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Abstract Several recent studies from both Greenland and Antarctica have reported significant changes
in the water isotopic composition of near-surface snow between precipitation events. These changes have
been linked to isotopic exchange with atmospheric water vapor and sublimation-induced fractionation, but
the processes are poorly constrained by observations. Understanding and quantifying these processes are
crucial to both the interpretation of ice core climate proxies and the formulation of isotope-enabled general
circulation models. Here, we present continuous measurements of the water isotopic composition in
surface snow and atmospheric vapor together with near-surface atmospheric turbulence and snow-air latent
and sensible heat fluxes, obtained at the East Greenland Ice-Core Project drilling site in summer 2016.
For two 4-day-long time periods, significant diurnal variations in atmospheric water isotopologues are
observed. A model is developed to explore the impact of this variability on the surface snow isotopic
composition. Our model suggests that the snow isotopic composition in the upper subcentimeter of the snow
exhibits a diurnal variation with amplitudes in §**0 and 8D of ~2.5%o and ~13%., respectively. As
comparison, such changes correspond to 10-20% of the magnitude of seasonal changes in interior Greenland
snow pack isotopes and of the change across a glacial-interglacial transition. Importantly, our observation
and model results suggest, that sublimation-induced fractionation needs to be included in simulations

of exchanges between the vapor and the snow surface on diurnal timescales during summer cloud-free
conditions in northeast Greenland.

1. Introduction

Climate reconstructions derived from both Antarctic and Greenland ice cores constitute a cornerstone in
paleoclimate science (e.g., Johnsen et al., 2001; Jouzel et al., 2007; Masson-Delmotte et al., 2015; Vimeux
et al., 1999), extending to 129 thousand years (kyr) before present (BP; before 1950) in Greenland (North
Greenland Ice-Core Project Members, 2004; NEEM Community Members, 2013), and to 800 kyr BP in
Antarctica (EPICA Community Members, 2006; Jouzel et al., 2007). Interpretations of past climate variability
using ice core water isotopes were determined using precipitation-weighted isotopic composition and observa-
tions of mean annual temperature either from in situ observations (e.g., Dansgaard, 1964; Johnsen et al., 2001;
Jouzel et al., 1997), borehole temperature reconstruction (e.g., Vinther et al., 2010), or from use of distillation
models (e.g., Johnsen et al., 1989; Masson-Delmotte et al., 2005; Uemura et al., 2012). These previous studies
commonly assume that postdepositional processes do not influence the mean annual isotopic signature.

Recent advances in laser spectroscopy allow for field measurements of water isotopologue exchange between
the snow surface and the atmosphere overlying the ice sheets. Steen-Larsen et al. (2014) reported concurrent
isotopic variations in near-surface snow and atmospheric vapor at the North Greenland Eemian Ice Drilling
(NEEM) camp, northwest Greenland. Over several precipitation-free periods (3-7 days), the surface (top
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5 mm) snow 520 varied by up to 6%, attributable to vapor-exchange between the surface snow and atmo-
spheric vapor. Ritter et al. (2016) deployed a laser spectrometer for measuring water vapor isotopes at
Kohnen Station, East Antarctica. They showed that both surface snow and near-surface water vapor exhibit
significant concurrent diurnal variations in water isotopic composition.

In a study by Casado et al. (2018), the authors combine a comprehensive dataset consisting of several years of
precipitation collection from Dome C, Antarctica with §*%0 records from snow pits. A clear discrepancy
between the average precipitation isotopic composition and the average snow pit isotopic composition
was observed. This demonstrated that the climate signal initially stored in the precipitation is not necessarily
stored in the surface snow and subsequently buried, suggesting that the water isotopic composition of ice
cores is not solely governed by precipitation. These studies highlight that isotopic exchange between atmo-
spheric vapor and surface snow must be considered to accurately interpret observed variations in snow
isotopic composition.

These previous observations of postdepositional change challenge the current parameterization of snow-air
isotope exchange in isotope-enabled global circulation models, which are based on the assumption that sub-
limation does not change the surface snow isotopic composition (Risi et al., 2010; Werner et al., 2011; Wong
etal., 2017). To link simulations using isotope-enabled global circulation models with ice core isotope records,
it is therefore important to understand, quantify, and model the impact of postdepositional processes.

Here, we examine processes that control diurnal variations in snow and vapor isotopic composition in
Greenland as a case study for the processes at play during sublimation and condensation. We pursue the
hypothesis that snow and vapor isotopic composition is controlled through surface fluxes of water by both
sublimation and deposition. To test our hypothesis we combine measurements of the isotopic composition
of surface snow and near-surface atmospheric water vapor with estimates of atmospheric boundary layer
(ABL) turbulence. To quantify the impact of postdepositional processes we advance upon previous studies
and use a one-dimensional model to simulate our observed vertical profiles of atmospheric water vapor
mixing ratio and isotopic composition above the snow surface, and the accompanying change in the isotopic
composition of the surface snow. Our aim is to show that fluxes of water vapor between the snow surface and
the atmosphere have the potential to change the snow isotopic composition. We acknowledge here
that other relevant processes controlling the snow-air isotope exchange are neglected in this study.
Development of a fully coupled atmosphere-snow boundary layer model with enabled isotopes is beyond
the scope of the present study, but is an important direction for future research.

The paper is organized as follows. In section 2, we describe our observational methodology, reviewing the
measurement site, characteristic meteorology, and instrumental configuration, along with the data
acquisition, calibration, and the time series of observed variations in near-surface atmospheric humidity
and water isotopologues. In section 3, we describe our near-surface atmospheric model. The model results
are discussed in section 4, followed by conclusions and recommendations for further work in section 5.

2. Site Description and Methods
2.1. EastGRIP Site Location and Meteorological Characteristics

Sampling and measurements were conducted as part of the international deep ice core drilling project East
Greenland Ice-Core Project (EastGRIP) from April to August 2016. The campsite was located in the
northeast Greenland ice stream (75.63°N, 35.99°W; 2,700 m above sea level).

Meteorological observations were obtained from the Program for the Monitoring of the Greenland Ice Sheet
(Ahlstrem et al., 2008) using an automatic weather station (AWS), which was installed ~500 m southeast of
the EastGRIP camp in May 2016. The summer 2016 (June-July-August) meteorological observations
reported by the AWS are summarized in Table 1. The prevailing wind at the camp was westerly
(Figure 1d). The surface air temperature (~2.5 m above the surface) varied between —35.0 and —2.1 °C, with
a mean of —15.8 °C.

During the measurement period (beginning of May to beginning of August), six precipitation events, corre-
sponding to a total of 9 cm of snowfall, were recorded. The accumulation was estimated from measurements
of snow heights along an array of 200 small bamboo sticks (1-cm diameter) deployed at the beginning of
the season.

MADSEN ET AL.

2933



~1
AGU

100 Journal of Geophysical Research: Atmospheres 10.1029/2018JD029619

ADVANCING EARTH
'AND SPACE SCiENCE

Table 1

Summer 2016 (JJA) Minimum, Average, and Maximum Meteorological
Values Reported by the PROMICE Automatic Weather Station at EastGRIP

Ambient air pressure

Wind speed

Air temperature

Relative humidity with
respect to ice

2.2. Cavity Ring-Down Spectrometry Measurements on Water
Vapor and Surface Snow

During the 2016 field season, water stable isotopologues (1H2160,

Minimum Average Maximum 1o2-116 NRETIRNG .
H"H "0, and "H, °0O) in near-surface vapor were measured continuously
708 hPa 727 hPa 740 hPa from 14 June to 4 August. The vapor measurement site (Figure 1) was
2’2; (I)no/(sj _4175 ISH{JSC 1_224112235 located to the southwest (i.e., upwind) of camp at the edge of the clean
5 4:6% 92:7% 113'7% air sector. Vapor samples were collected from four inlets mounted on a

tower at initial heights of 0.52, 1.06, 2.07, and 7.20 m above the snow sur-

Note. JJA = June-July-August; EastGRIP = East Greenland Ice-Core

face (Figure 1). For the rest of this study, these inlet heights are approxi-

Project; PROMICE = Programme for Monitoring of the Greenland Ice ~ mated as z = 0.5, 1, 2, and 7 m, respectively. No significant amount of

Sheet.

accumulation occurred around the tower during the water vapor isotope

measurement campaign. The tower consisted of an open aluminum frame
with a triangular footprint of ~20-cm-wide sides. The air was sampled through the inlets using a 10-L/min
KNF pump (N811 KN.18) and measured using a Picarro L-2130 cavity ring-down spectrometer (CRDS).
The CRDS was housed in a small heated tent (Figure 1), erected ~10 m downwind from the tower. The full
sampling protocol is described in Steen-Larsen et al. (2013), including regulation of both the vapor intake
and analysis apparatus, which was done using solenoid valves measuring 15 min at each level.

Isotopic composition is reported using the notation § = ([R'/R vsmow — 1) - 1,000%o, where R is the concen-
tration ratio of the heavier isotopic species (with * denoting either "H*H'®0 or 'H,"®0) to the light abundant
species (*H,'°0) of water (Craig, 1961). R'ysmow is the relative composition of the VSMOW (Vienna
Standard Mean Ocean Water) standard. 5* represents the abundance of either "H*H'®O or 'H,'®0. The
second order parameter deuterium excess is defined by Dansgaard (1964) as dxs = 8D — 85'%0.

Vapour Tower Side View Vapour Tower Top View

/ Thermocouple
.[. Cup anemometer 7 7
F",] Vapour Inlet Eddy Covariance System

— Metal beam
/ Thermocouple

}‘ Cup anemometer

®  Vapour Inlet

[ Tower

y
2m
1.8m = EC system

Figure 1. Schematic overview of the field site and instrument configuration. Side view: (a) Position of the tent,

CR3000 micrologger, and vapor tower. The prevailing wind is approximately from right to left (see d). Vertical
discretization of the model domain representation the lower boundary in contact with the snow surface. (b) Approximate
position of vapor inlets, cup anemometers, fine-wire thermocouples, and the eddy covariance system. Top view:

(c) Relative position of vapor inlets, cup anemometers, thermocouples, and eddy covariance instruments on each beam. A
KH20 hygrometer and CSAT3 ultrasonic anemometer comprise the eddy covariance system. Note that instruments

are not drawn to scale. The x-y coordinate system is the internal coordinate system of the ultrasonic anemometer. (d) The
wind rose observed by the ultrasonic anemometer (10-min averages) where directions are given both with respect

to the orientation of the anemometer (x-y coordinate system) and the approximate north-south compass (N-S, E-W). The
green wedge indicates the angles within 80° of the x axis of the CSAT3.
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Calibration of the CRDS data was performed following the protocol outlined in Steen-Larsen et al. (2013).
Humidity-isotope calibrations were conducted 4 times throughout the field season to correct for humidity-
induced bias. VSMOW-SLAP calibrations were carried out 6 times during the field campaign using three
standards (§'%0: 0.4%o, —33.56%o, —54.05%0; 8D: 2.8%o, —257.6%0, —424.1%0). The uncertainties are assumed
to be equivalent to the uncertainties estimated by Steen-Larsen et al. (2014), which are for §'30 and 8D are
0.23%0 and 1.4%o, respectively. Propagation of errors gives an uncertainty on the vapor dxs of 2.3%.. The
humidity-mixing ratio measured by the spectrometer was calibrated using the humidity measurements from
the nearby AWS.

Throughout the field season, snow samples were routinely collected for isotopic analysis. Along a 1-km
marked transect, 26 samples of the upper 1 cm of snow were collected on a daily basis. These samples have
been analyzed on a Picarro L-2130-i CRDS and calibrated to the VSMOW-SLAP scale using four standards
(5180: —19.8%0, —33.8%0, —42.39%0, —50.12%0; 6D: —152.93%0, —266.7%0, —341.24%0, —392.0%0) at the
Alfred-Wegener-Institute, Bremerhaven. In this study, only the average value and standard deviation of
these 26 samples for each day are shown. These values will be referred to as the observed snow isotopic
composition with standard deviation g, o

2.3. Atmospheric Eddy Covariance Measurements

To estimate the atmospheric flux of water vapor at EastGRIP, an eddy covariance system (hereafter EC) was
mounted on the tower, 1.8 m above the snow surface (Figure 1). The EC system consisted of a fast response
krypton hygrometer (KH20) and a highly sensitive omnidirectional ultrasonic anemometer (CSAT3), both
produced by Campbell Scientific Inc. With this setup, we calculated the turbulent fluxes of momentum, heat,
and moisture between the surface and atmosphere (Box & Steffen, 2001; Cullen et al., 2007; Forrer & Rotach,
1997). Stably stratified conditions prevail at EastGRIP, strong and persistent katabatic winds are expected to
maintain shear-driven instabilities and reduce intermittency, allowing reliable calculation of turbulent
fluxes from the eddy covariance statistics.

The raw data were sampled at 20 Hz and relayed to a micrologger (Campbell Scientific Inc. CR3000) placed
approximately 1.5 m downwind from the tower (Figure 1). For the turbulent flux calculation, raw covar-
iances were averaged over 10-min intervals. Three cup-anemometers and fine-wire thermocouples were also
mounted at heights 0.54, 1.05, and 2.07 m above the snow surface. These instruments have been included in
Figure 1 for completeness, but the associated time series are not discussed in this paper.

2.3.1. Calibration

We correct for errors in our turbulent flux measurements following Cullen et al. (2007). Outliers are
excluded iteratively using criteria adopted from Hojstrup (1993). Errors induced by wind deflection around
nearby structures have been corrected by excluding all measurements taken at times when the wind is
directed from the camp toward the mounted sensors. By only retaining winds with an incident angle of
+80° relative to the x axis of the anemometer (Figure 1d), all potentially corrupted data have been discarded.

Errors associated with the anemometer tilt (Hyson et al., 1977; Tanner & Thurtell, 1969) and frequency
response loss (Moncrieff et al., 1997; Moore, 1986) have been corrected. Tilt corrections are required to
prevent cross contamination of velocities by small misalignment of the sensors. On average, tilt corrections
change the sensible and latent heat flux by 0.4% and —0.3%, respectively. Spectral corrections are required to
account for band-pass filtering due to the separation and limited frequency response of the instruments. The
CSAT3 and KH20 sensors were mounted 20 cm apart. The internal path lengths of the CSAT3 and the KH20
sensors were set to 11.5 and 1 cm, respectively. Average flux increases of 0.8% and 13% for the sensible and
latent heat flux have been obtained, respectively.

2.4. Observations of Water Vapor

We focus now on two periods with distinct diurnal cycles in the atmospheric state: 25-29 June (day of year
[DOY] 177-181) and 21-25 July (DOY 203-207). These periods were chosen based on the criteria that we
wanted at least four clear diurnal cycles with minimal change in mean synoptic conditions and mostly
clear sky conditions all the time. Diurnal cycles are observed on other days but were not chosen as they
did not fulfill the requirements. During the June period, weak atmospheric instability is observed from
12:00-18:00 UTC, whereas neutral stability is observed during these hours in the July period.
Measurement of the eddy momentum and heat flux by the EC system allows for the calculation of the
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Figure 2. (left) June period (DOY 177-181, 25-29 June). (right) July period (DOY 203-207, 21-25 July). From above: Program for Monitoring of the Greenland Ice
Sheet automatic weather station (AWS) observations of net incoming shortwave (SW) radiation, air and snow surface temperature, and relative humidity (RH) with
respect to ice. Eddy Covariance observations of friction velocity, atmospheric stability (z/L) evaluated at a height of 1.8 m, and turbulent sensible and latent
heat flux. Specific humidity, 6180, and dxs measured by the CRDS at 2 m above the snow surface. The shading on both 8'80 and dxs indicates one measurement
uncertainty. DOY = day of year.

friction velocity u* and the Monin-Obukhov length, L, where L is proportional to the height at which
buoyancy forcing dominates mechanical production of turbulence. The nondimensional stability
parameter is defined as { = z/L, where z is the height above the surface. Time series of { and u* are shown in
Figure 2.

Although both June and July periods exhibit similar variation in atmospheric humidity, there are notable
differences in observed vapor isotopic composition. Values of dxs throughout the June period show diurnal
variations but are relatively constant during the July period. Furthermore, time-averaged dxs is larger in the
earlier period. For reference, we note that in the June period, the time-averaged §'0 and 8D is —43.5%o and
—317.5%o, respectively, compared to July values of —39.6%. and —290.5%.. Supporting information S2 gives
an overview of the water isotope observations from all four inlets for both the June and July period.

We shortly discuss relationships between the eddy covariance, humidity, and isotope observations.
Typically, high (positive) stability is associated with a stable stratified lower atmosphere, where the snow
surface is colder than the air above. This condition gives rise to a negative (downward) latent heat flux in
the form of deposition or condensation causing the atmosphere to become less humid and more isotopic
depleted. Further, in stable conditions little vertical mixing would occur and we would expect a gradient
in both humidity and isotopic composition in the vapor (supporting information S2), where the vapor closest
to the surface is more depleted and less humid than the air above. Opposite, unstable or near-neutral condi-
tions result in an upward transport, positive heat fluxes and increasing humidity, and a uniform humidity
and isotopic composition of the lower atmosphere (supporting information S2). We therefore expect, as also
observed, a phase shift between the latent heat flux and the isotope observations since a positive latent heat
flux infers sublimation from the surface, and the maximum humidity will occur at the time where the latent
heat flux shifts from positive to negative.

3. Model

In this section, we construct a model to explore the observed variation of humidity, g(z,t), and the vapor
isotopic composition of 8'*0(z,t) and 8D(z,t), with respect to time () and displacement from the surface
(). We aim to simulate the two periods with distinct dxs variations presented in section 2.4. The periods
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will be referred to as the June and July periods, respectively. Both periods were cloud-free and characterized
by repeating diurnal cycles of latent and sensible fluxes of heat, near-surface temperature, and humidity
(Figure 2). The aim is to model the snow surface isotopic composition consistent with our humidity and
isotope observations for these two cases.

The model consists of three boxes representing (1) the immediate snow surface, (2) a viscous sublayer (VSL),
and (3) the near-surface ABL (Craig & Gordon, 1965).

The VSL has thickness Az and is characterized by mixing dominated by molecular diffusion. At all times, it is
assumed that the lower boundary of the VSL is saturated with respect to ice at the snow surface
temperature Ty.

The model domain simulating the near-surface ABL extends from the top of the VSL to the height z = H and
is characterized by turbulent mixing and no isotopic fractionation. This mixing rate is assumed to be the
same for all isotopologues of water, in contrast to the molecular diffusion in the VSL, which is modeled with
an isotopologue-dependent molecular diffusion. We set H = 7.2 m, corresponding to the top inlet on
the tower.

3.1. Numerical Formulation

We model the humidity and vapor isotopic composition with a diffusion equation

Rq 0 (. AR'q
a oz (" @) 5 ) W

where R is the ratio of the concentration of the rare isotopic species to the abundant *H,'°0 and g is the
mixing ratio. x* is the isotopologue-specific diffusion coefficient. To provide higher resolution near the sur-
face where we expect the largest vertical gradients of g(z), 5'80(z), and 8D(z), we introduce a vertically
stretched coordinate system (Figure 1). The height z of a grid point given by z(s) = H [exp(a s) — 1]/
[exp(a) — 1], where s is a normalized coordinate used to transform a linearly spaced coordinate system into
the stretched coordinate. We set a = 8.2, generating 200 grid nodes that allow for reasonable computation
times. Stable solutions to equation (1) are achieved using a Crank-Nicholson discretization scheme, with a
time step of 2 min. Our discretization is independent of the VSL thickness Az, which allows us to explore
solutions to equation (1) under a broad range of Az, without compromising numerical stability or increasing
the computational cost of the model.

3.2. Diffusion Coefficient

We use the formulation of eddy diffusivity for momentum and heat inspired by Brost and Wyngaard (1978),
and assume that the eddy diffusivity for sensible heat equals that of latent heat (Box & Steffen, 2001; Moore,
1986). In the near-surface ABL, we parameterize the turbulent diffusion coefficient, Kx(z,t), as

A L5
k'z (1-%)

Knle ) =3 &3,

2

Here, z is the height above the snow surface and z’ = z — Az is the height over the VSL. The distinction
between z’ and z is set so that K (z = Az) = 0; u« the friction velocity and the von Karman constant
k = 0.4. We use the nondimensional functions ¢,, and ¢y for momentum and heat (Hogstrém, 1988) for both
stable and unstable stratifications; A is the total height of the ABL, and we assume h > H. In this work, we use
h as a free parameter to minimize the misfit between the observations and the model. The time dependency
of Ky is contained in u~ and L, which are both derived directly from the eddy covariance measurements. The
full diffusion coefficient is

Cle) = D(Ts,p) ifo<z<4z o
’ Dlso(Ts,p)—Q—KH(z, £) ifAz<z<H

where D" (Ts,p) is the isotopologue-specific molecular diffusion, Ts is the snow surface temperature, and
p is the ambient atmospheric pressure. We use the molecular diffusivity of water vapor in air given by
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Hall and Pruppacher (1976). The isotopologue-specific diffusivities in the VSL are given by the ratios
D"°/D"*° = 0.9723 and DP /D" = 0.9755 (Merlivat, 1978).

3.3. Modeling Humidity

When modeling the humidity, we solve equation (1), with R" = RO = 1. At the snow-VSL interface we force
the model with the AWS observed radiative snow surface temperature and assume saturation with respect to
ice. The saturation vapor pressure over ice is calculated following Flatau et al. (1992). The upper boundary of
the model is forced with the observed humidity-mixing ratio obtained from the CRDS measurements. The
model is initialized with a constant humidity throughout the box, prescribed as the saturation humidity at
the snow surface temperature. We use a spin-up of 1 day. This means that to model for example the June
period (26-29 June) we use 1-day integration forced by CRDS, EC, and AWS data from 25 June as spin-up.

3.4. Modeling Isotopic Composition of Water Vapor

We solved equation (1) for Rmoq and R”q and initialized the simulations with uniform isotopic composition.
The initialization values based on observational means were §'*0 = —45%, and 8D = —320%.. Similar to the
humidity simulations, a 1-day spin-up is used. We force the upper boundary at z = H with the observed
isotopic composition, Rmoq and R”g. We do not have any measurements of the vapor isotopic composition
at z = 0. Instead, we assume that the vapor isotopic composition at the snow-vapor interface varies diurnally
(see Figure 2) following:

* P 27t *

6(z=0,t)=A +B sm( +C) “)
Tday

where T,y = 24 hr, A" is the mean isotopic composition, B is the amplitude, and C" is the phase offset, for

each isotopologue. A* B*, and C* are unknown model parameters for each isotopologue.

We use a least squares optimization approach to minimize the total model-data misfit. The model para-
meters we seek to optimize are A*, B*, and C* in equation (4), along with the VSL thickness, Az, and the
ABL height, h. To compute the isotopologue misfit, the modeled isotopic composition is linearly interpolated
onto the height of the three inlets on the tower at z = [0.56, 1.06, 2.07] m.

We have computed best fit values of A", B, and C, referred to as A*best, B*best, and C*best, respectively,
for three different boundary layer heights h = [25, 75, 150] m and VSL thicknesses in the range
0.0005 m < Az < 0.1 m. Values for A" and B" have been run with a resolution of 0.1%. and 0.5%. for
580 and 8D, and the phase offset, C" with a resolution of 30 min. No a priori constraints have been
placed on the values of A" and B'.

4. Results and Discussion

Figure 3 shows values of A*best, B*best, and C*best, as a function of the VSL thickness Az, and boundary layer
height, h. In general, we find that the value of C*best for §'%0 and 8D is nearly independent of Az and h
during both the June and July period. A pest and B'peg are almost independent of h, but vary approximately
linearly with Az. A positive linear relation between B*best and Az is expected since the influence of the
bottom boundary condition is more attenuated for a thicker VSL. For the rest of this study, we will only
consider results from equation (4) using the optimized values of the three model coefficients A'bests B best
and Chegt (Figure 3).

4.1. The June Period

The model-data misfits, calculated as described in section 3.4, of §*20, 8D, and specific humidity, g, as a func-
tion of Az are shown in Figure 4. The model-data misfit of q is shown at each of the three observed heights
z=10.5, 1, 2 m]. For the investigated range of Az and h, the model-data misfit in g is consistently smaller for
the lowest level (z = 0.5 m). This misfit is strongly dependent on the choice of the VSL thickness, Az, and
weakly dependent on the ABL height, h. The optimal choice of Az, depends on the height above the surface;
the minimum misfit at heights z = [0.5, 1, 2] m are found for a VSL thicknesses of Az~ [0.008, 0.006, 0.03] m.
At heights z = [0.5, 1, 2] m the optimal combination of Az and h has a [50%, 25%, 25%] reduction in model-
data misfit, relative to the worst possible combination of Az and & used in this study.
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Table 2 . ;
Best Fit Values for A, B, and C for the June and July Period
26-29 June 22-25 July
Water vapor isotopic parameter A (%o) B (%o) C (hr) A (%o) B (%o) C (hr)
520 —43.9 3.3 (1.7, 4.6) 14.5 —41.7 3.9(2.4, 4.6) 14.5
8D —320.5 19.0 (10, 27.5) 14.0 —305.0 22.5(13.5, —) 13.5
dxs 31 —8 — 28 —11 —

Note. To achieve the overall best fit to both humidity and isotopic composition measurements, we find Az = 0.008 m
and h = 25 m for the June period, and Az = 0.025 m and h = 25 m for the July period. The 95% confidence bound
on B is given in the parentheses, an upper limit on B~ for the July period has not been determined (see
supporting information S1).

Ideally, minimization of model-data misfits at the three levels should suggest the same optimal values of Az
and h. We find that the modeled humidity is slightly phase shifted relative to the observations at z =2 m on
DOY 179. Furthermore, observed humidity at z = 1 m on DOY 180 exhibits more noise relative to DOY 178
and 179, which cannot be reproduced by the model. As a result, larger model-data misfits are found at the
z = [1, 2] m levels, relative to the z = 0.5 m level (supporting information S3 and Figures S7-S9).

Despite these issues, our idealized model reproduces a significant fraction of the observed variability.
Specifically, we are able to simulate 90-95% of the observed variance in g (i.e., modeled g variations are
within 1 measurement uncertainty of the observations), by assuming a VSL thickness in the range
0.006 m < Az < 0.01 m, independent of the ABL height.

The model-data misfit in §'0 is maximized for a VSL thickness of Az = 0.006 m and minimized for thick-
nesses in the range 0.05 m < Az < 0.1 m. The model-data misfit in D is minimized for a VSL thickness in the
range 0.004 m < Az < 0.008 m. For both "0 and 8D, the optimal choice of Az depends on the assumed ABL
height, h. We find that the total model-data misfit for §'%0 and 8D can be reduced by 9% and 3% given the
choice of Az and h, respectively.

We select Az =0.008 m and h = 25 m to minimize the total model-data misfit for the June period. The values
of A*best, B*best, and C*best for the June period are shown in Table 2. See supporting information S3 for a
comparison between model and observations with these settings.

4.2. The July Period

We now focus on optimization of the model for the July period (DOY 204 to 207). Both humidity and the
isotopologues dependence of model-data misfit on the VSL thickness Az, and ABL height, h, are shown
in Figure 5.

We find that the humidity model-data misfit is minimized for 0.025 m < Az < 0.05 m; as mentioned above,
the optimal choice depends on the height above the surface. However, in contrast to the June period, we find
that the worst model-data misfit in July is obtained for the lowest level (z = 0.5 m; supporting information S3
and Figures S10-S12).

We observe trends for the total model-data misfit for §'%0 and 8D that are similar to those during the June
period. Surprisingly, we note that the misfits for the two isotopes behave independently of the fit to the
overall humidity, that is, that the minimum of the humidity is not aligned with the minimum in the total
2-norm of 8D. The humidity misfit is also more drastically reduced due to the choice of Az compared to
the isotope misfits. Therefore, the best overall fit to the observations is obtained by settings Az = 0.025 m
and h = 25 m. The values of A pest, B best, and C pest using these settings are shown in Table 2. We refer to
supporting information S3 for a comparison between model and observations with these settings.

4.3. Snow Isotopic Composition

The results in the previous sections allow us to estimate the diurnal changes in the snow isotopic composi-
tion during the June and July periods, consistent with the water vapor isotope observations. To calculate the
snow surface snow isotopic composition we assume equilibrium fractionation at the interface between the
snow surface and the VSL. Using the optimized parameters A*best, B*best, and C*best (Table 2), we compute
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the snow isotopic composition using the fractionation coefficients « for ice-vapor fractionation from Ellehoj
et al. (2013) and the observed snow surface temperature. We note that using fractionation values from
Majoube (1971) or Merlivat and Nief (1967) does not change our conclusions. We have computed the
average and maximum amplitude of the snow isotopic composition and have propagated the 95%
confidence limit of the vapor amplitudes into snow amplitudes. The model is compared with the observed
snow isotopic composition at three times during both the June and July periods (Figure 6).

In Figure 6, we observe that the top 1 cm of the snow surface isotope measurements and the modeled snow
isotopes are consistent with each other under the assumption of isotopic fractionation at the interface, but
due to the low temporal sampling frequency of the snow samples, they are not directly comparable.
Furthermore, it is important to note that it still unresolved to which depth the atmospheric water vapor is
in contact with the top of the snow pack. To verify or reject the hypothesis that the snow surface is in isotopic
equilibrium with the vapor at the snow-air interface, the surface snow would have to be sampled in higher
vertical and temporal resolution (millimeter and hourly, respectively). However, it is possible to model the
depth to which the snow should be in isotopic equilibrium with the vapor.

We have estimated in Table 3b the depth of the snow surface that remains in equilibrium with the vapor at
the lower boundary of the VSL by using the principle of conservation of isotopic composition and assuming
isotopic fractionation. We do this using EC measurements of the latent heat flux, the fractionation coeffi-
cients given by Ellehoj et al. (2013), and the constants given in Table 3a. The required depth of the snow sur-
face, which is in equilibrium with the vapor at the lower boundary of the VSL interphase, is computed for
both the June and July period using the amplitudes and the confidence interval given in Table 2. As a
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result of these calculations, we observe that within the uncertainty range of our tuned parameters, the snow
depth of the layer in equilibrium with the vapor will be in the submillimeter to centimeter range (Table 3b).

In conclusion, our model simulates during summer cloud-free conditions at EastGRIP that the snow iso-
topic composition exhibits diurnal variations with an amplitude of around 2.5%. and 13%. for §'*0 and
8D, respectively. Such variations are significant as they are on the order of 10-20% of seasonal variations
measured in snow pack isotopes (Shuman et al., 1998; Steen-Larsen et al., 2011). Similarly do the esti-
mated diurnal changes in the snow isotopes also correspond to 10-20% of glacial-interglacial transitions
in Greenland (e.g., Johnsen et al., 2001). It is possible that these large diurnal variations in isotopic com-
position may be limited to the upper few millimeters of the snow. Further work to model vapor diffusion
within the snow pack could help determine the maximum depth at which the snow is influenced by these
processes. Validation of our model results will require carefully conducted snow sampling in future
field experiments.

We suggest that the simulated and observed snow isotopic compositions are evidence of fractionation dur-
ing the diurnal vapor to ice and ice to vapor phase transitions. For the June period, this conclusion is based
on the observation that the snow samples are consistent with the average value of the modeled snow iso-
topic composition within 1log,ow for both isotopic species when assuming isotopic fractionation at the
interface between the air and the snow surface. This agreement is independent of the specific choice of
fractionation coefficients from the available range published in the literature. For the July period, we
observe an agreement within 1og,w and the 95% confidence bound on the modeled snow isotopic

Table 3a
Values Used for Estimating Snow Surface Thickness in Equilibrium With the Vapor in the Viscous Sublayer

Symbol Value
Latent heat of sublimation at 0 °C A 2838 kJ/k;
Snow density Ps 150 kg/m
Snow surface temperature Iy —11.5°C
Average day positive latent heat flux (June/July) Lg>0 6.5/6.7 W/m>
Average day negative latent heat flux (June/July) L <0 —2.5/—3.8 W/m”
Initial snow surface isotopic composition 5'%0 —30%0
Initial snow surface isotopic composition 3D —240%o

MADSEN ET AL.

2942



Journal of Geophysical Research: Atmospheres 10.1029/2018JD029619

Table 3b

Estimates of the Snow Thickness at Which the Snow Is in Equilibrium With
the Vapor Above the Surface Given the State of the Latent Heat Flux

(Positive or Negative)

composition. We conclude that accounting for isotopic fractionation is
important in modeling snow-atmosphere isotopic exchange. This implies
that the snow isotopic composition can change while the snow is sub-

‘Water vapor
isotope parameter

jected to exchange with the atmosphere.

June period (mm)  July period (mm) Until this point we have not considered how the model performs in terms

Lp>0 §'%0

Lp<0 o)

6D

6D

2.5(7.1,1.8) 2.3 (4.5,1.9) . )
3.2(14.4, 1.9) 2.0(9.9,—) C', we find that we are able to simulate the dxs such that on average 95% of

0.7 (2.5, 0.4) 0.9 (2.2, 0.7) the modeled dxs is within one standard deviation of the observed values.
1.0 (5.3,0.5) 1.2(5.2,—)

of dxs. In summary, given that we use the optimized values for A", B, and

However, the modeled dxs limits the maximum deviation of B"© from

Note. The 95% confidence bounds are giving in the parentheses. BP. For example, by selecting the upper bound of the confidence limit

on 8D and the lower bound on the confidence limit of §'%0, we find that
we no longer simulate the dxs within 95% confidence. This implies that an optimization of the parameters
A" and B with respect to dxs will result in a reduction of the confidence limits given in Table 2. Since a reduc-
tion in the confidence bounds on B” does not undermine our results we find that another optimization of the
parameters with respect to dxs is unnecessary. Nonetheless, it is important to note that we find that the mod-
eled vapor at the snow-VSL interface have a diurnal cycle in the dxs for both the June and July period
(Table 2). For both periods we find that the modelled vapor dxs is in antiphase with the 8D and §'°0 at
the snow-VSL interface, even though there is no diurnal cycle in the atmospheric vapor for the July period.
This is a result of the presences of the VSL, where the difference in molecular diffusivities determines how
the dxs attenuates with displacement from the surface.

We now compare our results to existing studies. Ritter et al. (2016) find evidence in their snow samples of a
diurnal cycle with amplitude ~0.2%. and ~1.5%. for §'%0 and 8D, respectively. This amplitude is smaller than
our modeled amplitude, which in part can be explained by both lower temperatures and lower specific
humidity, since the observations of Ritter et al. (2016) are conducted at Kohnen Station, Antarctica. To verify
this, we have conducted sensitivity studies (not shown) and found that a 15-20% reduction in snow isotope
amplitude is achieved for a cooling of 10 K, consistent with summer conditions at Kohnen Station. However,
the most important factor is probably related to the difficulties of sampling the exact top of the snow pack
layer. Steen-Larsen et al. (2014) present two summer seasons of snow samples collected from the top
0.5 cm. Their morning and evening samples indicate a diurnal cycle with maximum amplitudes of 0.6%o
for 8'%0.

Isotopes have recently been implemented in the complex snowpack model CROCUS (Touzeau et al., 2018).
The authors propose, similar to Ebner et al. (2017), that a snow grain has an inner and outer isotopic com-
position, which is similar upon snowfall, but changes independently as the snow grain undergoes postdepo-
sitional processes. We propose that throughout a single day, the outer snow grain undergoes substantial
changes in both volume and isotopic composition, whereas the inner snow grain isotopic composition stays
constant. This can partly explain the difference between the modeled and observed change observed in this
work, since a snow sample would be biased toward inner grain isotopic composition, and thus, the observed
diurnal variability in the surface snow isotopic composition would be damped.

It is unclear how this conclusion is compatible with Pinzer et al. (2012), who used controlled lab experiments
with X-ray tomography to show that an average snow crystal has a lifetime of 2-3 days, with a daily mass
turnover of up to 60%. Further studies are needed to address the interplay between changes in the snow
isotopic composition caused by snow metamorphism and equilibration of the outer snow grain with the
near-surface atmospheric water vapor.

5. Conclusions

We have presented near-continuous, high-precision measurements of water isotopic composition in atmo-
spheric vapor, as well as eddy covariance measurements from two periods of stable diurnal cycles, taken
at the EastGRIP camp during summer 2016. We observe substantial changes in the isotopic composition
of the near-surface atmosphere on diurnal timescales, which prompted an investigation as to whether these
high-frequency isotopic variations are also present in the surface snow. We focus on simulating two distinct
cloud-free periods from the 2016 field season, spanning three days each. Although both periods exhibit
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similar variation in atmospheric humidity, there are notable differences in observed vapor isotopic
compositions.

We have developed a numerical model to simulate changes in humidity and water vapor isotopic composi-
tion along a vertical profile extending from the snow surface up into the near-surface atmosphere. With this
model, we are able to compute the snow isotopic composition and quantify the amplitude of snow isotope
variability across diurnal cycles. We find that the uppermost millimeters of the snow surface in northeast
Greenland exhibits a diurnal variability with an amplitude of approximately 2.5% and 13%. for 8'*0 and
8D, respectively. The magnitude of these diurnal variations in the snow is significant and equivalent to
10-20% of the seasonal change in the snow isotopic composition in Greenland, or of the magnitude of the
change across a glacial-interglacial transition.

We also compared our modeled snow isotopic composition with measurements of the integrated top 1 cm of
snow. Based on the snow and vapor isotope measurements, we conclude that the observations are consistent
with the assumption of isotopic equilibrium at the snow-air interface. Our findings highlights the need for a
high-resolution sampling campaign in order to improve our understanding on the processes controlling of
isotopic fractionation of snow during sublimation. Our results strongly support the earlier findings that a
diurnal signal exists in the snow isotopic composition. Further laboratory experiments and fieldwork can
address the following questions: Does a viscous sublayer exist as an interface between the snow and the
near-surface atmosphere? What is the thickness of the viscous sublayer? To what depth is diurnal variability
in snow isotopic composition significant? It is needed to sample the uppermost millimeters of the snow at
high frequency in both laboratory and field experiments to answer this question.

We have found evidence that fractionation during sublimation and solid-condensation is important for
modeling vapor exchange and snow isotopic composition on the diurnal scale, supporting recently published
results by Ritter et al. (2016). This implies that the snow isotopic composition can change while the snow is
subjected to exchange with the atmosphere. This work therefore contributes to the understanding of how the
isotopic composition of snow is subject to changes after deposition. The ability of the presented model to
simulate the diurnal cycle in isotopic composition of the vapor and change in the snow isotopic composition
yield confidence in the ability to further parameterize the snow-air interaction and eventually implement
this into higher complexity climate models. This is relevant for both present-day and paleoclimate modeling
of Greenland isotopes and comparison to ice core records.
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