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BACKGROUND: The increasing availability of
digital data on scholarly inputs and outputs—from
research funding, productivity, and collaboration
to paper citations and scientist mobility—offers
unprecedented opportunities to explore the struc-
ture and evolution of science. The science of
science (SciSci) offers a quantitative understanding
of the interactions among scientific agents across
diverse geographic and temporal scales: It provides
insights into the conditions underlying creativity
and the genesis of scientific discovery, with the
ultimate goal of developing tools and policies
that have the potential to accelerate science. In
the past decade, SciSci has benefited from an in-
flux of natural, computational, and social scien-
tists who together have developed big data-based
capabilities for empirical analysis and generative
modeling that capture the unfolding of science,
its institutions, and its workforce. The value prop-
osition of SciSci is that with a deeper understand-
ing of the factors that drive successful science, we
can more effectively address environmental, soci-
etal, and technological problems.

ADVANCES: Science can be described as a com-
plex, self-organizing, and evolving network of
scholars, projects, papers, and ideas. This rep-
resentation has unveiled patterns characterizing
the emergence of new scientific fields through
the study of collaboration networks and the path
of impactful discoveries through the study of
citation networks. Microscopic models have traced
the dynamics of citation accumulation, allowing
us to predict the future impact of individual
papers. SciSci has revealed choices and trade-offs
that scientists face as they advance both their own
careers and the scientific horizon. For example, mea-
surements indicate that scholars are risk-averse,
preferring to study topics related to their current
expertise, which constrains the potential of future
discoveries. Those willing to break this pattern
engage in riskier careers but become more likely to
make major breakthroughs. Overall, the highest-
Impact science is grounded in conventional combi-
nations of prior work but features unusual
combinations. Last, as the locus of research is

shifting into teams, SciSci is increasingly focused on

the impact of team research, finding that small teams
tend to disrupt science and technology with new
ideas drawing on older and less prevalent ones. In
contrast, large teams tend to develop recent, popular

ideas, obtaining high, but often short-lived, impact.

OUTLOOK: SciSci offers a deep quantitative
understanding of the relational structure between
scientists, institutions, and ideas because it facil-
itates the identification of fundamental mecha-
nisms responsible for scientific discovery. These
interdisciplinary data-driven efforts complement
contributions from related fields such as sciento-
metrics and the economics and sociology of

science. Although SciSci
ON OUR WEBSITE

seeks long-standing univer-
Read the full article sal laws and mechanisms
at http://dx.doi.

that apply across various
org/10.1126/ fields of science, a funda-
science.aao0185 mental challenge going
forward is accounting for
undeniable differences in culture, habits, and
preferences between different fields and coun-
tries. This variation makes some cross-domain
insights difficult to appreciate and associated
science policies difficult to implement. The differ-
ences among the questions, data, and skills specif-
ic to each discipline suggest that further insights
can be gained from domain-specific SciSci studies,
which model and identify opportunities adapted
to the needs of individual research fields. =

The list of author affiliations is available in the full article online.
*Corresponding author. Email: santo@indiana.edu (S.F.);
barabasi@gmail.com (A.-L.B.)

Cite this article as S. Fortunato et al., Science 359, eaao0185
(2018). DOI: 10.1126/science.aa00185










e
0y ‘}I-.
L7007 AT :
(YA
y' '.'--.{'ﬂ&i"{ﬁp.l .

» ¥







Performance Is about you



Success IS about us
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Who Is going to have an
outstanding achievement?

And when'
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Timing of the hit
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Simonton, D. F. (1997). Psychological Review 104, 66.
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Randomization: we shuffle the impact of papers
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The hit Is random In a scientist’s sequence of publications
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The hit Is random In a scientist’s sequence of publications
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Ihere Is always hope!



Impact Is random
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Careers differ for systematic impact
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Modelling individual careers: Q-model

Cja — pan
impact of |'s paper = luck * researcher Q

Sinatra, Wang, Deville, Song, Barabasi, Science, 354, 6312, aaf5239 (2016)



Impact = luck * individual ability




The model provides more testable predictions
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Hot streaks In artistic, cultural, and scientific careers
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Success and luck in creative careers
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Potential iIssues
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DO performance and SUCCESS In
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How scientists perceive performance

DEMOGRAPHICS

Participant ID #: 149

Name: Jennifer

Gender: Female

Ethnic Background: Caucasian

Age: 22

Degree: Bachelors of Science, obtained May 2011 from University

BACKGROUND

GPA:3.2

GRE score: 650 verbal, 780 quant

Awards/honors: President’s Service Award, Rotary Club College Scholarship
Previous research experience: 2 years as a research assistant working with 2 different
faculty mentors

Academic standing: appears from Jennifer’s transcript that she was in good standing
upon graduation, but withdrew from 1 class prior to final

Letters of recommendation: 3 (2 from former faculty research supervisors, 1 from an
intro science course professor), all supportive

Future plans: apply to doctoral programs

Extracurricular activities: student government, college learning center tutor

Position sought: Lab Manager

Position duration: 2 years, with possibility of renewal pending satisfactory performance

STATEMENTS/LETTERS

Excerpt from student statement: “I am a motivated student and would make the most
of the opportunity to serve as your lab manager. After spending a semester working in
Dr. lab and another year doing research with Dr. | have gained
valuable technical skills, co-authored a journal article, and am now committed to an
academic research career...as someone focused on improving my standing and enhancing
my research experience, this lab manager position would provide the perfect opportunity
to hone the necessary skills to make me competitive for graduate school applications...
additionally, the fascinating research taking place in your lab is directly in line with my
interests and experiences...in short, I am focused, motivated, organized and dedicated to
improving my research skills. I am enthusiastic about the opportunity to fill the lab
manager position and collaborate with you on future research.”

Excerpt from faculty recommendation letter: “...although Jennifer admittedly took a
bit longer than some students to get serious about her studies early in college, she has

impressed me by improving over the last two years of her science coursework and has
made every effort to make up for lost ground...she has been a strong research assistant in
my lab, and I know she is capable of serving as a dedicated lab manager.”

Moss-Racusin et al., PNAS, 109 (41), 2012.2.



How scientists perceive performance

DEMOGRAPHICS
“aArticipar ) B 49
Gender: Female

Ethnic Background: Caucasian

Age: 22
Degree: Bachelors of Science, obtained May 2011 from

Moss-Racusin et al., PNAS, 109 (41), 2012.



How scientists perceive performance

DEMOGRAPHICS
S Participant ID #: 149

giiMinin ’.

Gender: Female Gender: Male

Ethnic Background: Caucasian Ethnic Background: Caucasian

Age: 22 Age: 22

Degree: Bachelors of Science, obtained May 2011 from Degree: Bachelors of Science, obtained May 2011 from

Moss-Racusin et al., PNAS, 109 (41), 2012.



How scientists perceive performance
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Scientific careers and gender
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Scientific careers and gender
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How does productivity differ between female
and male scientists’

How does Impact differ between female ano
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We study careers by gender through time, disciplines and countries
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We found differences for everything!
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Scientific careers and gender
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We use a matched sample approach to simulate controlled experiments

25,033 female authors 25,033 male authors
Maria Mario
American physicist with a career of 10 years, American physicist with a career of 10 years,
mostly working at an institute ranked 200th ~ 250th mostly working at an institute ranked 200th ~ 250th
Angela Angelo
Italian mathematician with a career of 15 years, Italian mathematician with a career of 15 years,
mostly working at a top-20 institute mostly working at a top-20 institute
Christiana Christopher
German psychologist with a career of 30 years, German psychologist with a career of 30 years,

mostly working at an institute ranked 50th ~ 90th mostly working at an institute ranked 50th ~ 90th

Huang, Gates, Sinatra, Barabasi, PNAS 117 (2020)



Gender affects dropout rate, productivity and impact
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Gender affects dropout rate, productivity and impact
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Gender affects dropout rate, productivity and impact
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Only by 9% if we take into account dropout rate

How does Impact differ between female ano
male scientists’



How does productivity differ between female
and male scientists’

Only by 9% if we take into account dropout rate

How does Impact differ between female ano
male scientists’

Almost no difference if we take into account confounding factors
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1hey do.



Future direction

Improve the coverage of “the systems”
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