples corresponding to Fig. 2. X, <0 °C; *, 0 °C; @, 5 °C; 4, 10 °C; A, 15 °C; m, 20 °C.

the predicted vs. measured ammonia concentration plot Mean Squared Error of Cross Validation (RMSECV)
shown in Fig. 4. was calculated to be 9.6% using leave-one-sample using
Using two PLS components, the Root Mean Squared leave-one-sample-out (at all temperatures) cross valida-

Error of Calibration (RMSEC) is 9.2%, and the Root tion. Since the sample set from a chemical point of
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Fig. 4. Predicted (two PLS components) vs. measured ammonia from PLS model on mean centred spectra (5300—11 000 cm ') of the synthetic samples. A two-
component model clearly does not capture the variation in temperature. X, <0 °C; *, 0 °C; @, 5 °C; ¥, 10 °C; A, 15 °C; m, 20 °C.
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view can be regarded as a three compound mixture, independent source of variation. Therefore, including the
two PLS components should be sufficient to describe third PLS component compensates for the effect of
this system with closure. However, because the effect of temperature. In Fig. 5, the loading weights of the first
temperature is so drastic, it can be regarded as an three PLS components are displayed.
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Fig. 6. Predicted (three PLS components) vs. measured ammonia from PLS model on mean centred spectra (5300—11000 cm ') of the synthetic samples. A
three-component model captures the variation in temperature. X, <0 °C; *, 0 °C; @, 5 °C; 4, 10 °C; A, 15 °C; m, 20 °C.
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The loading weights for PLS component 1 are dominated
by the ammonia specific peak at 6573 cm ™' overlapping the
water peak at 6100-7600 cm~'. The loading weights for
PLS component 2 have features from the IPA (~5900 cm™")
and the mentioned ammonia and water peaks. The temper-
ature correcting PLS component 3 does not display any
distinct features but contains information about the ammo-
nia peak and water peak. It is however clearly connected
with the compensation for band-shift as a function of
temperature in NIR spectroscopy [9].

Fig. 6 shows the predicted vs. measured ammonia
concentration for a model with three PLS components.
Compared with the two component predictions shown in
Fig. 3, the improvement is obvious. The RMSEC is 2.1%,
and RMSECYV is reduced approximately four times to 2.3%.

4. On-line development
4.1. Experimental

Direct application of the calibration developed from the
synthetic samples to process amidation liquids did not give
satisfactory results, even when using the same instrument
and the measurement cell used in the laboratory setup.
Apparently the synthetic samples did not match and span the
variation of the impurities found in the process samples. As
an additional complication, it proved impossible to repro-
duce the exact same path length when mounting the
Teflon® tubes in the Side Stream Sampling Cell used in
the process environment. For this reason, an extended
calibration, based on actual process amidation liquid, was
computed in order to take the observed impurities and the
different path lengths into account (see Table 1).

As listed in Table 1, substantially more process samples
were acquired than the original 30 synthetic samples.
Process samples were sampled during routine on-line
measurements. As the NIR instrument was scanning
through the Teflon® tube, a sample grab was made from a

Table 1
Overview of synthetic samples and process samples acquired, including the
expected variation of concentration of ammonia and IPA

Sampling Number Ammonia IPA
point of samples  concentration concentrations
Synthetic Laboratory 30 Full range Full range
Process Tank 1 83 Low Full range
calibration  Tank 2 83 Intermediate  Low
set Tank 2 0 Intermediate  Low
(new)
Tank 3 85 High Low
Process Tank 1 89 Low Full range
test set Tank 2 85 Intermediate  Low
Tank 2 3 Intermediate ~ Low
(new)
Tank 3 89 High Low

valve directly below the Teflon® tube after a first dead
volume was washed out. The sample, approximating the
liquid scanned through the Teflon® tube, was subsequently
titrated in triplicate for determination of IPA and ammonia
concentration by laboratory personnel. Just before the end of
the process test set acquisition period the Side Stream
Sampling Cell measuring Tank 2 was changed after
discovering the optical fibres were not perfectly aligned
across from each other. The samples acquired with the new
Teflon® cell have been labelled “Tank 2 (new)”. Although
the design of the sample cell will allow for replacement of
the cell without changing the path length significantly, some
deviation is anticipated. The method should be robust to
such changes.

4.2. Results and discussion

The average spectrum for synthetic and process samples
for each sampling point mentioned in Table 1 is plotted in
Fig. 7; spectra from both the process calibration set and the
process test set have been averaged.

The absorbance of Tank 1 samples acquired is higher
than the absorbance of samples from other tanks and the
absorbance of the synthetic samples measured in the
laboratory (this cannot be seen in Fig. 7 however, as the
spectra have been offset for clarity). This indicates that the
path length of sampling cell 1 is longer than the other. Fig. 7
also shows that the new sampling cell measuring amidation
liquid in Tank 2 measures slightly different spectra than the
initial cell. The difference in absorbance characteristics is
reflected in the PLS score plot of PLS component 1 and 2
shown in Fig. 8.

The score plot separates Tank 1 samples from the rest
of the samples in the main variation direction (the first
component). The three new measurements from Tank 2
(X) are also separated from the other Tank 2 measure-
ments. Furthermore, the score plot reveals that the
different temperatures of the synthetic samples are not
handled correctly. A robust model must be able to handle
differences in path length as well as changes in temper-
ature. The optimal number of PLS components to predict
the ammonia content in the process test set from the
synthetic samples and the process calibration set was
determined to be four with an RMSEC of 3.6%, and the
Root Mean Squared Error of Prediction (RMSEP) was
calculated to be 3.3%. The RMSEP is lower than the
RMSEC due to the fact that the synthetic samples are
included in the calibration set, and the synthetic samples
and the temperature are not handled well in the resulting
model. Despite the use of four PLS components compared
to three for the synthetic sample-set alone, the same level
of predictive performance is not reached. Differences in
path length and temperature can be accounted for by
various pre-processing methods and spectra interval
selection [10]. The choice in pre-processing methods is
however, in practice, limited by those supported by
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Fig. 7. Average spectrum synthetic and process samples. Synthetic samples (lower solid line), Tank 1 (upper solid line), Tank 2 (dash-dotted line), Tank 2 new
(dashed line), Tank 3 (dotted line). Spectra have been offset on the absorbance scale for clarity.

CAAP—the Continuous Automated Analysis Program—
the software to be used during process operation. This
restricts the pre-processing methods to direct arithmetic on
the acquired spectra (e.g. baseline subtraction, area

normalization, mean centering and variance scaling),
smoothing and derivatives by Stavitsky—Golay algorithm
[11]. For modelling purposes, variable selection, pre-
processing, outlier detection and calibration are all

4
>

ey

LW )
5

..
T

o & Q0 o>

%% %
® LN N ]
.

PLS component 2

wlfa

-2

1...

X ad
°

aade

-15 -10 -5

0 5 10

PLS component 1

Fig. 8. Score plot of PLS component 1 (88% x-variance explained) vs. 2 (6%) of mean centred spectra (5300—11000 cm ') of synthetic and process samples
collected at different locations. ®, Synthetic samples; M, Tank 1; 4, Tank 2; X, Tank 2 (new); A, Tank 3.
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interdependent phenomena. Therefore, an iterative proce-
dure, where all aspects are continually revised, is
recommended [12]. One approach to spectral region
selection is interval PLS (iPLS) [13]. The entire spectral
region measured is divided into a predefined number of
evenly spaced intervals, and local PLS models are fitted
to each interval using from one to a selected number of
PLS components (called local models). In this work, iPLS
models were fitted using the mean centred full region
(5300-11000 cm™ ") spectra with no further pre-process-
ing and the results of the analysis are given in Fig. 9.

Since the iPLS routine does not support test set
validation [6], the local models and the global (full region)
model are validated by cross validation with two segments:
segment one consists of the synthetic and the process
calibration set and segment two consists of the process test
set. The RMSECYV of the local models is compared to the
RMSECYV of the four PLS component global model, being
the one with the lowest RMSECV (4.4%). Due to the
different validation approaches, the RMSECYV is not directly
comparable to the RMSEC or RMSEP of the PLS model
shown in Fig. 8.
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From Fig. 9, it is observed that one local model gives
an RMSECV lower than that of the global model. It is
based on interval number five (counting from left to right
in Fig. 9) using three PLS components, spanning the
region 6442-6720 cm ', which gives an RMSECV of
4.0%. From the four PLS components local model plot in
Fig. 9, the intervals 4-5 (6156-6720 cm™'), 9 (7584—
7861 ecm™'), 11 (8154-8432 cm™') and 15-16 (9296
9859 cm ') can be identified as being important as they
have nearly as low an RMSECV as the global model.
The intervals include spectral regions, which may be
assigned to N-H stretch first overtone, N-H combination
bands and N-H stretch second overtone [14]. All these
regions are important for aqueous solution, where water
is available for hydrogen bonding. These results from
iPLS may be iteratively combined with spectroscopic and
chemometric knowledge to identify combinations of pre-
processing, spectral region selection, outlier detection and
choice of number of PLS-components to yield consistent,
low prediction errors. Rather than giving a final evalua-
tion of expected prediction error to a chosen model based
solely on the calibration set, the process test set is used
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Fig. 9. iPLS plots with the bars showing RMSECV of local models using one to four components. Horizontal line indicates RMSECYV for a full spectrum, four-
component model and the background spectrum is the average of all synthetic and process spectra.
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Table 2
Performance of selected models

Pre- Region Outliers Number RMSEC RMSEP
processing  (cm™ ') of PLS- (%) (%)
components

None 5300-11000 0O 4 3.55 3.27

None 5300-11000 3 4 3.55 2.62

None 5423-9011 0 4 4.07 2.90

None 6442-6720 0 3 2.60 2.83

None 7252-10770 0 5 1.95 3.60

MSC 5423-9011 0 4 3.55 3.05

MSC 7252-10199 0 4 3.69 3.88

MSC 5423-6658 0 2 5.03 4.26

MSC 5423-6025 0 5 4.70 5.09

1Dev 5423-10199 0 4 2.01 1.87
SG 552

1Dev 5423-10199 8 4 1.68 1.79
SG 552

1Dev 7252-10199 0 3 2.70 2.23
SG 552

1Dev 7252-10199 2 3 2.53 2.20
SG 552

1Dev 6442-6720 0 3 2.17 2.27
SG 552

1Dev 5423-6658 0 3 1.98 1.90
SG 552

1Dev 5423-6658 6 2 1.66 1.86
SG 552

2Dev 5423-10199 5 3 1.76 1.94
SG 552

2Dev 7252-10199 6 4 2.53 2.64
SG 552

2Dev 64426720 6 3 2.18 2.45
SG 552

2Dev 5423-6658 5 2 2.56 2.46
SG 552

The model highlighted in bold is the chosen model. MSC refers to
“Multiplicative Signal Correction” [15], 1Dev SG 552 and 2Dev SG 552
refer to first and second derivative computed by Savitzky—Golay algorithm
[11] using five points left and right and fitting a second-degree polynomial.

for this purpose. The results in terms of prediction errors
of some of the models are listed in Table 2. The choice
of pre-processing methods is quite restricted, since only a
few methods were supported in the on-line CAAP
software.

As indicated in the table, the greatest impact on prediction
error comes from spectral region selection. First derivative
pre-processing proved better than other pre-processing
methods, other choices being equal. The first derivative
spectra displayed in Fig. 10 clearly—in this case—have
removed the baseline offset of the raw spectra, and thus give
good compensation of differences in path length. Other
methods for removing baseline offset (e.g. normalization)
could also be considered.

The region 5423-6658 cm™' gives the best overall
model, and includes the first overtone of both IPA and
ammonia. The 5423-6658 cm™' region has absorbance
values of 0.8 to 2.8, beyond what is usually normally
accepted as the linear range of calibrations. The region also

ends at the shoulder of the water peak at 6100-7600 cm ',

which could be questionable, but from Table 2 it is seen
that inclusion of the complete water band at 6100-7600
em~ ' does not improve the performance of the calibration
models. A shorter path length could be considered, but
would require custom-made cell housing and different
choice of Teflon tubing. The score plot from a model based
on the first derivative of the spectra in the region 5423—
6658 cm ™' can be seen in Fig. 11.

The synthetic sample domain from Fig. 2 can readily be
recognized, albeit rotated slightly counter-clockwise. The
PLS component one can be interpreted as ammonia
concentration and PLS component two can be interpreted
as the IPA concentration, i.e. the position of the process
samples in the score plot thus reflects their ITPA and
ammonia content. The process engineers actually over-
estimated the IPA concentrations and fluctuations in Tanks
2 and 3 before conducting this study. Therefore, the
synthetic samples proved not to cover the entire variation
exhibited by the process samples. In contrast, they
supplement the variation, which was beneficial for the
calibration. As seen in Table 2, the calibration has RMSEC
of 1.66% and RMSEP of 1.86% using two PLS
components. The RMSEP actually has a minimum of
1.82% wusing three PLS components, but the more
parsimonious (and therefore presumably more robust)
two-component model was chosen in favour of an
estimated gain of 0.04% in predictive ability.

5. Implementing on-line control

For the on-line implementation, a PLS model equivalent
to the before mentioned two component model based on the
region 5423—6658 cm™ ' was computed using the combined
calibration and test set. The combined model had an
RMSEC of 1.75%. When the on-line NIR ammonia
predictions were compared to the manual titrations done
by process operators, the results were surprising. The
process operators routinely analyzed a sample approxi-
mately once an hour to monitor the ammonia concentration.
If the level was assessed as low or if a new amidation was
forthcoming, the operators would feed ammonia to main
Tank 2 by manual operation, based on process experience.
The operational effect would be evaluated from the next
titration 1 h later, as titrating a sample immediately after
dosing would give an “unreliable” (i.e. out of specifications)
result. Fig. 12 shows the results of the NIR predicted
concentrations superimposed on the process titrations. When
only the process titrations are considered, the process
appears stable and within the specified ammonia concen-
tration set point. The NIR predicted results however reveal
that the dosing of ammonia by the operators results in strong
concentration increase (reaching levels of more than 15%
above target point), which are rapidly consumed in the
amidation reaction. The magnitude of the concentration
peaks and the rapid consumption were unknown to process
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Fig. 10. Average first derivative of synthetic and process spectra. The gray area marks the chosen wave number region 5423—6658 cm™ . Synthetic samples
(solid line), Tank 1 (solid line), Tank 2 (dash-dotted line), Tank 2 new (dashed line), Tank 3 (dotted line).

engineers before implementing the process analytical occurs). This implies that the spectroscopy plus process
measurement system. interface as well as the PLS model are very robust, and
Fig. 12 reveals that the NIR predictions are extremely noise levels are very low.
precise and very stable from one measurement to the next After an evaluation period, the NIR predictions proved
(best observed in a time span where no dosing of ammonia reliable and process control engineers phased in an
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Fig. 11. Score plot of PLS component 1 (71%X-variance explained) vs. 2 (24%) of mean centered first derivative spectra (5423-6658 cm ™ ') of synthetic and
process samples. The synthetic samples are numbered in accordance with Fig. 1. ®, Synthetic samples; W, Tank 1; 4, Tank 2; X, Tank 2 (new); A, Tank 3.
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Fig. 12. NIR predicted values superimposed on manual ammonia titrations. The titrations done once an hour do not capture the full process dynamics. At 2
days, the set point for the ammonia concentration changed due to processing conditions. @, Process titrations; solid line, NIR predicted values.

automated dosing system based on the NIR predictions. to gather experience and not to upset production quality.

An automatic valve, capable of dosing ammonia in short Fig. 13 shows NIR predicted ammonia values from the

bursts, replaced the manual valve. The automatic dosing production during that period. It is clearly observed that

was introduced slowly over a period of 14 days in order the ammonia concentration is much more in control,
68
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Fig. 13. NIR Predicted ammonia concentrations in Tank 2 for 14 days where on-line control of the ammonia concentration was implemented. At 12 days, the
set point for the ammonia concentration was altered.
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Fig. 14. Predicted (two PLS components) vs. measured ammonia, one full year after implementation of the calibration. ®, Calibration samples; X, process

samples acquired after implementation of the calibration.

being kept at an almost fixed level with near continuous
automatic dosing rather than manual dosing every second
or third hour.

Concentration set points can now be readily changed
within minutes, compared to several hours before
introduction of the new system (compare Fig. 13 with
Fig. 12).

The long-term performance of the NIR predictions is
continuously being evaluated by comparing NIR predicted
values to manually retrieved samples titrated by laboratory
personnel. The following year, 433 process samples were
tested using the implemented PLS model, the results of
which can be seen in Fig. 14.

As observed from the figure, the calibration is stable
and the new RMSEP is 1.75% with a bias of —0.15%,
practically identical to the target RMSEC. Addition of
the third PLS component still would give a minimal
improvement of RMSEP to 1.74%, but a two-compo-
nent model is still preferred. Closer inspection of Fig.
14 shows a split in both calibration and validation
samples in the range from 60% to 100% ammonia.
Approximately half of the samples are predicted to have
2-4% lower ammonia than the rest in that concentration
range. The reason for that has not yet been identified.
During the evaluation year, it occurred that the
ammonia-dosing valve at one stage froze in the open
position, with an uncontrolled dosing of ammonia as a
result. Samples were retrieved for validation purposes
and can be seen in Fig. 13 as validation samples in the
range of 90-115%.

6. Conclusion

The implementation of the on-line process monitoring
and control of ammonia by NIR spectroscopy at CP Kelco
has been very successful. The ammonia prediction perform-
ance has been very good, exceeding expectations, and the
stability and accuracy of the multivariate calibrations are
much better than expected. At all levels of the organization,
the predictions are regarded with high confidence. Despite
this, process operators on all shifts still acquire samples for
titrations—not only to continuously validate the NIR
predictions, but also to maintain the ability for the operators
to continue production in the event of a breakdown of the
ammonia dosing system.

The benefits of the improved control of the ammonia
dosing system have been numerous. It is now possible to
regulate the concentration of ammonia very precisely and
reproducibly. This removes an important source of variation
from the amidation reaction as well as a possibility to make
minute changes to ammonia concentration to improve
product quality. If troubleshooting of the production
becomes necessary, the process engineers can assume and
quickly verify that the ammonia concentration has been
constant.

Implementing this method has also improved control of
the ammonia concentration in the amidation liquid, thereby
increasing the capability to produce an amidated pectin
product with a desired degree of amidation.

All in all, the mentioned benefits have made the
application a good investment for CP Kelco.
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Abstract

An analytical liquid dilution system is proposed to collect information on the intramolecular distribution of ester groups on the pectin
carbohydrate backbone by injecting a solution of pectin into a carrier stream containing a fixed concentration of dye. The dye binds site-
specifically to the poly-a-(1—4)-D-galacturonic acid units which are not esterified. The carrier stream is led to a Continuously Stirred Tank
Reactor (CSTR). The pectin is slowly diluted while UV—VIS spectra are continuously recorded at the reactor outlet, providing a wavelength-by-
time matrix for every sample. Thirty-one pectins, enzymatically deesterified to give different ester distributions, are measured using remethylated
lemon pectin as starting material. The combined sample matrices are analysed using multi-sample Multivariate Curve Resolution (MCR) and
PARAFAC?2, both Alternating Least Squares (ALS) regression algorithms. Both algorithms successfully describe the data giving a lack of fit
between 2.0% and 8.3%, depending on the number of components extracted and the choice of constraints applied. The paper discusses how and on
which terms the two algorithms can be compared. Interpretable information about the deesterification pattern of the pectin-related species and the
extent of deesterification is obtained from the resolved dilution concentration profiles. The most detailed chemical description of the pectin-dye

species is obtained with an unconstrained MCR-ALS five-component model.

© 2006 Elsevier B.V. All rights reserved.

Keywords: PARAFAC2; Multivariate curve resolution; Pectin; Blockiness; Intramolecular distribution of esterification; Analytical liquid dilution system

1. Introduction

Pectin is a polysaccharide found in the primary cell walls and
intracellular regions of higher order plants. It is a structural
element giving both strength and flexibility to plant material.
Pectin has excellent gelling, thickening and stabilizing proper-
ties and is widely used for commercial applications, primarily in
the food industry [1-3]. Pectin mainly consists of a linear chain
of poly-a-(1—4)-D-galacturonic acid with varying degrees of
esterification (%DE). The distribution of the methyl ester
groups on the pectin carbohydrate backbone is an important
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5616 9446.
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structural parameter that affects the pectin functionality in
customer applications.

However, the exact distribution of ester groups on the pectin
backbone is a property that can only be defined for an individual
pectin polymer, and this information is as such of no commer-
cial interest, as it is not possible to extract or produce identical
pectin polymer molecules from natural sources. On the other
hand, a method for measuring average intramolecular distri-
bution of ester groups in bulk pectin is highly desired.

Different pectins extracted from natural lemon peel are in-
vestigated. In order to span the sample set beyond natural variation,
31 samples are prepared from a remethylated (i.e. esterified) pectin
which is subsequently enzymatically deesterified by two different
enzymes, known to deesterify pectin in either a “Random” or
“Blocky” fashion. The terms Random and Blocky are loosely
defined terms, but it has been suggested to define a blocky group as
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Fig. 1. Idealized diagram of three sections of pectin backbone (GalA = galacturonic acid). The pectins are deesterified 50% but the distribution of estergroups is

different (modified from [7]).

a sequence of four or more deesterified galacturonic acids next to
each other in the pectin carbohydrate backbone [4—6], while
Random groups in this context may cover truly random or more
systematic (sequential) deesterification patterns, see Fig. 1.

The extent of randomness or blockiness is a property not easily
defined, because the average total degree of esterification (%DE)
and the distribution of the ester groups will vary considerably from
sample to sample. Additionally the actual degree of esterification
and the distribution of the ester groups will vary from molecule to
molecule within a pectin sample. For this reason, it is proposed in
this article to explore the degree of esterification and the
distribution of the ester groups by measuring Ultraviolet—Visible
(UV-VIS) spectra. A solution of pectin measured at different time
points in a system dynamically diluted with a solution of a fixed
concentration of a dye, known to bind site specifically only to the
free acid groups of the pectin. This will provide averaged
information from all pectin molecules in the solution. A Diode
Array Detector (DAD) is used to acquire an entire spectrum for
each time point. The spectra recorded will reflect the concentration
gradient of the pectin as it is diluted, and every sample will provide
a matrix with all the spectra of the pectin sampled. The matrix will
have the format wavelength x time and it will contain the absor-
bance recorded. Such a system has the properties of a Continuously
Stirred Tank Reactor (CSTR) and, analytically, will have features
known from Flow Injection Analysis (FIA) and conventional High
Performance Liquid Chromatography (HPLC), in the sense that the
analyte is retained while subjected to chemical reactions. The data
can be analysed taking advantage of the features linked to the
analysis of multi-way data sets [8,9], which offer the potential to
resolve the sought profiles uniquely and to provide quantitative
information. In this sense, the species associated with blockwise
deesterification can potentially be identified independently from
random or sequential deesterification.

This article will present the results of resolving the raw
spectra acquired for each sample into meaningful contributions,
pure spectra and pure time-dependent dilution profiles, by using
the algorithms PARAFAC2 [10,11] and Multivariate Curve
Resolution using Alternating Least Squares (MCR-ALS) re-
gression [9,12,13], applying appropriate constraints. The ma-
thematical models will be evaluated with respect to fit and
chemical interpretability. The best models identified will be
applied to quantify the degree and distribution of ester groups in
a second, related paper [14] where also the concepts of random

and blocky deesterification are further elaborated on. The same
sample set has also been used in a quantitative study of the
degree of blockiness using 'H NMR spectroscopy [7].

2. Experimental
2.1. Sample preparation

The samples investigated are laboratory prepared materials
derived from a natural lemon pectin — named the “Mother pectin”
— produced at CP Kelco, Denmark with a %DE=72.3 and an
average molecular weight of 180 kDa, determined by size exclu-
sion chromatography (SEC). The pectin “Remethylated” was
remethylated to %DE=93.8 by taking 1027g mother pectin and
suspending it in 2000 mL methanol and 150 mL thionyl chloride at
0-5°C for 5 days. The %DE was verified by titration using an
internal CP Kelco control method. The average molecular weight
was determined to be 13kDa using SEC. This corresponds to a
degree of polymerization of approximately 50 galacturonic acid
units. The remethylated pectin is subsequently deesterified once or
twice to give samples numbers 1-31 according to Table 1.

Identification in Table 1 is based on the following convention:
from the remethylated pectin (Sample number 33) the samples 1,
5,9, 12 and 14 are produced by deesterification with a random
methyl esterase Rapidase FP Super® from DSM, The Nether-
lands, known to deesterify in a predominantly random fashion.
The samples are given the names “R” (for Random) followed by
the degree of deesterification (%DDE) induced — not to be
confused with the degree of esterification (%DE) defined pre-
viously and commonly used to describe pectin. All samples (1, 5,
9, 12 and 14) are produced directly from the remethylated pectin.
The five samples produced are then used as starting material for a
deesterification process with a block methyl esterase derived from
papaya fruit, known to deesterify in a predominantly blockwise
fashion. In this step samples 2—4, 6—8, 10—11, 13 and 15 are
produced. The samples are named from the starting material
followed by the degree of blockwise (B) deesterification. For
example, sample number 10 with the name “R21.9 B9.7” is
produced by deesterifying the remethylated pectin 21.9% in a
random fashion (producing the sample “R21.9 B0.0”), followed
by deesterifying that sample 9.7% in a blockwise fashion. The
resulting degree of esterification is therefore the %DE of the
remethylated pectin minus the degree of deesterification induced,
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Table 1

Overview of the sample-set used in the present study

33: Remethylated ~ 32: Mother

pectin pectin

1: R4.9 B0.0 5: R13.8 B0.0 9: R21.9 12: R28.9  14: R35.0
B0.0 B0.0 B0.0

2: R4.9 B10.6 6: R13.8 B7.8 10: R21.9  13: R28.9  15:R35.0
B9.7 B13.2 B6.8

3: R4.9 B18.0 7:R13.8 B13.8 11: R21.9
B21.6

4: R4.9 B24.5 8: R13.8 B23.8

16: B4.4 R0.0 21: B14.1 R0.0 25:B22.6  28:B33.5 30: B36.8
RO.0 RO.0 RO.0

17: B4.4 R8.3 22: B14.1 R10.2  26: B22.6  29: B33.5 31: B36.8
R11.0 R9.5 R6.4

18: B4.4 R15.6 23: B14.1 R20.3  27: B22.6
R23.9

19: B4.4 R22.8 24: B14.1 R30.6

20: B4.4 R31.9

The sample number is followed by the sample name. The sample names are
interpreted in the following manner: Sample number 19 “B4.4 R22.8” is first
deesterified 4.4% by blockwise deesterification and subsequently 22.8% by
random deesterification. It is produced by random deesterification of sample
number 16, which, in turn, is produced from the remethylated pectin.

in this example 93.8%—21.9%—9.7%=62.2%. The amount of
deesterification induced is verified by titration for all the samples.
The standard deviation of the %DE titration method is 0.7% in
absolute values. The samples 16—31 are produced in a likewise
manner, the only difference being that they are initially subjected
to a blockwise deesterification followed by a random deester-
ification. This way all samples produced are subjected to a
maximum of two deesterification steps. The range of %DE
investigated is from 47.3% to 93.8%.

2.2. Instrumental setup
A 0.5% (weight by volume) solution of pectin is injected by a

sample loop connected to an injection valve into a carrier stream
flowing continuously and containing a dye in a fixed concentration.

()

The stream leads into a continuously stirred tank reactor with a
fixed volume, large compared to the flow rate of the carrier stream.
The reactor is initially filled with the carrier stream containing the
dye. The injection volume of the pectin solution is small compared
to the reactor volume, so the concentration of dye can be assumed to
be constant. The exit from the reactor leads to a flow cell where the
UV-VIS transmission of the stream is measured. After the
measurement, the stream is led to waste. The reactor gives the
system a large dead volume that retains the injected pectin, which is
only slowly washed away by the carrier stream, see Fig. 2.

The dye is known to bind to the pectin irreversibly (within
the time frame of the experiment) with a high affinity, and
changes conformation (i.e. absorbance) depending on whether it
is bound or not bound to the pectin. It is observed from initial
studies, that the dye, when bound to the pectin, also changes
conformation depending on whether the neighbouring galac-
turonic acid on the pectin backbone contains an ester group or
an acid group (with another dye molecule attached), i.e. the dye
conformation is different if the molecule binds to a blocky or to
a random pectin environment.

The concentration of pectin injected is initially high compared
to the concentration of dye in the reactor. It is therefore assumed
that the dye binds preferably to the easily accessible sites on the
pectin. As the pectin (with dye attached) is washed away from the
reactor by the continuously flowing carrier stream (still containing
the dye in a fixed concentration), the concentration of pectin
decreases exponentially. As the concentration of pectin drops, the
dye will also bind to the less accessible sites on the pectin. At the
end of the sample run, the pectin concentration will be close to
zero and negligible. Hence, only the unbound dye will be
spectroscopically active at that stage, see Fig. 3.

2.3. Data collection
UV-VIS spectra were recorded in transmission mode using a

StellarNet EPP2000 instrument with the SpectraWiz Spectropho-
tometer software version 3.3, which reported the measurements in

Waste

Flow cell
I

Reactor

Vent/Waste

Sample
loop

<

Carrier with
dye in fixed conc.

Fig. 2. Overview of the setup.
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Fig. 3. Idealized concentration of pectin and dye in the reactor tank.

absorbance units. For every sample run, the raw data matrix
collected consists of 333 time points and 2048 wavelengths. In
order to facilitate the data analysis, the data was reduced by
averaging wavelengths and time points and cropped by eliminating
wavelengths with no relevant information. Time points at the start
and the very end were also eliminated, as they contain artefacts of
the injection and mixing of the sample. The reduced data set of all
33 samples (including the remethylated and the mother pectin) is
sized 33 samples % 77 time points x 145 wavelengths.

The data was pre-processed using Matlab version 7.0.4.365
(R14 SP2) from The MathWorks and the PLS-Toolbox, version
3.5.2 from Eigenvector Research.

In order to compensate for small run-to-run variations (minor
baseline drift and small offsets in dye concentration), the data
was corrected by fitting a straight line through all times of the
first and last wavelength (i.e. wavelength 1 and 145, as no
absorbing components are seen here) of the individual sample
landscape and subtracting the resulting square made by
connecting these time points from the landscape. The corrected
data matrix was then scaled to same intensity of wavelength
number 55 (which is the peak of the largest dye peak) at the last
time point where only unbound dye is observed. The correction
did not result in large changes in the overall appearance of the
landscapes, but did result in improvements in the computed lack
of fit.

Models were calculated using the MCR-ALS with the gra-
phical user interface, version 1.0.0 [15] and PARAFAC2 [16].
The MCR-ALS algorithm was modified, to accommodate for
automated input of similar matrix size for all sample runs, which
is not implemented in the published version of the MCR-ALS
algorithm [17]. The PARAFAC?2 algorithm was modified by the
authors to disable the conventional automatic sorting of the
components according to largest variance explained.

Reasons of confidentiality prevent the publication of perti-
nent details of the setup such as i.e. specific flow rates, absolute
wavelengths and times, volumes and the dye involved.

2.4. Overview of selected samples

Fig. 4 shows 16 landscapes out of the 33 available samples in
the data set. The landscapes are presented as 2-D contour plots
with time on the x-axis and wavelength on the y-axis. Absorbance
is represented by equal-intensity contours in the matrix. The
landscapes are arranged so as to reflect the sample design.

Visual inspection and initial modeling reveal that three main
phenomena are present. 1) A peak identified as a random finger-
print appears at wavelength range 70—-90, time 1-40. 2) A peak
identified as a blocky fingerprint appears at wavelength 28, time
1-40 and 3) A fingerprint identified as the unbound dye returning
in the system, is identified as a double peak at wavelengths 55 and
75 appearing between times 1 and 60, and always continuing until
the end of the sample run. The end spectrum in all samples match
the spectrum of the carrier with dye with no pectin added, and the
later the unbound dye appears in the spectra, the more deesterified
the sample is. The “Remethylated” pectin has only the profile of
the unbound dye, thereby indicating that even at high pectin
concentration, the dye does not bind to anything but the galactu-
ronic acid groups on the pectin.

The random profile does not shift in time. Intensity is depen-
dent on the amount of randomness introduced (high amount=
high intensity). Some randomness is also introduced by blocky
deesterification, see e.g. sample “B36.8 R0.0”. The random
spectral profile appears not to be well defined. The spectrum is
non-Gaussian as it is very wide, which could suggest several
underlying components or overlapping peaks forming the peak.

The unbound dye is made up of two peaks (wavelengths 55
and 75). Sometimes, the wavelength 75 peak appears “before”
the wavelength 55 peak. This could also be due to an additional
or intermediate compound appearing as part of the random
profile.

The blocky profile always appears after the random profile,
and the more blockiness introduced, the later the blocky profile
peaks. A high degree of “time-shift” in the blocky profile is
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Fig. 4. Landscapes for 16 of the 33 samples. Absorbance is represented as contour lines. The landscapes are arranged with the remethylated sample in the top left corner
and the most blockwise and random deesterified samples in the lower left corner and top right corner, respectively.

present in the system and the time-shift seems dependent on the
amount of randomness present, as the random profile always
appears before the blocky profile. The highest intensity (over all
33 samples) is observed in sample “B22.6 R0.0”. Introduction
of randomness weakens the blocky profile. Some blockiness is
also introduced by random deesterification, as seen in sample
“R35.0 B0.0™.

The unbound dye returning also exhibits a strong time-shift,
dependent on the degree of deesterification as mentioned. At the
end of the blocky profile, a small spectral shift from wavelength
28 to 33 is observed (See, for instance, “R4.9 B18.0”). This is
most likely due to an additional or intermediate compound,
rather than a change in physical environment (pH, ionic strength,
etc., that can affect the electronic states of the absorbing species,
are controlled during the experiment).

The presence of time-shifts and other shape variations in the
time profiles, but also the possible additional or intermediate
compounds present, makes MCR-ALS and PARAFAC2 good
choices for fitting the data. If the data set is well resolved, it
should be possible to quantify the amount of blockiness and
randomness from the identified concentration profiles, provided
that some sort of scale or index is defined. The correlation will
not necessarily be straightforward though, as deviations from
linearity are observed e.g. between concentration/amount of the
blocky profile and the blockiness. An article quantifying the
amount of blockiness and randomness based on the results

presented in this paper is submitted by the authors [14], and the
results were presented at the 9th Scandinavian Symposium on
Chemometrics, Reykjavik, Iceland, August 2005.

3. Methods
3.1. Multivariate curve resolution

Multivariate curve resolution (MCR) is a commonly used
technique that can resolve multi-component mixtures into a
simple model consisting of a composition-weighted sum of the
signals of the pure compounds [9,12,18]. The multivariate curve
resolution model can be written as:

D=CS"+E (1)

It is a bilinear method to resolve an experimental data matrix
D (IxJ) into the product of a column matrix C (/x F) usually
associated with concentration profiles, and a matrix of row
profiles ST (FxJ), usually associated with spectra. The matrix E
(IxJ) is the residuals i.e. what is not explained by the model
CS". The entries in matrix E should be small and random
compared to the numbers in D and the model CS™. The scalars /
and J are the total number of time points in the data set studied
and wavelengths of the data set, respectively, and F'is number of
components to be resolved.
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This general description can fit a wide range of applications,
processes, mixtures, elutions, images and environmental data
monitored by multivariate instrumentation [13,18].

The model parameters are estimated using an Alternating
Least Squares (ALS) algorithm that iteratively fits the C and S”
matrices to the experimental data D. The model is fitted with a
pre-defined number of components, F, using initial estimates of
either the C or the ™ matrix. Exploratory data analysis using
Singular Value Decomposition, Evolving Factor Analysis
(EFA) [19-21] or SIMPLISMA [22] can provide knowledge
used for the initial estimates.

During the MCR-ALS iterations, it is possible to impose
constraints such as non-negativity, unimodality, closure, trilinear-
ity and/or selectivity [9]. The use of constraints can facilitate the
convergence of the algorithms, resolve rotational ambiguities and
ensure that the computed solutions are chemically meaningful
[23]. The number of components and use of constraints will be
further elaborated upon later in this paper.

A powerful extension of MCR-ALS is multi-sample MCR-
ALS, where it is possible to resolve several independent sam-
ples and/or several independent measurement techniques by
augmenting the input matrix appropriately [9,12,13]. Extending
the concentration matrix column-wise to estimate concentration
profiles of several samples will facilitate the resolution of a
global solution and can solve the resolution of components in
situations of rank-deficiency [18].

In a column-wise augmented data set, the matrices in the Eq. (1)
model must be interpreted as: D=[Dy; Dy;...;Dg] and C=[C;; C;;
..;Ck] with K being the number of samples analysed simulta-
neously (In MATLAB notation, the semicolon stands for
appending matrices one on top of each other). S is a single matrix
with pure resolved spectra common to all samples and D, and C;,
are the raw data and the resolved concentration profiles for the &A™
sample. Because of the column-wise data arrangement, the number
of rows in D, and the shape of the related concentration profiles in
C;. can show any kind of variation from sample to sample.

In this study the concentration mode will reflect the dilution
profiles of the sample matrix. This way the algorithm will re-
solve common pure spectra (S) for all samples and will identify
individual time/concentration profiles (C;) for each sample. For
every time point in every individual sample, the “amount” of
every pure spectrum (constituent) will be quantified. This will
be a relative number, depending on the sample and dilution, but
as the dilution is kept the same from sample to sample, they are
comparable. This relative number is still referred to as concen-
tration throughout the article, but should not be thought of as an
absolute concentration.

3.2. PARAFAC2

PARAFAC?2 is derived from the PARAFAC algorithm, an
algorithm that models a three-dimensional array X (/xJxK) as
a summation over outer products of F triads of vectors [24]. The
scalars 7, J and F still hold the number of time points and
wavelengths of the data, respectively, and the number of
components to resolve. The scalar K holds the number of
samples.

PARAFAC?2 is an advanced variant of the PARAFAC algori-
thm [10] developed to handle the situation where the number of
observations in one mode varies or where shifts or shape-
changes of profiles along one mode are anticipated. This makes
the algorithm appropriate to handle, for instance, retention time
shifts [11]. It is investigated in this article whether the algorithm
is able to handle sample differences in the resolved time/
concentration profiles.

The matricised notation of the PARAFAC2 model can be
written as:

X; = AD(P;H) +E;, k=1,.,K (2)

Where X, represents the data related to one sample (one slab
from the original data cube) of size (/*/) in which 7 can vary
with k. K is the number of samples. A (JxF) holds the first-
mode loadings, in this study the resolved spectra. D, (F'x F) is a
diagonal matrix that holds the £’th row of Cp, in its diagonal.
The notation D, is maintained for consistency with the litera-
ture, but note that Dy, is not related to the D, used in the MCR
model. Cp, (K% F) holds the third mode loadings, in this study
the sample scores. H is an /% F scaling matrix, and P, is an /x F’
orthonormal matrix (/ can vary with k). The matrix E; holds the
residuals. P, and H have no direct chemical or physical inter-
pretation but their product will be an estimate of the time
profiles.

The chosen notation is not completely transparent, but is
motivated by an effort to match as closely as possible the choice of
notation in the algorithms used. It should be especially noted that
the X mentioned in PARAFAC?2 reflects the transpose of the data
matrix D; in MCR-ALS and that the Cp, from PARAFAC?2 is not
equivalent to the C resolved from MCR-ALS.

In order to compare the profiles resolved by MCR-ALS and
PARAFAC2, the resolved spectra ST from MCR-ALS in Eq. (1)
and A from PARAFAC?2 are both scaled to unit length and then
directly comparable. The concentration profiles from the in-
dividual samples can be computed from the PARAFAC2 model
by:

C,=Di(PH)', k=1,..K (3)

C;. can then be compared to the analogous submatrix of the
augmented C, as resolved by multi-sample MCR-ALS.

The PARAFAC2 model differs from a Principal Component
Analysis (PCA) of the unfolded array X by the requirement that
the spectral loadings AD; must be proportional for every value
of k (running from 1 to K). Furthermore, it is assumed that the
cross-product (PkH)T(PkH) is constant for all values of k&
[10,25]. This condition is sufficient for the PARAFAC2 model
to be unique if some other mild uniqueness conditions are met,
as further discussed in depth in Kiers et. al. [10].

Even though the matricised notation of PARAFAC2 is
presented, it should still be considered a multi-way method with
an independent sample mode. In MCR-ALS, the sample mode
is only implied through extension of the concentration matrix.
This has implications on how constraints are imposed, as
discussed in the next section.
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In summary, the PARAFAC2 model is more flexible, com-
pared to the PARAFAC model. It allows for deviations of the
inherent trilinearity imposed by the PARAFAC model. The
concentration profiles resolved on the time axis are allowed to
vary as long as the before mentioned cross-product is constant
over different samples. This does give the PARAFAC2 model
properties comparable to the multi-sample MCR-ALS model,
motivating the comparative study in this paper.

3.3. Use of constraints

As is revealed by data inspection and apparent from Fig. 4,
the acquired absorbance spectra are positive in the whole time
domain and it is reasonable to expect that the underlying spectra
will be non-negative. Likewise, it is not chemically meaningful
to estimate negative concentrations. Thus, imposing non-
negativity constraints in the spectral and time mode can be
helpful. In some systems, it is observed that the solution by
itself converges to a non-negative solution without the cons-
traints applied. But even then, the use of the constraint can affect
the number of iterations needed for convergence significantly.
Non-negativity can be applied in the algorithms in several ways.
It is chosen to implement non-negativity in MCR-ALS by a fast
non-negativity least squares algorithm [26], which is the same
as the one used in the PARAFAC2 algorithm. Implementation
of non-negativity in the spectral mode is straightforward and
similar for both algorithms. There is however an important
difference in how non-negativity is imposed in other modes.
MCR-ALS resolves concentration profiles directly, and the non-
negativity constraint can be imposed on them as such.
PARAFAC2 does not resolve the concentration profiles, but
rather sample mode loadings (Cp,), a scaling matrix (H) and an
individual sample specific orthonormal basis (P;). Non-
negativity cannot be imposed on the time profiles, P,H, for
algorithmic reasons. Non-negativity constraints can only be
imposed on the sample mode loadings and this can still lead to
negative concentration profiles. A direct comparison of non-
negativity constrained MCR-ALS and PARAFAC2 models will
therefore not be possible.

Unimodality is another constraint that is relevant to consider.
Unimodality means that the profile (concentration or spectrum)
has one maximum and is monotonically increasing before that
maximum and monotonically decreasing after the maximum. The
maximum does not have to be present — if the function is only
monotonically increasing or decreasing in the observed range, the
criterion of unimodality is still fulfilled. A unimodality constraint
tolerance parameter in MCR-ALS allows local departure from the
unimodality. A tolerance of e.g. 1.05 means that departure of 5%
of the value of the main peak is allowed before the constraint is
enforced [13] i.e. the constraint is made less strict. The constraint
is applied in the “average” implementation in the MCR-ALS
algorithm, which allows the profile to increase from a local
minimum by a straight line to a local maximum provided the
tolerance limit is not exceeded. The algorithm is based on a
unimodal (and non-negativity) least squares algorithm [27]. This
is similar to the implementation in the PARAFAC2 algorithm,
where however no tolerance parameter is available.

As discussed in the instrumental setup, the concentration of
pectin decreases exponentially, whereas the dye is kept at a
fixed concentration. Therefore — if the system behaves in
accordance with expectation — the observed concentrations
should increase or decrease exponentially. But as can be seen
from Fig. 4 this is not the case. Both the random and the blocky
peaks are observed to be first increasing, then decreasing in
intensity. It might thus be concluded that the system is not as
simple as expected. This could be due to relatively slow reaction
kinetics. As the concentration of pectin decreases, the dye will
start to bind to the less accessible (i.e. blocky) sites on the pectin
and the concentration of the blocky fingerprint will increase.
This however still complies with the unimodality constraint.

The MCR-ALS algorithm offers the possibility to impose
trilinearity for one or more components. This means that the
resolved components in different samples have the same shape.
If imposed for all components, the MCR-ALS model will ap-
proach the PARAFAC model [24]. Since the concentration
profiles are thought to be sample dependent, no assumptions
about trilinearity are made in this study.

In summary: in this paper results using non-negativity and
unimodality constraints are presented. For visualization pur-
poses, resolved spectra are normalized to unit length in both the
PARAFAC?2 and the MCR-ALS algorithms.

3.4. Number of components

As discussed previously, three overall phenomena or
fingerprints can be visually identified within each sample: the
randomly distributed acid groups, the blocky sequences of acid
groups and the appearance of the unbound dye as the pectin is
diluted (see Fig. 4). Therefore, at least three components are
expected to be needed in the models. Since the spectral mode is
common for all the samples, any spectral shift will require
further independent components to be modeled.

Preliminary exploratory data analysis using Singular Value
Decomposition (SVD) and Evolving Factor Analysis (EFA)
[19-21] combined with data inspection revealed that appropri-
ate models could be made using three to five components.
Models with two and six components were computed, but more
than five components led to clearly overfitted solutions.
Therefore, results using three to five components will be
investigated in this article.

3.5. Initialisation of algorithms

In order to ensure comparability of the computed solutions,
both algorithms were initialised with a set of up to five spectra
computed from preliminary MCR-ALS sample runs (see Fig. 5).
The spectra were manually inspected and edited using ex-
perience gained during exploratory studies. Some peaks that
appeared ambiguous or inconsistent were removed from two of
the spectra (the Blocky2 and Blocky + Random component) used
for initialisation.

The risk of using a fixed initialisation scheme is that one
cannot be certain that the global solution with the best fit will be
found; rather the algorithms could converge in a local minimum
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Fig. 5. Spectra in selected order (e.g. a three component model will be initialised
with the first three spectra) used for initialisation. The spectra are edited from
initial MCR-ALS runs. The spectral labels reflect the chemical/physical
interpretation of the authors.

in terms of fit. This is checked by — in selected examples —
repeating the algorithms many times, using random values for
initialisation and checking that the loss function values are
similar or higher. All solutions were inspected visually, and it
was confirmed that all resolved spectral and concentration
profiles were similar in a meaningful way, indicating that all
computed models converged to a related global solution, which
can be compared regardless of number of components identified.

In the MCR-ALS toolbox, convergence is achieved when the
change of the standard deviation of the residuals between two
consecutive iterations is less than 0.1%. In the PARAFAC2
algorithm, the convergence criterion is an absolute change
lower than 1* 10~ ® in percent variance explained. In both cases
the convergence criterion was sufficient to ensure no significant
change in the solution.

4. Results and discussion

The computed solutions of the algorithms will be presented
in terms of the lack-of-fit in percentage plus the resolved
spectral and concentration profiles. The lack of fit relates to the
difference between the squared sum of the input data and the
squared sum of the modeled variation with the resolved
PARAFAC2 or MCR-ALS profiles. For one sample it is com-
puted according to the following expression:

lack of fit(%) = 100

where d; is an element in the raw data (offset corrected) and e;;
is the corresponding element in the residuals after the modeled
variation is removed. A low lack of fit percentage indicates that
a model fits the data well.

Table 2 lists the computed lack of fit summarized for all
samples for models run under selected conditions. MCR-ALS

models are run both unconstrained, and with unimodality im-
posed (in the concentration mode only) with a tolerance of 5%
and 0%, respectively. Both MCR-ALS models with unimodality
imposed also have non-negativity imposed (in both the spectral
and concentration mode). The PARAFAC2 models are run
either unconstrained or non-negativity constrained in both the
spectral mode and the sample mode.

Overall, the lack of fit is low, so all computed models
describe the data well. The approach of fitting the same spectral
profiles and individual concentration profiles to the 33 samples
seems to work well for both algorithms.

The MCR-ALS models with non-negativity constraints
imposed do not lead to an increased lack of fit compared to
the unconstrained MCR-ALS models. Thus, the non-negativity
restriction is not actively constraining the solution, but merely
restricting the solution-space. The PARAFAC2 models with
non-negativity imposed on just the spectral mode converge to
the same solutions as the unconstrained models, as the uncon-
strained solutions are non-negative by itself in the spectral
mode. For this reason the results are not repeated in Table 2. The
PARAFAC2 models with non-negativity imposed on both the
spectral mode and sample mode do not lead to credible solu-
tions as non-negativity imposed on the Cp, matrix in PARA-
FAC2 heavily distorts the P and H matrix. This worsens the fit
and gives chemically unlikely concentration profiles for all
number of components resolved.

As the lack of fit only differs by a few percent, no conclu-
sions regarding the performance of MCR-ALS compared to
PARAFAC?2 can be drawn from Table 2 alone, but the higher
lack of fit of PARAFAC2 models could be related to the allowed
changes in the time profile shapes as imposed by the constant
cross-product constraint in the PARAFAC2 model, as opposed
to the complete freedom allowed in the modeling of the time
profile shapes by MCR-ALS. This can be revealed by close
inspection of the computed models.

Resolving six components seems to be clearly overfitted
judged from the appearance of the resolved spectra and concen-
tration profiles. Chemically improbable concentration profiles
and spectra, which are almost identical to spectra of other
components, are resolved.

The unimodality constraint imposed on the MCR-ALS con-
centration profiles does not lead to significant changes in the
resolved spectra. Rather, the unimodality constraint is seen to
cause artifacts on the resolved concentration profiles. By
inspection, the most promising solutions seem to be the three

Table 2

Overview of computed lack of fit (%) of selected models computed

Lack of fit (%) 3 comp. 4 comp. 5 comp. 6 comp.
MCR-ALS, unconstrained 5.17 3.76 2.43 2.03
MCR-ALS, non-negativity 5.17 3.76 2.43 2.03
MCR-ALS, unimodality 1.05 5.29 4.76 3.76 4.29
MCR-ALS, unimodality 1.00 5.41 4.92 3.76 4.04
PARAFAC2, unconstrained 8.30 5.01 4.13 3.66
PARAFAC?2, non-negativity 10.50 5.44 5.06 391

The MCR-ALS unimodality constrained (in concentration mode only) models
are non-negativity constrained in both the concentration and spectral mode.
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Fig. 6. Resolved spectra for unconstrained three component models. MCR (solid
lines) and PARAFAC2 (dotted lines).

and five component models. The four component models seem
to have a fourth component with features representing a mixture
of two components. It appears that the variation of the fourth
component is better described by two components with inde-
pendent concentration profiles. As the unimodality constrained
models with a tolerance limit of 1.00 is stricter than 1.05, an
increase in the lack of fit is seen for the three and four com-
ponent models. The lack of fit is increasing for the unimodality
constrained six component models compared to the five

MCR-ALS : Unbound dye

Concentration

component models. This is an indicator of a local minimum
in the solution and, indirectly, overfitted models.

Results from unconstrained MCR-ALS and PARAFAC2
models with three and five components will be presented in
greater detail. Even though non-negativity constrained (without
unimodality) MCR-ALS solutions fit equally well and make
more chemical sense, the results from the unconstrained solu-
tion are presented in this article in order to compare with
equivalent PARAFAC?2 solutions. Results using the MCR-ALS
solutions with non-negativity constraints imposed, are used for
quantifying the amount of blockiness and randomness induced
in the pectin, and is presented in Zachariassen et. al. [14].

The three component models provide information about the
unbound dye returning to the system, a component attributed to
the presence of blocks (the Blocky1 profile) and a component
attributed to the presence of random deesterification (the Ran-
dom profile). This is consistent with the results of visual in-
spection presented in the overview section.

An inspection of the square root of the average squared sample
residual landscapes (not shown) reveals that the three component
MCR-ALS, and PARAFAC2 model in particular, leaves variation
of the random and blocky fingerprint unexplained, whereas the 5
component models, the MCR-ALS models in particular, account
for most systematic variation leaving average sample residuals
less than 0.01 absorbance units. All models are capable of fitting
the unbound dye returning in the system. The unexplained
variation of the blocky fingerprint of the MCR-ALS three com-
ponent model can be attributed to the observed wavelength shift,

PARAFAC?2 : Unbound dye

Concentration

Concentration

Fig. 7. Resolved concentration profiles for unconstrained three component models. MCR-ALS profiles are to the left and PARAFAC?2 profiles are to the right.
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lines) and PARAFAC2 (dotted lines). The Blocky2 PARAFAC2 component is
very similar to the Unbound dye, while the Blocky2 MCR-ALS component
models a wavelength shift of the Blocky peak.

whereas the PARAFAC2 three component model miss more
general aspects of the fingerprint as well.

In Fig. 6 the resolved spectral profiles for the unconstrained
three component PARAFAC2 and MCR-ALS models are given.
The profile for the unbound dye is quite similar, while the
Blocky1 and Random profiles have slightly different appearance.

In Fig. 7, the resolved concentration profiles for the uncon-
strained three component models can be seen. The unbound dye
has a sigmoidal profile. It is close to zero at the beginning of the
dilution where all the dye is supposed to be bound to the pectin.
Later, when the concentration of pectin is decreasing, the re-
solved concentration profile of the unbound dye increases to
about two units. The time where the concentration profile of the
unbound dye starts to increase is related to the total deesteri-
fication of the pectin. The more deesterified the pectin, the later
the profile of the unbound dye starts to increase. Three samples
have a high resolved concentration profile already from the start
of dilution. They are the profiles of samples “R13.8 B0.0”,
“R4.9 B0.0” and the remethylated pectin, which are all the
samples with a very low degree of deesterification.

The Blockyl profile initially has a low or intermediate re-
solved concentration, after which it increases and then drops
towards zero. Both the time this phenomenon starts to increase,
and the level it increases to, are dependent both on the amount
of blockiness and randomness induced by deesterification. The
overall relationship is not straightforward, but the more random
the sample is, the later the Blockyl profile appears and the
lower relative intensity it will have.

The random profile initially has a rather high resolved
concentration. For some samples there is a tendency for the
concentration to modestly increase again around time point 40.
The bimodality is more pronounced in the concentration pro-
files resolved by PARAFAC?2. This is unexpected as the con-
centration of pectin is decreasing exponentially.

Overall, the concentration profiles resolved by unconstrained
MCR-ALS tend to be close to non-negative with most concen-

tration profiles positive or close to zero. The concentration
profiles resolved by PARAFAC2 have higher negative values
for longer time stretches. This is balanced out with higher
resolved concentration values of the Blockyl and Random
component compared to the profiles resolved by MCR-ALS.
This way negative concentrations of for instance the Blockyl
profile can be balanced by high positive concentrations of the
Random profile thus keeping the overall fit to the recorded
landscape good.

The addition of two components, for a total of five com-
ponents — see Fig. 8, does not change the resolved spectra
significantly for the first three components identified in the three
component solutions (see Fig. 6). The two remaining minor
components account for unexplained features of both blocky and
random pectin deesterification patterns, as will be described
later. It is reasonable that minor contributions can be of interest
in the description of this system. Pectins are macromolecules
and, as such, may have parts that do not fit exactly a completely
random or completely blocky pattern, as described in the
introduction. These small blocks or not fully random structures
may be the source of the unexplained spectral features that are
described with models with a higher number of components.
Thus, the fourth component resolved by MCR-ALS has a peak at
wavelength 37 and is named Blocky2. It models a wavelength
shift in the Blocky profile from wavelength 28 to 37.

The resolved concentration profiles can be seen in Fig. 9.
The MCR-ALS resolved concentration profiles for the first
three of the five components are very similar to the profiles
resolved in the three component solution seen in Fig. 7. This is
not to the same degree true for the concentration profiles re-
solved by PARAFAC2. The fourth component resolved by
MCR-ALS, the Blocky?2 profile have overall low values, but
some samples have an increase from time 30—40. As indicated
by the resolved spectra, this reflects a slight wavelength shift on
the blocky fingerprint. The increase is always seen in the
samples immediately after the maximum of the Blocky1 profile.
The fifth component resolved by MCR-ALS is tentatively
named “Blocky+Random” and has a peak at the same wave-
length (28) as the Blocky1 component, as well as a wide peak at
wavelength range 70-85 which is similar to the random
component. The resolved concentration profiles have low-
intermediate values both positive and negative from times 1 to
about 50 where after it decreases to zero. The spectrum of the
resolved fourth component from PARAFAC2 looks like the
unbound dye. It is a sign of overfit when PARAFAC?2 resolves
almost identical components. The fifth component resolved by
PARAFAC?2 resembles the fifth component resolved by MCR-
ALS. The concentration profiles for the five PARAFAC2 com-
ponents appear more distorted than the profiles resolved by
MCR-ALS. All components except Blockyl have bimodal
concentration profiles with negative and large positive values,
and small erratic fluctuations are observed.

In order to evaluate the similarity of the resolved individual
sample-to-sample concentration profiles, the average correla-
tion between the component-wise individual 33 sample concen-
tration profiles resolved by MCR-ALS and PARAFAC2 are
presented in Table 3 together with the standard deviation. A
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Fig. 9. Resolved concentration profiles for unconstrained five component models. MCR-ALS profiles are to the left and PARAFAC?2 profiles are to the right.

high average correlation and a low standard deviation indicate It is seen that for the three-component models, the con-
that the shape of the resolved concentration profiles for that  centration profiles are very similar, as high as 0.988 for the
specific component, are very similar. unbound dye. The component most differently resolved is the
Table 3

The average and standard deviation of the component-wise correlation between the concentration profiles of the 33 samples resolved by unconstrained MCR-ALS and
PARAFAC2 models

Correlation Unbound dye Blockyl Random Blocky2 Random+ Blocky

3 Comp Models 0.988 (0.021) 0.932 (0.115) 0.833 (0.175)
5 Comp Models 0.856 (0.083) 0.753 (0.439) 0.490 (0.431) 0.615 (0.186) 0.320 (0.412)
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Random with an average correlation of 0.833. Within the
overall agreement of both methods, it is interesting to note the
relationship between the sorting of the correlation coefficients
and the shape of the related components. In a simplified manner,
it can be said that the unbound dye has a simple sigmoidal
shape, mainly affected by sample-to-sample shifts; the blocky
profile has a unimodal shape that can shift and change width
among samples and the random profile has a more irregular
shape, sometimes showing more or less evident signs of bimo-
dality in some of the samples. This matches with the fact that the
dye and the blocky profiles look most similar among both
resolution methods, whereas the random profile show a lower
correlation coefficient and also a wider spread in the values
from sample to sample. This could be explained by the higher
ease of PARAFAC2 to recover profiles with more regular shifts
or shape-changes, as those of the dye and the blocky profile.
For the five component models, the results are more dis-
similar. Correlations are between 0.320 for the Random
+Blocky profile and 0.856 for the unbound dye. Even though
the resolved spectra visually judged are quite similar, the con-
centration profiles are different. This is due to the prevalent
bimodality of many concentration profiles resolved by PAR-
AFAC?2 and the seemingly unstable high positive values needed
to balance out negatively resolved concentration profiles. The
minor contribution of the two added components and the less
regular shape of their profiles (particularly for the fifth com-
ponent) could explain the distorted PARAFAC2 results.

5. Conclusion

MCR-ALS and PARAFAC?2 algorithms have been applied
successfully to model the dilution profiles of 33 pectin samples
in total. In order to compare the PARAFAC2 model with the
MCR-ALS model, originally developed to model individual
samples, the concentration matrices for MCR-ALS are extended
or unfolded column-wise to estimate concentration profiles of
several samples with a set of fixed spectral profiles. This makes
the models directly comparable.

The computed lack of fit of the models varies between 2.0%
and 8.3% using three to six components, when appropriate
constraints are imposed. The lack of fit combined with inspec-
tion of the resolved profiles indicate that models with three or
five components seem most appropriate.

Both the PARAFAC2 and the MCR-ALS algorithms suc-
cessfully resolve three components, which can tentatively be
attributed to three phenomena, viz. fingerprints of blocky acid
groups, random acid groups and the unbound dye, the latter is
seen when the concentration of pectin is diluted to a sufficiently
low concentration. The three component PARAFAC2 and
MCR-ALS models are very similar both in terms of the com-
mon spectral profiles resolved and the individual sample con-
centration profiles.

An unconstrained MCR-ALS gives the lowest lack of fit
since it allows for the resolution of the concentration profiles in
a more flexible way. This allows for two minor components
further to be resolved describing minor spectral wavelength
shifts and/or artefacts observed at very low pectin concentra-

tions when the unbound dye starts to increase in concentration.
The additional components cannot be resolved fully by PARA-
FAC2 where signs of overfit are observed.

It is difficult to directly compare other models than the
completely unconstrained models, because non-negativity con-
straints are implemented differently in the algorithms.

The unconstrained three component models lead to “near”
non-negative solutions for all components, they are simple and
parsimonious in regard to the investigated problem, and the fact
that PARAFAC2 and multi-sample MCR-ALS give an almost
similar result add to the credibility of the models. The method
successfully resolves different components depending on the
deesterification pattern induced in the pectins. Information with
regard to amount and dilution time resolved in the concentration
profiles can be related to the deesterification pattern of the
pectins. The resolved models therefore provide a good starting
point for further interpretation and quantification of the amount
of blockiness and randomness introduced by the enzymatic
deesterification of the pectin [14].
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Abstract

Measurements from an analytical liquid dilution system are used to quantify the intra-molecular distribution of ester groups on the pectin
carbohydrate backbone. Thirty-one pectins have been produced from remethylated pectin by enzymatically deesterifying them in steps to give
different known ester distributions. The amount of deesterification is measured in each step by titration to provide the reference values. The system
works by injecting a solution of pectin into a carrier stream containing a fixed concentration of dye. The dye binds site-specifically to the poly-a-
(1 —>4)-p-galacturonic acids constituting the non-esterified parts of the pectin carbohydrate backbone. The carrier stream is led to a Continuously
Stirred Tank Reactor (CSTR). The pectin is slowly diluted while UV—-VIS spectra are recorded at the reactor outlet providing a landscape of
wavelength-by-time for every sample. All pectins are measured this way in triplicate runs.

In an article preceding this, the acquired landscapes have been analysed qualitatively using Multivariate Curve Resolution (MCR) and
PARAFAC?2, both Alternating Least Squares (ALS) regression algorithms. It is concluded that the landscapes can be described by common
spectral profiles for all pectins and individual concentration/time profiles for each sample run.

In this article, calibration to the reference values are done by multi-way Partial Least Squares (PLS) regression to correlate the acquired
landscapes as independent variables directly to the reference values as dependent variables. Also, calibration is done by unfolding the landscapes
for each sample run to a vector and use conventional PLS. The concentration/time profiles previously identified by MCR-ALS or PARAFAC?2 are
unfolded and used as independent variables in PLS rather than the whole landscape. Finally, the spectral information can be reduced even further
by summing up or integrating the mentioned individual concentration profiles to just one number per profile identified by MCR-ALS or
PARAFAC?2 in the sample run, or using the identified score values for each profile from the PARAFAC2 model as new independent variables.

The most successful calibration models based on a calibration set built from one of the triplicates can predict the induced degree of
deesterification to an error level of less than 3% in absolute values—corresponding to a 6% relative error to the calibration full range—when tested
onto a set consisting of the two remaining sample runs from the full set. The best calibration models are based either on unfolded landscapes or
unfolded concentration profiles resolved by MCR-ALS.
© 2006 Elsevier B.V. All rights reserved.

Keywords: PARAFAC2; Multivariate Curve Resolution; Pectin; Blockiness; Intramolecular distribution of esterification; Analytical liquid dilution system

1. Introduction

Pectin is a polysaccharide found in the primary cell walls and

. ) intracellular regions of higher order plants. It is a structural
* Corresponding author. Quality Control Development, CP Kelco ApS, Ved

Banen 16, DK-4623 Lille Skensved, Denmark. Tel.: +45 5616 5616; fax: +45
5616 9446.
E-mail address: christian.zachariassen@cpkelco.com (C.B. Zachariassen).

0169-7439/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
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element giving both strength and flexibility to plant material.
Pectin has excellent gelling, thickening and stabilizing
properties and is widely used for commercial applications,
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primarily in the food industry [1-3]. Pectin mainly consists of a
linear chain of poly-a-(1 — 4)-D-galacturonic acid with varying
degrees of esterification (%DE). The distribution of the methyl
ester groups on the pectin carbohydrate backbone is an
important structural parameter that affects the pectin function-
ality in consumer applications.

The exact distribution of ester groups on the pectin backbone
is a property that can only be defined for an individual pectin
polymer, and this information is as such of no commercial
interest as it is not possible to extract or produce identical pectin
polymer molecules from natural sources. On the other hand, a
method for measuring average intramolecular distribution of
ester groups in bulk pectin is highly desired.

Different pectins extracted from natural lemon peel are
investigated. In order to span the sample set beyond natural
variation, 31 samples are prepared from a remethylated (i.c.
esterified) pectin which is subsequently enzymatically deester-
ified by two different pectin esterases, known to deesterify
pectin in either a predominantly “Random” or “Blocky”
fashion. The terms Random and Blocky are loosely defined
terms, but it has been suggested to define a blocky group as a
sequence of four or more deesterified galacturonic acids next to
each other in the pectin carbohydrate backbone [4,5], while
Random groups in this context may cover truly random or more
systematic (sequential) deesterification patterns, see Fig. 1.

Pectin esterase (sometimes referred to as pectin pectylhy-
drolase EC 3.1.1.11, pectin methylesterase, pectin demethox-
ylase, pectin methoxylase or pectase), de-esterifies the methyl
esters of the carboxyl groups, producing methanol and low
methylated pectin. The enzyme is produced by higher plants
and microorganisms. Pectin esterases derived from plants
[7,8] are thought to attack either at the non-reducing end or
next to a free carboxyl group and to proceed along the
molecule by a single chain mechanism, creating blocks of
unesterified galacturonic acids that are very calcium sensitive
[9]. Irregularities in the pectin galacturonan chain inhibit the
activity of the pectin esterase. Irregularities could be acetylated
monomers, the occurrence of carbohydrate side-chains (so-
called hairy regions) or ester groups that are transformed into
amides [7]. Pectin esterase is highly specific for the
methylester of polygalacturonic acid. The rate of pectin
deesterification depends on chain length; trimethy! trigalactur-
onate is not attacked at all [10]. Fungal pectin esterases differ

from plant pectin esterases by obeying a multichain mecha-
nism, removing methyl groups at random [11]. The enzymes
used in this work for creating a blockwise pattern of non-
methylated units is a pectin esterase found in a commercial
enzyme preparation from papaya fruits. Properties of pectin
esterase from papaya resembled those of pectin esterase
retrieved from other plant sources [12]. The random pectin
esterase is a commercial product called Rapidase FP Super®
from DSM, The Netherlands.

How Blocky or Random pectin is, cannot be easily expressed
by a single number. A method for quantifying these
deesterification patterns in pectin will have to take into account
that the average total degree of esterification (%DE) and the
distribution of the ester groups will vary from sample to sample
over a wide range, but also that the actual degree of
esterification and the distribution of the ester groups will vary
from molecule to molecule within a pectin sample. For this
reason, it is proposed to determine the degree of esterification
and the distribution of the ester groups by measuring
Ultraviolet—Visible (UV—VIS) spectra of a solution of pectin
at different time points in a system dynamically diluted with a
solution of a fixed concentration of a dye, known to bind site-
specifically only to the free acid groups of the pectin. This will
provide averaged information from all pectin molecules in the
solution. A Diode Array Detector (DAD) is used to acquire an
entire spectrum for each time point. The spectra recorded will
reflect the concentration gradient of the pectin as it is diluted,
and every sample will provide a matrix with all the spectra of
the pectin sampled. The matrix will have the format
wavelength x time and it will contain the absorbance recorded.
Such a system has the properties of a Continuously Stirred Tank
Reactor (CSTR) and, analytically, will have features known
from Flow Injection Analysis (FIA) and conventional High
Performance Liquid Chromatography (HPLC), in the sense that
the analyte is retained while subjected to chemical reactions.
The data can be analysed taking advantage of the features linked
to the analysis of multi-way data sets [13,14], which offer the
potential to resolve the sought profiles uniquely and to provide
quantitative information. In this sense, since the species
associated with blockwise deesterification can be identified
independently from random or sequential deesterification, the
quantification can also separate both kinds of contributions,
which will be very useful for total pectin characterization.

feafsacoidafcoicatsaica(icatecicaida(ca

Blocky
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Fig. 1. Idealized diagram of three sections of pectin backbone (GalA=galacturonic acid). The pectins are deesterified 50% but the distribution of estergroups is

different (modified from [6]).
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The acquired wavelength x time landscapes can be calibrated
to the reference values directly by N-way PLS or the landscapes
can be unfolded by appending the acquired spectra to one vector
per sample and apply conventional PLS. The landscapes can
however also be modelled with common spectral profiles (for
all samples) and individual concentration/time profiles using
MCR-ALS or the PARAFAC2 model, which is a variant of the
multi-way PARAFAC model, specially designed to handle
shifts and/or individual sample or batch lengths in one of the
modes, here the time which is synonymous with the
concentration gradient mode. The resolved concentration
profiles can then be unfolded and used for calibration by
conventional PLS.

In an article preceding this [15] detailed resolution results,
expressed as the pure spectra and time/dilution profiles of all
dye-related species, i.c. free dye, and dye bound to blocky and
random pectin were obtained, on one set of triplicate runs
presented in this article, using and comparing the algorithms
PARAFAC?2 [16,17] and Multivariate Curve Resolution using
Alternating Least Squares (MCR-ALS) [14,18-20]. The
models were evaluated qualitatively with respect to fit and
chemical interpretability and the applicability of the algorithms
to this type of data were discussed in detail. The preceding
article also discusses in greater detail the instrumental setup,
data collection, the algorithms and constraints used, the
appropriate number of profiles to extract and the qualitative
interpretation of the resolved profiles. The reader is encouraged
to read the article if a thorough understanding of the overall
approach is required.

In this article, the acquired landscapes directly as well as the
best models identified in the mentioned paper, is applied to
quantify the degree and distribution of ester groups. Different
approaches to the quantification will be demonstrated including
use of the unfolded concentration profiles resolved by
PARAFAC2 and MCR-ALS.

The same sample set has also been used in a quantitative
study of the degree of blockiness using "H NMR spectroscopy
[6], further validating the work presented in this paper.

2. Experimental
2.1. Sample preparation

The samples investigated are laboratory prepared materials
derived from a natural lemon pectin—named the “Mother
pectin”—produced at CP Kelco with a %DE=72.3 and an
average molecular weight of 180 kDa, determined by size
exclusion chromatography (SEC). The pectin “Remethylated”
was remethylated to %DE=93.8 by taking 1027 g mother
pectin and suspending it in 2000 mL methanol and 150 mL
thionyl chloride at 0—5 °C for 5 days. The %DE was verified
by titration using an internal CP Kelco control method. The
standard deviation on the %DE titration method is 0.7% in
absolute values. The average molecular weight was deter-
mined to be 13 kDa using SEC. This corresponds to a degree
of polymerization of approximately 50 galacturonic acid
units. The remethylated pectin is subsequently deesterified

Table 1
Overview of the sample-set used in the present study
33: Remethylated 32: Mother
pectin pectin
1: R4.9 B0.0 5:RI3.8 9: R21.9 12: R28.9 14: R35.0
B0.0 B0.0 B0.0 B0.0
2: R4.9 B10.6 6: R13.8 10: R21.9 13: R28.9 15: R35.0
B7.8 B9.7 B13.2 B6.8
3:R4.9 B18.0 7:R13.8 11: R21.9
B13.8 B21.6
4: R4.9 B24.5 8: R13.8
B23.8
16: B4.4 R0.0 21: Bl4.1 25:B22.6 28: B33.5 30: B36.8
R0.0 RO0.0 RO0.0 R0.0
17: B4.4 R8.3 22: Bl4.1 26: B22.6 29: B33.5 31: B36.8
R10.2 R11.0 R9.5 R6.4
18: B4.4 R15.6 23: Bl4.1 27: B22.6
R20.3 R23.9
19: B4.4 R22.8 24: Bl4.1
R30.6
20: B4.4 R31.9

The sample number is followed by the sample name. The sample names are
interpreted in the following manner: Sample number 19, “B4.4 R22.8”, is first
deesterified 4.4% with a blockwise deesterification followed by 22.8% by
random deesterification. It is produced by random deesterification of sample
number 16 which, in turn, is produced from the remethylated pectin. The
quantities are used as the reference values for quantification.

once or twice to give samples numbers 1-31 according to
Table 1.

Identification in Table 1 is based on the following
convention: From the remethylated pectin (Sample number
33) the samples 1, 5, 9, 12 and 14 are produced by
deesterification with a pectin esterase, known to deesterify in
a predominantly random fashion. The samples are given the
names “R” (for Random) followed by the degree of deesterifi-
cation (%DDE) induced—not to be confused with the degree of
esterification (%DE) defined previously and commonly used to
describe pectin. All samples (1, 5, 9, 12 and 14) are produced
directly from the remethylated pectin. The five samples
produced are then used as starting material for a deesterification
process with a block methyl esterase derived from papaya fruit,
known to deesterify in a predominantly blockwise fashion. In
this step samples 2—4, 6—8, 10—11, 13 and 15 are produced. The
samples are named from the starting material followed by the
degree of blockwise (B) deesterification. For example, sample
number 10 with the name “R21.9 B9.7” is produced by
deesterifying the remethylated pectin 21.9% in a random
fashion (producing the sample “R21.9 B0.0”), followed by
deesterifying that sample 9.7% in a blockwise fashion. The
resulting degree of esterification is therefore the %DE of the
remethylated pectin minus the deesterification induced, in this
example 93.8%—21.9%—9.7%=62.2%. The amount of dees-
terification induced is verified in each step by titration for all the
samples, and the values are used as reference values for
quantification. The samples 16—31 are produced in a likewise
manner, the only difference being that they are initially
subjected to a blockwise deesterification followed by a random
deesterification, and hence will be named with B first and R
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second. In that way all samples produced are subjected to a
maximum of two deesterification steps. The range of %DE
investigated here is from 93.8% down to 47.3%.

2.2. Data collection and preparation

Dissolved pectin is injected from a sample loop into a fixed
flow carrier stream containing a dye that binds to pectin with
high affinity. The carrier stream leads the pectin to a reactor
vessel with a fixed volume, which is large relative to the carrier
flow rate. The reactor is continuously stirred. The pectin is
slowly diluted in the reactor as a waste stream continuously
exits the reactor. Pectin is added in a surplus concentration
relative to the amount of dye present in the reactor, so
immediately after injection, all dye present binds to the pectin.
The dye is known, from previous work, to change conformation
depending on the immediate surroundings resulting in a colour
change. The observed colour depends on the deesterification
pattern on the pectin backbone, i.e. whether a dye-molecule
binds next to other dye-molecules or not.

UV-VIS transmission spectra are continuously recorded as
the pectin is diluted, and the combined spectra form a landscape.
For every sample run, the raw data matrix collected consists of
333 time points and 2048 wavelengths. In order to facilitate the
data analysis, the data was reduced by averaging wavelengths
and time points and cropped by eliminating wavelengths with
no relevant information. Time points at the start and the very
end were also eliminated as they contain artefacts of the
injection and mixing of the sample. The reduced data set of all
the 33 samples (including the remethylated and the mother
pectin) is of size 33 samples x 77 time points x 145 wavelengths.
Triplicate measurements are obtained for every sample; and one
of these measurements is used for model development and the
two other ones are used as an initial test set.

The data was pre-processed using Matlab version 7.0.4.365
(R14 SP2) from The MathWorks and the PLS-Toolbox, version
3.5.2 from Eigenvector Research. In order to compensate for
small run-to-run variations (minor baseline drift and small
offsets in dye concentration), the data was corrected by fitting a
straight line through all times of the first and last wavelength of
the individual sample landscape and subtracting the resulting
square made by connecting these time points from the landscape.
The corrected data matrix was then scaled to the same intensity
of wavelength number 55 (which is the peak of the largest dye
peak) at the last time point where only unbound dye is observed.

Flow rates, absolute wavelengths and times, volumes and the
dye involved are not given for reasons of confidentiality.

3. Methods

The landscapes of the 33 samples (using one replicate
measurement per sample only) were analysed using Multivar-
iate Curve Resolution (MCR-ALS) version 1.0.0 [21] and
PARAFAC?2 [22], and the results are published in the preceding
article comparing the ability of the two algorithms to resolve
this particular type of data. The data were resolved in common
spectra for all 33 samples and either concentration profiles

Unbound dye

——— Blocky1
Random

Normalized absorbance

[\ — ;

0 20 0 80 80 100 120 140
Wavelength

Fig. 2. Resolved spectra for the three component models. Non-negative
constrained MCR-ALS (solid lines) and unconstrained PARAFAC2 (dotted
lines).

(MCR-ALS) or second and third mode loadings (PARAFAC2),
which in turn can be converted to concentration profiles for
comparison. Both algorithms succeed in describing the data
well with either three or five components whereas four
components provided models that were not meaningful. In
this quantitative study, the three and five component MCR-ALS
models with non-negativity constraints will be examined
together with the unconstrained three and five component
PARAFAC2 models.

In Fig. 2 the resolved spectral profiles using unconstrained
PARAFAC?2 or non-negativity constrained MCR-ALS from the
33 sample runs used in the calibration set are shown. Three
chemical components have been resolved. The three component
models have information about the unbound dye returning to
the system, a component attributed to the presence of blocks
(the Blockyl profile) and a component attributed to the
presence of random deesterification (the Random profile).

Even though the PARAFAC2 model is unconstrained, the
algorithm converges to a solution where all three resolved
spectral profiles are non-negative.

In Fig. 3, the resolved concentration profiles can be seen.
The concentration profiles resolved by PARAFAC2 have
negative values for considerable time stretches. This is balanced
out with higher resolved concentration values of the Unbound
Dye, Blocky1 and Random component compared to the profiles
resolved by MCR-ALS where non-negativity constraints have
been applied.

The unbound dye has a sigmoidal profile. It is close to zero at
the beginning of the dilution where all the dye is supposed to be
bound to the pectin. Further in the sample run, when the
concentration of pectin is decreasing, the resolved concentration
profile of the unbound dye increases to about two units. The
time where the concentration profile of the unbound dye starts
to increase is related to the total deesterification (%DDE) of the
particular pectin sample. The more deesterified the pectin is, the
later the profile of the unbound dye starts to increase. Three
samples have a high resolved concentration profile already from
the start of dilution. They are the profiles of sample number 1, 5
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MCR: Unbound dye

PARAFAC2: Unbound dye
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Fig. 3. Resolved concentration profiles for the three component models

and the Remethylated pectin, number 33, which are all the
samples with a very low degree of deesterification.

The Blockyl profile initially has a low or intermediate
resolved concentration, after which it increases and then drops
towards zero. Both the time this phenomenon starts to increase,
as well as the level it increases to, is dependent on the amount of
blockiness induced by deesterification. The overall relationship
is not straightforward.

The random profile initially has a rather high resolved
concentration. It may increase slightly before it drops. In some
samples there is a tendency for the concentration to modestly
increase again around time point 40. The bimodality is more
pronounced in the concentration profiles resolved by PAR-
AFAC2. This is unexpected as the concentration of pectin is
decreasing exponentially due to the constant outlet flow of the
reactor vessel. Examples of the data acquired, profiles from the
five components unconstrained PARAFAC2 model and further
interpretation of the components extracted is discussed in the
preceding article [15].

As mentioned before, the entire sample set consists of
33 samples, run in triplicates. One run of each sample is used for
model development as a calibration set for unfold- and multi-
way PLS models as well as for MCR-ALS and PARAFAC2
modelling with subsequent PLS regression on the identified

. MCR-ALS profiles are to the left and PARAFAC?2 profiles are to the right.

concentration profiles. The models are then applied to the two
remaining sample runs, which serve as a test set. The triplicates
are made from the same samples prepared by the deesterifica-
tion procedure, but run on different dates, using newly prepared
carriers and dye mixtures, thus testing the repeatability of the
instrumental method and all modelling steps but not the sample
preparation. The test of the regression models made from the
spectra are straightforward, but to test the models developed on
MCR-ALS or PARAFAC?2 resolved concentration profiles will
require that the MCR-ALS/PARAFAC2 models developed on
the calibration set, are applied to the test set. For MCR-ALS this
is done from the resolved spectral profiles (S¢,) from the
calibration set by using the following commonly used least
squares estimate, where the C,, is the estimated concentration
profiles and Dy is the matrix of the augmented landscapes of
the test set:

Ctest - DtestScal (Sza] Scal)71 (1)

No constraints are applied in this step, so even though
constraints (e.g. non-negativity) were applied in the calibration
model development and influenced the resolved spectral
profiles, it is not certain that the constraints will be fulfilled
for the test set. And, indeed, several samples in the test set are
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resolved to have numerically small negative concentration
profiles for some time points in one or more of the resolved
components.

The application of the PARAFAC2 models resolved using
the algorithm available at [22] is more complicated, as the test
set loadings should be estimated from new landscapes keeping
the spectra from the calibration set fixed. Such an algorithm is
available as part of the PLS-Toolbox (version 3.5.2 from
Eigenvector Research). All PARAFAC2 models fitted are
unconstrained as the calibration set.

4. Results and discussion

Calibration models are made to quantify the total degree of
deesterification (%DDE) and for the amount of blocky (%B)
and random (%R) deesterification induced. This can be carried
out using various strategies, see Fig. 4. In this article the
following will be examined: 1) Unfolding the data-matrix
acquired for each sample run to a vector and use Partial Least
Squares (PLS) Regression [23,24] with the reference values as
dependent/response variables; 2) Use Multi-way PLS [25] also
called N-way PLS or simply N-PLS to correlate the
landscapes of spectra directly to the reference values; 3)
Reduce the acquired spectral information by unfolding only
the concentration profiles identified by MCR-ALS or
PARAFAC?2 and use that in a PLS regression rather than the
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whole landscape and finally; 4) Reduce the spectral informa-
tion even further by summing up or integrating the mentioned
individual concentration profiles to just one number per profile
identified by MCR-ALS and PARAFAC2 for the sample run,
or alternatively using the identified score values (also referred
to as loadings from the sample mode) from the PARAFAC2
model.

Results of the calibrations are reported in terms of the Root
Mean Square Error (RMSE):

z”: (yi,p_yi,r)z

i=1

RMSE =
n

where y;, for sample number 7 is the predicted value, y;, the
actual reference value for sample number i, and n the total
number of samples. The RMSE-values are in the same units and
scale as the reference values. The chosen number of PLS-
components for each model is identified by full cross validation
of the samples in the calibration set. The estimate of the
prediction error is reported as the Root Mean Square Error of
Cross Validation (RMSECYV). The number of PLS-components
chosen does not necessarily correspond to the lowest RMSECV
identified, as choosing a parsimonious model with few PLS-
components is prioritized. For all models, the chosen number of
PLS components falls between one and eight.

Landscape

100Random
0 150
Wavelength
Time aveleng
Unfolded spectra
0.5 T T T T T
Py s 1 1 1 RO NUS:.
03 l’ ‘ : ...... LHHAH- - -
02 TR ERRE R ARG R AR
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0 i i 1 i

0 200 4000 6000 8000 10000 12000

Fig. 4. Different representations of sample 6 “R13.8 B7.8”. As a slab in a data cube (top left), as a landscape on top of a contour plot with the major components
labelled (top right). The same landscape is presented as an unfolded vector (bottom right) and represented as an unfolded vector of concentration profiles (bottom left),
from a five component MCR-ALS solution (each composed of 77 time points) labelled according to the interpretation of the concentration profiles by its resolved

spectra (not shown).
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Table 2
Calibration results
Model %DDE %B %R
#PLS- RMSEI RMSECV RMSEP #PLS- RMSEI RMSECV RMSEP #PLS- RMSEI RMSECV RMSEP
comp. comp. comp.
Unfold PLS on landscapes 7 2.7 33 2.7 4 2.5 2.7 3.5 8 2.6 33 3.7
N-PLS on landscapes 3 4.6 5.0 3.8 5 2.3 2.9 3.7 3 6.6 7.0 44
Unfold C-profiles 5 33 4.1 43 4 2.7 33 3.7 7 2.2 4.8 3.8
MCR3 PLS
Unfold C-profiles 5 2.9 3.7 3.0 4 2.2 2.6 2.7 6 2.3 4.9 33
MCR5 PLS
Unfold C-profiles 7 3.2 3.8 3.5 5 3.5 42 3.7 3 4.9 5.7 5.1
P2-3 PLS
Unfold C-profiles 5 2.2 3.0 4.0 5 3.2 3.2 44 5 4.1 4.2 5.6
P2-5 PLS
PLS? (areas) MCR3 6 4.7 5.0 5.4 5 6.7 6.4 6.2 2 6.4 6.9 6.2
PLS® (areas) MCR5 6 43 5.0 5.1 5 6.7 7.3 6.2 4 6.4 6.7 5.9
PLS*® (areas) P2-3 5 5.1 5.8 6.0 5 6.2 5.5 5.8 1 6.3 7.1 6.7
PLS" (areas) P2-5 2 4.7 5.8 6.7 5 7.4 55 8.2 5 5.7 6.9 6.0
PLS? (scores) P2-3 2 8.4 9.2 20.5 3 6.3 8.5 14.2 3 5.5 6.7 11.0
PLS® (scores) P2-5 4 6.7 7.8 17.3 4 4.5 5.5 12.3 6 6.6 6.8 19.4

MCR3, P2-3, MCRS and P2-5 refers to non-negativity constrained MCR-ALS and unconstrained PARAFAC2 models with respectively 3 or 5 resolved concentration
profiles. See the text for a full explanation of the modelling strategy and the RMSE values tabulated.

? The PLS models using the areas and score values are expanded with all quadratic and interaction terms of combinations of the resolved profiles.

° The PLS models using the areas and score values are expanded with the quadratic terms of the resolved profiles.

All models are tested in two ways. First, 10 samples are
removed from the calibration set (sample number 2, 4, 5, 7, 13,
17, 20, 21, 23 and 29), attempting to represent all facets of the
entire sample set, and used as an “internal” test set. Models are
developed on the remaining 23 samples (including the
remethylated and mother pectin—there are however no
reference %B and %R values for the mother pectin thus
invalidating this sample for calibration of those parameters) and
tested on the internal test set. The same number of PLS-
components chosen by the full cross validation of the entire
calibration set is used. The RMSE error term is reported as the
Root Mean Square Error of Internal test set (RMSEI). In this
way of validating the models, the replicates of the same pectins
are not used for validation purposes, but this “internal” test set is
investigating the adequacy of the choice of number of
components in the PLS modelling step only, as no intermediate
recalculations of PARAFAC2 and MCR-ALS models are done
based on only the reduced calibration set.

In the second test, the calibration models are applied to the
two remaining samples from the triplicate runs, not used in
any modeling step. This gives 2*33 samples (still including
the remethylated and mother pectin) except for one outlier that
was removed. The RMSE error term is reported as the Root
Mean Square Error of Prediction (RMSEP). This parameter
tests the instrumental method (the triplicates are run on
different days, using different carrier preparations and two
operators have been involved), the resolution by PARAFAC2
and MCR-ALS and the PLS modelling step. The samples are
identical however, and the reference values used are the same
(an average of triplicate measurements of the reference
titration method). The same number of PLS-components
chosen by the full cross validation of the entire calibration
set is used for the prediction test set. The result of all the

calibrations can be seen in Table 2 and in the predicted versus
measured plots for selected models in Fig. 5.

The RMSE values should be seen in relation to the ranges
spanned by the reference values that are 46.5%, 36.8% and
35.0% for %DDE, %B and %R respectively. Almost consis-
tently RMSEI values are lower than the RMSECV (0.5% on
average). This is a somewhat unexpected result as the RMSECV
values are predicted from a model built on 31 or 32 samples
leaving only the cross-validated sample out. The RMSEI values
are predicted from a model built on only 22 or 23 samples. But
the 10 samples constituting the internal test set happen to be
predicted better than the average of all samples. The stratified
selection of the internal test set does not include many corners in
the design, rather the interior of the designs are represented,
which predicts very well and this is likely the reason for the
lower RMSEI values. The RMSEP values are in general of the
same size as the RMSECV with some noteworthy exceptions.
This indicates that the instrumental method and all modelling
steps work well and do not lead to overfit.

The unfold PLS models have in general the lowest RMSE-
values, on average 3.0% but also requires the highest number of
PLS-components to model the data. The landscapes are
unfolded from 77 times 145 wavelengths to spectra with
11,165 wvariables, which is almost 30—1200 times more
variables than the other models. Clearly this increases the
chance of overfit, but from the table is seen not to happen
presumably because the variation in the data is highly relevant.
For calibration purposes the way the landscapes are unfolded is
immaterial. No further pre-processing of the spectra and
variable selection is done in order to compare the models on
more similar conditions. N-PLS uses fewer PLS-components
but does yield models with worse RMSE-values. In particular
the prediction of %DDE and %R is poor, whereas the prediction
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of %B is comparable to the performance of other models. The
prediction of the test set from the landscapes can be seen in the
top two rows of Fig. 5.

Predictions based on the unfolded concentration profiles
resolved by MCR-ALS and PARAFAC2 are good. MCR-ALS
models have on average 0.7% lower RMSE-values than
PARAFAC2 (an improvement from on average 4.0% to
3.3%), and the models based on five resolved concentration
profiles give on average 0.5% lower RMSE-values (an
improvement from on average 3.9% to 3.4%). The prediction
performance of five concentration profiles resolved by MCR-
ALS is comparable to the models based on the unfolded
landscapes (3.1% compared to 3.0%). The unfolded concentra-
tion profiles have 5*77=385 variables compared to the 11165
variables of the unfolded landscapes. The prediction of the test
set from the PLS models based on the 5 concentration profiles
resolved by PARAFAC2 and MCR-ALS can be seen in the
bottom two rows of Fig. 5.

When the information in the resolved concentration profiles
are reduced even further to just one number per concentration
profile equivalent to the individual sum of the concentration
profile or the area under the concentration profile curve,
predictions do not go well as the spectral response seen in the
landscapes do not have a linear relationship with regard to the
type of deesterification induced. The direct correlation coeffi-
cient between the areas of the different concentration profiles
seen in e.g. Fig. 3, and the induced deesterification are ranging
between 0.55 and 0.82. For instance the area of the
concentration profile identified as the unbound dye resolved
by a 3 component PARAFAC2 model correlates with —0.816
with the %DDE, which verifies that the more deesterified the
sample is, the later the concentration profile identified as the
unbound dye appears, the smaller the area will be when
summing up on that particular concentration profile. Hence, the
correlation is expected to be negative. The numerically highest
correlations are seen with the %DDE and the lowest correlations
are seen with %B, which concentration profile is very non-
linear in intensity. In order to compensate for the inherent
nonlinearity the PLS-models based on the areas or score values
only are expanded with their interaction terms (3 profile models
only) and quadratic terms (3 and 5 profile models) before
modelling the relationship to %DDE, %B and %R with PLS. In
this way the 3 profile models will be modelled from a total of
nine PLS variables which are the three area/score values by
themselves, the three quadratic terms, and the three possible
combinations of the area/score values multiplied. The 5 profile
models will be modelled from a total of 10 variables, which are
the five area/score values and their five quadratic terms. This
improves the predictions, but the results are not satisfying and
the average RMSE-values are still around 6.0%.

Score values from PARAFAC2 and multivariate models in
general are expected to correlate to reference values, but this is

not found to be the case in this example. Prediction errors are as
bad as 11-20% for the test set. In this case the time shifts in the
concentration profiles, which are well modelled and useful for
curve resolution by MCR-ALS and PARAFAC?2, turn out to be
very important for this application. It is not a property that
should be “corrected for” and eliminated in the case of
quantification. Because PARAFAC2 allows for independent
time profiles, the variation is kept in the time profiles and is not
reflected in the PARAFAC2 score values. Therefore the
computed concentration profiles from PARAFAC2 works well
for prediction but the score values do not.

When looking at the reference values %DDE and %B is
predicted well whereas the prediction of %R is more difficult
which is reflected in higher RMSE-values. The random spectral
profiles resolved is a considerably wider peak than the peak of
the dye and blocky profile (see Fig. 2), so it could be that the dye
bound to the random sites on the pectin backbone is less well
defined. Closer inspection of Fig. 5 also reveals that samples
first deesterified randomly followed by a blocky deesterification
(the Random first samples) seems to be better predicted than the
Blocky first samples.

Inspection and interpretation of the PLS score-plots can
provide important information about the relation between the
samples and the reference values and overall validity of the
models. In Fig. 6 score plots from the models to %DDE from
the landscapes directly (unfolded or by n-PLS) and three
profiles MCR-ALS and PARAFAC2 models are shown. All
four score plots are similar to each other and directly reflect the
design seen in Table 1. The samples in the score plots are
connected with lines according to the layout of the design. PLS-
component #1 reflects the information about %R and PLS-
component #2 (#3 for n-PLS) reflect information about the %B
induced. Since the PLS-model is made to the total degree of
deesterification (%DDE) only, no information about the two
ways of deesterification influence the decomposition of the
variables. The fact that the score plot of the unfolded
concentration profiles of the MCR-ALS and PARAFAC2
models are so similar to the models based on the landscapes
is also evidence that the MCR-ALS and PARAFAC2 models are
successful in modelling the landscapes in terms of fit and
relevance for the reference values.

Also possible to assess from score plots is the replicate
variation. In Fig. 7, the score plot of PLS component #1 and #2
of samples from the test set from a PLS model to %DDE based
on three unfolded MCR-ALS concentration profiles resolved
are shown. It can be seen that the replicate variation is relatively
large compared to the overall variation. In this score plot
(accounting for 84% of the variation of the concentration
profiles and 83% of the variation in %DDE) there is no
systematic variation between the replicates, as there is no
uniform direction or trend of the lines on the figure. The
variation is hence a property of the instrumental method, the

Fig. 5. Predicted versus measured reference values for models based on the landscapes directly using unfold PLS or n-PLS (top two rows) and using MCR-ALS and
PARAFAC?2 to resolve five concentration profiles which are unfolded before using PLS (bottom two rows). The samples are marked according to the deesterification
sequence (4 Remethylated pectin, ¢ Mother pectin, @ Random first, Bl Blocky first).
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Fig. 6. Score plots from four PLS models of %DDE. All score plots reflect the design presented in Table 1. As the models are calibrated with the %DDE induced, no
information about the deesterification sequence is imposed on the models by the reference value. The samples are marked according to the deesterification sequence (.
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Fig. 7. Score plot of PLS component #1 and #2 of samples from the test set predicted with a PLS model of %DDE based on three unfolded MCR-ALS resolved
concentration profiles. The lines indicate distances between two runs used as test set from the triplicate measurement of the same samples and give an idea about the
repeatability of the instrumental method and modelling step. The samples are marked according to the deesterification sequence (A Remethylated pectin, # Mother
pectin, @ Random first, B Blocky first) and numbered according to Table 1.
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MCR-ALS estimation of the concentration profiles and the PLS
modelling step, extracting the variation in the concentration
profiles, which describe the variation in %DDE.

The variation seen in the concentration profiles translates into
an average of 3.0 %DDE between the predicted two independent
runs constituting the test set, which is rather large compared to
the overall RMSEP value of the model of 4.3 %DDE. A
Principal Component Analysis (PCA) of the unfolded spectra
would focus on the contribution of the instrumental method by
itself. Also a raw data inspection reveals that there is a
noticeable variation of the raw data, so improvements in the
instrumental method will benefit the quantification.

5. Conclusion

PLS has been applied successfully to the dilution profiles of
33 pectin samples injected in triplicates quantitatively in a
system with a constant concentration of dye, binding site-
specifically to the galacturonic acid group of the pectin
carbohydrate backbone. Variations in the pectin samples
induced by enzymatically deesterifying in different deesterifi-
cation patterns (blocky or random) lead to different conforma-
tions and dilution profiles of the dye which are detected by UV—
VIS spectroscopy. This gives the data a three-way structure of
sample x time X wavelength. Results from titration of the pectin
give the degree of deesterification and thereby the effect of the
enzymatic deesterification induced, which is used as reference
values as either degree of deesterification (%DDE), degree of
blocky (%B) or degree of random (%R) deesterification
induced. The standard deviation of the reference titration is
0.7%.

Both the PARAFAC2 and the MCR-ALS algorithms
successfully resolve three concentration profiles, which can
tentatively be attributed to three phenomena, namely a
fingerprint of blocky acid groups, random acid groups and
the unbound dye, which is seen when the concentration of
pectin is diluted to a sufficiently low concentration. Further two
minor components to be resolved by MCR-ALS describing
minor spectral wavelength shifts and/or artefacts observed at
very low pectin concentrations when the unbound dye starts to
increase in concentration. The additional components cannot be
resolved very well by PARAFAC2 where signs of overfit are
observed. The extra step of modelling the landscapes by MCR-
ALS or PARAFAC?2 provides an in-depth understanding of the
recorded landscapes and offer possibilities of curve resolution
and interpretation not clearly seen from the landscapes or PLS/
N-PLS parameters. The best predictive performance is reached
using PLS on the unfolded landscapes directly where %DDE,
%B and %R in the test set made of two of the three triplicates
have RMSEP values of 2.7%, 3.5% and 3.7%, respectively.
Almost as good predictive ability has PLS on the unfolded MCR
concentration profiles, which performs better than PLS-models
on the unfolded PARAFAC2 profiles. Five resolved and
unfolded concentration profiles predict better than three resolved
and unfolded concentration profiles when resolved by MCR.
When resolved by PARAFAC?2 the prediction errors are higher
using five profiles compared to three. N-PLS does not perform as

well as the unfolded MCR concentration profiles with RMSEP
values of 3.8%, 3.7% and 4.4% in comparison, but these values
are still better than the unfolded concentration profiles resolved
by PARAFAC2 with the exception of the %DDE value predicted
with three unfolded PARAFAC2 profiles. When the resolved
concentration profiles are reduced even further to just a number
by taking the simple sum of the profile, the predictive ability
deteriorates.

It can therefore be concluded that the landscapes contain
relevant information for the determination of %DDE, %B and
%R, and that (qualitative) information can be successfully
extracted using MCR-ALS and PARAFAC2, preserving
(quantitative) concentration profiles which perform nearly as
well using only a fraction of the variables. The resolved
concentration profiles from MCR-ALS perform better than
PARAFAC?2, which could be due to inherent higher flexibility
in the MCR-ALS algorithm, which resolves concentration
profiles with less restrictions compared to PARAFAC2. The
RMSERP errors of 3—4% as presented are still high compared
to the standard deviation of 0.7% of the reference titration
method for determining the degree of esterification. The
reference method is however unable to measure the
distribution of the ester groups. A method for this has been
proposed using high resolution "H NMR [6], and analysis on
the same sample set partly verifies the results presented in this
article.
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