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Abstract 

The food- and pharma-industry is under an ever increasing demand for reduction in 
energy use, optimal production planning and efficient utilization of raw materials. 
This has led to the concepts of Quality by Design (QbD) and Process Analytical 
Technology (PAT). The aim of QbD is to use PAT-tools for obtaining greater process 
knowledge such that the manufacturer may move away from end-point testing of 
products, towards building quality into process and thus the products (hence the 
name Quality by Design). The purpose of this PhD project was to show how 
spectroscopy based PAT-tools in combination with dynamic predictive models may 
bring these goals closer to reality. The work presented in this thesis covers the three 
years research which was also published in four papers: 

Paper I investigated how three-way calibrations for Excitation-Emission Matrix 
(EEM)-fluorescence spectroscopy could be transferred. The study showed that it was 
possible to develop simple, intuitive transfer methods for three-way EEM 
fluorescence calibrations. It was additionally shown that though good transfer 
models could be found for the calibration models with as few as four transfer 
samples, the results were highly dependent on the selection of the transfer set. The 
paper thereby illustrated how three-way EEM fluorescence calibration made in an 
off-line setting (i.e. in the laboratory) with ease could be transferred to an on-line 
application. 

Paper II introduced the state space model and showed how so-called subspace 
methods allowed state space modelling without a-priori assumptions on model 
shape/form, thereby enabling modelling of the process without the requirement of 
any prior knowledge on the underlying physics or chemistry. The paper presented 
how a non-linear milk coagulation process could be approximated by linear state 
space models. Where conventional control charts reflects the process in a static 
manner, the control charts proposed in Paper II reflected the dynamic behaviour of 
the process. 

Paper III elaborated further on the conclusions from Paper II. In this paper a 
combination of state space models, subspace methods and Kalman filters were 
shown to have the potential as a versatile tool in batch process modelling and 
monitoring. A model system of riboflavin breakdown was presented as an example 
of a batch process. It was shown how the combination of EEM-fluorescence 
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spectroscopy and PARAFAC modelling allowed direct surveillance of the on-going 
chemistry in the process. The proposed combination of methods was able to capture 
and model the dynamics of the batch process. The introduction of the Kalman filter 
gave the advantage of improved predictions of future process variable trajectories 
including 95% confidence intervals of the variables. The method was thus shown to 
be adaptable to new non-NOC conditions and allowed for dynamic control charting 
of initial condition estimates and current system-states. For end-point prediction a 
dedicated method based on Partial Least Squares was found to produce slightly 
better predictions. 

Paper IV presented further studies on the model system introduced in Paper III. 
The paper illustrated what is also known as so-called grey box modelling: Modelling 
in the case where the physics and chemistry governing the process is known or 
assumed to be known to some extent. In Paper IV it was shown how the a-priori 
knowledge on the reaction kinetics governing the process could be implemented 
during PARAFAC modelling, hereby allowing post-batch charting of the relevant 
process parameters – the kinetic constants. 

The different statistical/chemometric models included in this thesis made it possible 
to answer different types of questions. The only method able to answer all three 
questions: “Where is the process now?”, “Where did the process come from?” and 
“Where is the process going?” was the state space/Kalman method presented in 
Paper II and III. The possibility of predicting future process characteristics and 
variable trajectories opens for the option of model predictive control which in turn 
may bring the goal of QbD closer to reality. 
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Resumé 

Fødevare- og medicinalindustrien er under et stadigt stigende pres for reduktion i 
energiforbruget, optimal produktionsplanlægning og effektiv udnyttelse af 
råmaterialer. Dette har ført til udviklingen af koncepterne Quality by Design (QbD) 
og Proces Analytisk Teknologi (PAT). Formålet med QbD er at bruge PAT-værktøjer 
til at opnå større procesviden, således at producenten kan bevæge sig væk fra 
slutpunkt test af produkter, til at bygge kvalitet ind i processen og dermed 
produkterne (deraf navnet Quality by Design). Formålet med dette ph.d.-projekt var 
at vise, hvordan spektroskopi-baserede PAT-værktøjer i kombination med 
dynamiske prædiktive modeller kan bringe disse mål tættere på virkeligheden. 
Arbejdet der præsenteres i denne afhandling dækker de tre års forskning som også 
er offentliggjort i fire artikler: 

Artikel I undersøgte hvordan tre-vejs kalibreringer til Excitation-Emission Matrix 
(EEM)-fluorescens spektroskopi kunne overføres. Undersøgelsen viste, at det var 
muligt at udvikle enkle og intuitive overførselsmetoder for tre-vejs EEM fluorescens 
kalibreringer. Det blev endvidere vist, at skønt gode overførselsmodeller kunne 
findes for kalibreringsmodellerne baseret på så få som fire prøver, var resultaterne 
meget afhængig af valget af prøvesæt. Artiklen illustrerede dermed, hvordan tre-vejs 
EEM fluorescens kalibreringer fundet i en off-line situation (dvs. i laboratoriet) med 
lethed kan overføres til en on-line applikation. 

Artikel II introducerede state space modeller og viste, hvordan såkaldte subspace 
metoder tilladte state space modellering uden a-priori antagelser om model type / 
form, hvorved modellering af processen var mulig, uden krav om forudgående viden 
om den underliggende fysik eller kemi. Artiklen præsenterede hvordan en ikke-
lineær mælkekoagulation proces kan beskrives ved lineære state space modeller. 
Hvor traditionelle kontrol-kort afspejler processen på en statisk måde, foreslog 
Artikel II kontrol-kort der afspejlede den dynamiske opførsel af processen. 

Artikel III uddybede konklusionerne fra Artikel II. I denne artikel blev det vist 
hvordan en kombination af state space modeller, subspace metoder og Kalman filtre 
har potentiale som et alsidigt redskab i batch-proces modellering og overvågning. Et 
modelsystem af riboflavin nedbrydning blev præsenteret som et eksempel på en 
batch-proces. Det blev vist, hvorledes kombinationen af EEM-fluorescens-
spektroskopi og PARAFAC modellering tillod direkte overvågning af den 
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igangværende kemi i processen. Den foreslåede kombination af metoder var i stand 
til at indfange og modellere dynamikken i batch-processen. Introduktionen af 
Kalman filteret gav den fordel, at forbedrede prædiktioner kunne opnås for 
udviklingen i fremtidige procesvariable, dette inkluderede 95% konfidensintervaller 
for variablerne. Metoden blev således vist at kunne tilpasses nye non-NOC vilkår og 
tillod dynamiske kontrol-kort for initialbetingelser og nuværende system-tilstande. 
Til slutværdi prædiktion var en dedikeret metode baseret på Partial Least Squares 
(PLS) i stand til at frembringe lidt bedre prædiktioner. 

Artikel IV præsenterede yderligere undersøgelser af det modelsystem, der blev 
præsenteret i Artikel III. Artiklen illustrerer, hvad der også er kendt som såkaldt 
grey-box modellering: Modellering i det tilfælde, hvor den underlæggende fysik og 
kemi der styrer processen er delvis kendt. I Artikel IV blev det vist, hvordan a-priori 
viden om reaktionskinetik for processen kan implementeres i PARAFAC 
modellering, hvorved post-batch kortlægning kan opnås af de relevante 
procesparametre - de kinetiske konstanter. 

De forskellige statistiske / kemometriske modeller, der indgår i denne afhandling 
har gjort det muligt at besvare forskellige typer af spørgsmål. Den eneste metode der 
dog var i stand til at besvare alle tre spørgsmål: “Hvor er processen nu?”, “Hvor 
kommer processen fra?” og “Hvor er processen på vej hen?” var state space/Kalman 
metoden præsenteret i Artikel II og III. Muligheden for at forudsige fremtidige 
proces karakteristika og variable forløb åbner for muligheden for model prædiktiv 
regulering, som igen kan bringe målet om QbD tættere på virkeligheden. 
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1 Introduction 
 

The food- and pharma-industry is under an ever increasing demand for reduction in 
energy use, optimal production planning and efficient utilization of raw materials. 
The purpose of this PhD project was to show how modern process sensors in 
combination with statistical predictive models may bring these goals closer to 
reality. 

A common task in industry is continues surveillance of process performance and 
product quality. Very often this monitoring is done by following classical 
engineering variables such as pH, temperature or pressure over time. These signals 
are however seldom the information we in reality are interested in. E.g. in a 
fermentation plant producing enzymes we are not exactly interested in the pH at 
which the product was made although this will be a highly relevant process 
parameter. Instead we may be interested in the enzyme activity of the finished 
product. Modern process analysers (such as near-infrared/NIR spectrometers) may 
be used directly in process streams or vessels (so-called “on-line” measurements). 
When these instruments are combined with multivariate statistics/chemometrics we 
are able to directly or “real-time” determine the chemistry going on during 
production rather than rely on inferential information such as pH or temperature. 

The chemical information obtained from modern sensors may lead to a higher 
process understanding by continues observation (e.g. “if pH in the reactor is 
between 8 and 8.5 then keep temperature between 30 and 32oC to reach the highest 
enzyme activity”). This is however not the only advantage. A very high sampling 
frequency is possible with on-line spectroscopy. Classical grab sampling and “off-
line” reference measurements in a central laboratory may be a time and money 
consuming procedure and will thus always be limited to a low frequency (e.g. once 
every hour or even less). On-line spectrometers on the other hand have a high 
sampling frequency (e.g. every minute) at a very low cost per measurement. It 
should however be stressed that on-line implementation of e.g. a NIR-spectrometer 
is not maintenance-free; the calibrations used for the instruments may every now 
and then need updating. Paper I investigated how such an update or 
standardization of Excitation-Emission fluorescence spectra could be done for a 
process fluorescence instrument. 
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An example of “off-line” ( ) vs. “on-line” (  ) measurements is given in Figure 1-1. 
The true, unknown value of the process variable is indicated by (|).The figure 
illustrates how the more frequent on-line measurements allow a closer monitoring 
of the process. 

 
Figure 1-1 Off-line vs. on-line measurements of a process and possible questions asked 
during real-time monitoring are indicated 

Figure 1-1 indicates the three key questions that may be asked from real-time 
monitoring during production. 

• “Where is the process now?” – Are we able to detect that the current 
product/process stream is within specifications, i.e. quality assurance. 

• “Where did the process come from?” – When looking back on the past 
process measurements, how did the process evolve? This information can be 
used for process optimization, but is always “post-problem”; we can for 
instance only change the recipe in future production to achieve the right 
quality. 
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• “Where is the process going?” – If we have a process model that is able to 
predict future process characteristics we are able to change – by so-called 
model predictive control (MPC) - the production settings to counteract 
undesired products not up to quality specification. 

Different Multivariate Statistical Process Control (MSPC) methods may be used for 
answering some of these questions, and the methods have therefore long been, and 
still are, of research interest within the chemometric society [Skagerberg et al., 1992; 
Kourti & MacGregor, 1995; Qin, 2003; Laursen et al., 2011]. The main set of methods 
within MSPC is however primarily suited for feed-back control (post-problem), 
rather than feed-forward control (pre-problem; see section 4 on control theory). 
There is need for a new set of methods that enable feed forward control/MPC. 
Despite the fact that modern sensors allow for direct monitoring of key attributes 
such as enzyme activity, it is the lack of sufficient understanding of the physics and 
chemistry of the biotechnological production processes that limits the use of MPC. 
This insufficient understanding is especially valid for batch-wise production and 
biological processes such as many food systems. So-called “black box models” are 
required; models that enable us to identify the process dynamics and predict the 
process output (e.g. enzyme activity) as a function of the controllable process inputs 
(i.e. the pH, temperature, etc.). In Paper II one class of such algorithms was 
investigated, state space methods for time series analysis identified using so-called 
subspace methods It was shown how these methods could capture and model the 
dynamics of coagulating milk by combining NIR spectroscopy with state space 
models. It illustrated that modern sensors like NIR give insight into how a normal 
process behaves, how state space models can be used to follow whether the process 
is on track (“Where is the process now?”), and to predict the development of the 
coagulation ahead in time (“Where is process going?”).  

A common challenge faced when applying process models is the difference between 
measurements and dynamic model predictions: Our measurement reports enzyme 
strength X, but the process model predicts strength Y at this stage of the batch, 
which do we trust more knowing that both are affected by noise and uncertainty? 
These were the questions that were investigated in Paper III where breakdown of 
vitamin B2 (riboflavin) was investigated and modelled by state space models. This 
breakdown process was studied as a generic model system representative for the 
batch processes in industry. The state space models identified from training or 
Normal Operating Conditions (NOC) data have the advantage of allowing easy 
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implementation of a statistical model known as the Kalman filter. The algorithm is 
an answer to the challenge of measurement vs. model. It enables us to find the best 
compromise between the two sources of estimation, and also allows us to predict 
the future process outputs (the concentration of breakdown product one hour from 
now e.g.) within a Confidence Interval (CI; Figure 1-2). An end-target is often used in 
batch processes, e.g. reaching a desired percentage conversion of the raw materials 
in a given amount of time. Once the process is at this target the batch is opened and 
the product is transferred to a downstream step. Thus, if we see that the predicted 
interval does not include the target (time 1), we can take a corrective action based on 
MPC in order to move the future outputs back on track (time 2), thus avoiding 
products not up to specifications. 

 
Figure 1-2 The combination of state space models, subspace methods and the Kalman filter 
allows for Model Predictive Control (MPC) 

In some cases supplementary knowledge is available on the process. It could for 
instance in the case of riboflavin breakdown be speculated that the process follows 
first order kinetics. Then so-called “grey-box” modelling where some external 
knowledge is utilized during modelling can be applied, a subject further pursued in 
Paper IV. 
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1.1 PAT, QbD and other buzzwords 
The ideas off applying process analysers on-line in industry is not new and was 
within the chemometric community in the beginning of the 80’ies approached in a 
more systematic way with the introduction of so-called Process Analytical Chemistry 
(PAC). The Center for Process Analytical Chemistry (CPAC) at the University of 
Washington was a major driver in this [Callis et al., 1987; McLennan, 1995]. Since 
1993 a biannual review of PAC with hundreds of references in each has appeared in 
the peer-reviewed journal Analytical Chemistry [Beebe et al., 1993; Blaser et al., 1995; 
Workman et al., 1999; Workman et al., 2001; Workman et al., 2003; Workman et al., 
2005; Workman et al., 2007; Workman et al., 2009; Workman et al., 2011]. In spite of 
the huge number of references on process analysers, process chemometrics and on-
line chemical analysis, the term PAC was however not widely spread outside 
chemometrics.  This is apparent if a literature search is made on the term “Process 
Analytical Chemistry” (Figure 1-3) where less than 10 papers appear each year1.   

 
Figure 1-3 Number of publications for the search terms "Process Analytical Chemistry" 
(PAC), "Process Analytical Technology" (PAT) and "Quality by Design" (QbD) 

The advantages of on-line chemical measurements and process chemometrics was 
however recognized by the United States Food and Drug Administration (US-FDA) 
                                                        
1 Literature search done February 2012 in Thompson Reuters Web of Science. 
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as they in September 2004 issued a non-binding recommendation entitled 
“Guidance for Industry: PAT – A Framework for Innovative, Pharmaceutical 
Development, Manufacturing and Quality Assurance”. The overall principle in the 
guidance was to use different Process Analytical Technology (PAT) tools to achieve a 
better process understanding. The FDA saw on-line measurements and multivariate 
data analysis (i.e. chemometrics) as a part of the PAT solution; this meant that many 
investigations and accompanying publications were made on on-line measurements 
and process chemometrics, the papers were however published under the new label 
PAT rather than PAC (Figure 1-3).  

The end-goal of this improved process understanding was to move away from end-
point testing of products towards building quality into the products, i.e. “Quality 
cannot be tested into products; it should be built-in or should be by design” [U.S.Food 
and Drug Administration, 2004]. This quality approach was elaborated further in 
November 2005 as The International Conference on Harmonisation of Technical 
Requirements for Registration of Pharmaceuticals for Human Use (ICH) finalized 
their eighth quality guideline (Q8) on Pharmaceutical Development. The ICH-Q8 
termed the quality approach “Quality by Design” (QbD). The QbD approach is now 
widely recognized with more than 100 publications during 2011 (Figure 1-3). The 
connection between the three terms PAC, PAT and QbD can be illustrated as 
outlined in Figure 1-4.  

 
Figure 1-4 Connection between Process Analytical Chemistry (PAC), Process Analytical 
Technology (PAT) and Quality by Design (QbD) 
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Two central concepts within QbD are real time release and design space. Real time 
release is closely related to the end-goal of building quality into products. It is 
defined as: “The ability to evaluate and ensure the acceptable quality of in-process 
and/or final product based on process data, which typically includes a valid 
combination of measured material attributes and process controls” [U.S.Food and 
Drug Administration, 2004; ICH, 2009]. This means that if a pharmaceutical 
manufacturer can prove that a given drug has acceptable quality solely based on 
process data, real time release may be achieved so that no end-point testing is 
needed. The design space is then defined as: “The multidimensional combination and 
interaction of input variables and process parameters that have been demonstrated to 
provide assurance of quality” [ICH, 2009]. This means that the concept is tightly 
connected to response surface modelling known from the field of Design of 
Experiments (DoE; [Box et al., 1978]). The idea is to use surface response models to 
find the controllable process variables that allows production of products with the 
desired quality; the principle is outlined in Figure 1-5 below. 



Introduction 
 

8 

 
Figure 1-5 Illustration of the design space concept 

Based on designed experiments the response surface for product safety is estimated, 
the acceptable product safety is in Figure 1-5 indicated by the bold blue line. A 
similar response surface may be made for the product yield, the process target is 
then chosen as the optimal compromise between the two and the design space is 
selected so that all combinations of the control variables yields product of an 
acceptable quality. Moving the process target inside the design space – e.g. if the 
product yield maximum changes its position over time - is then under the QbD 
principles not considered a change in the approved process resulting in no need for 
regulatory actions [ICH, 2009]. A few notes should be made on the appearance of 
Figure 1-5: 
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• The two control variables indicated in the figure may be either real 
measurable entities (e.g. pH or pressure) or linear combinations of several 
measured variables (e.g. scores in a principal component model – for more 
details on PCA see section 3.1.1) 

• The design space may have linear bounds (as in Figure 1-5) or non-linear 
bounds. The later could in Figure 1-5 be the case if the complete area inside 
the bold blue ellipse was chosen as design-space. 

• The design space may cover one or several unit operations. The one-unit-
operation design space is easier found, but the several-unit-operations 
design space may allow a higher flexibility. MPC would in such cases be very 
useful as it could e.g. be the case that an up-stream step yielded product on 
the edge of the design space. Successful application of MPC in the following 
down-stream process steps could then ensure that the product was 
transferred closer to the centre of the design space. 

 

1.2 Definitions and conventions used in this thesis 
1.2.1 Inputs, Outputs and Systems 
A more general presentation of a production system is given in Figure 1-6. 

 

Figure 1-6 Generic representation of process 

The terms process or system will be used interchangeable in this thesis, the term 
covers the process that is being modelled, and the system is therefore often equal to 
a unit operation. The outputs of the system are the measurable dependent variables 
that characterize and describe the response of the system [Roffel & Betlem, 2006]. 



Introduction 
 

10 

The input or the control signal is also one or more measureable or observable 
variables; these variables are however under our rule and are used to manipulate the 
system output. The disturbances or the process noise are external factors 
influencing the system. They cannot be manipulated but may in some cases be 
measureable. In such cases the control signals may thus be used to compensate for 
the disturbances, more on this in section 4. 

The disturbances could in the enzyme example from before for instance be equal to 
fluctuations in raw material composition, the enzyme activity could be seen as the 
system output, and pH and temperature in the reactor vessel as controllable inputs. 

 

1.2.2 Mathematical convention 
The following notation is used: 
Scalars are denoted by upper and lower case letters in italics (e.g. I, J, k and t). 
Vectors are denoted by lower case bold letters (e.g. t, p and y). 
Matrices are denoted by upper case bold letters (e.g. X, A and E). 
Tensors are denoted by underlined upper case bold letters (e.g. X and E). 
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2 Process Monitoring 
 

The introduction section indicated some of the advantages of using spectroscopy in 
process monitoring. This section will elaborate on the principles, advantages and 
challenges. The section will include a general introduction to spectroscopy and two 
dedicated sections for the methods included in this thesis: Near Infrared (NIR) and 
Excitation-Emission Matrix (EEM) fluorescence spectroscopy. 

The International Union on Pure and Applied Chemistry (IUPAC) defines 
spectroscopy as “the study of systems by the electromagnetic radiation with which 
they interact or that they produce”, and spectrometry as “the measurement of such 
radiation as a means of obtaining information about the systems” [Sheppard et al., 
1985]. The term spectroscopy will however in this thesis be used to cover both the 
measurement principle as well as the study of interaction between light and matter. 

When matter is irradiated, several things can happen [Dahm & Dahm, 2001]: 

1) The radiation is reflected or scattered. The incident light may either be 
reflected as specular reflection (mirror like) where the angle of the incident 
light is equal to the angle of the reflected light, or as diffused reflection 
where the light is reflected in many different angles. The scattering of the 
light is dependent on the particle size with smaller particles giving a higher 
degree of scatter.  

2) The radiation is absorbed. If the electromagnetic radiation corresponds to 
certain frequencies resonance may occur whereby the radiation is absorbed. 
Different selection rules apply for the different parts of the electromagnetic 
spectrum, the specific rules for NIR and fluorescence spectroscopy in the 
Ultraviolet-Visual (UV-VIS) range will be outlined in the corresponding 
sections. 

3) The light is transmitted. Some light may also pass through the sample 
without any interaction with the sample. 

The relationship between absorbed light, transmitted light and analyte 
concentration may be explained by Lambert-Beer’s law or simply Beer’s law 
(Equation 2-1) [Harris, 2007]: 
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Equation 2-1  

 
Where Abs is the absorbance, I0 the intensity of light entering the sample, I the 
intensity of the light transmitted, c the concentration of the analyte, l the path 
length or sample thickness, and ε the molar absorptivity coefficient [Harris, 2007]. 
Figure 2-1 symbolizes the electromagnetic spectrum. 

 
Figure 2-1 The electromagnetic spectrum (data from Harris [2007] and Dolezalek [2012]) 

The spectroscopic methods used in this thesis applied electromagnetic radiation in 
the UV-VIS region (Paper I, III and IV), and the NIR region (Paper II) of the 
electromagnetic spectrum. 

  

 = log   =  
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2.1 Near Infrared Spectroscopy  
Figure 2-1 shows that the Near Infrared (NIR) and Infrared (IR) regions are found at 
the wavelengths2 between 700 nm and 10-3 m; likewise it is illustrated that shorter 
waves have higher energy. The energy level of NIR and IR is in the range 8 – 40 
kJ/mol [Pavia et al., 2000], which corresponds to the vibrational energy of covalent 
bonds in most molecules. This fact is utilized in IR and NIR spectroscopy - for all 
molecular vibrations where a dipole moment is displaced, infrared radiation will be 
absorbed when the frequency of the radiation corresponds to the frequency of the 
vibrating bond [Pavia et al., 2000]. The two methods are hence - together with 
Raman spectroscopy - also known under vibrational spectroscopy. 

The frequency corresponding to the vibrational energy of a covalent bond is 
dependent on the mass of the atoms and the strength of the bond, with one or more 
specific bending and stretching vibrations. The specific vibration-frequency of the 
bond may partially be explained as a harmonic oscillator: The stronger the bond the 
higher the vibration-frequency, and the bigger the difference in mass between the 
vibrating atoms the higher the vibration-frequency [Dufour, 2009]. The molecular 
vibrations are however not perfectly harmonic. This has the result that overtones are 
observed in the NIR region approximately at integer multiples of the fundamental 
vibration frequency of the IR region. 

The position of the overtones (̅) can be found by applying Equation 2-2 if the 
fundamental wavenumber (̅) and the dimensionless anharmonicity constant (χ) 
are known. 

Equation 2-2  

χ is normally in the range of 0.001 to 0.02, with bonds having  larger anharmonicity 
constants involving hydrogen (e.g. -CH, -NH and -OH) [Miller, 2001; Griffiths, 2002]. 
Fundamental vibrations with very low χ will only display very weak overtones that 
might not be detectable [Siesler, 2008]. 

It is further known that the intensity of each overtone is approximately 10 times 
smaller than the previous [Miller, 2001], i.e. if the fundamental has the intensity of 1 
the first overtone will have an intensity of 0.1, the second 0.01, etc. Since Beer’s law 

                                                        
2 By tradition wavelengths (measured in nm) are normally used in NIR, while wavenumbers (cm-1) 
are used in IR. 

̅ = ̅(1 − ) 
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(Equation 2-1) states that the intensity of the signal is directly proportional to the 
light path length, the lower intensity has the consequence that longer path lengths 
are allowed/required for NIR than for IR [Siesler, 2008]. This makes NIR 
spectroscopy easier to implement than IR spectroscopy as a process analyser. 

Overtones are not the only peaks found in the NIR range spectrum. Combination 
bands of fundamentals and overtones or several overtones can often be observed in 
(and complicate the interpretation of) NIR spectra. These bands will be located 
approximately at the summation of the wavenumbers for the bands that are 
combined [Miller, 2001]. The fundamental and overtone signals may originate from 
different vibrations. It is however required that the signals are originating from the 
same functional group [Miller, 2001]. 

Figure 2-2 illustrates some of the normal vibrations that can be observed for CH2 in 
IR-spectroscopy. 

 
Figure 2-2 Normal vibrations of CH2 in IR spectroscopy [Miller, 2001]. 

As an example on combination bands and the selection rules for the combination 
bands CH2 may be taken. This functional group has a combination band in the NIR 
region at ~4310 cm-1 (~2320 nm); the band originates from a combination of the 
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symmetric stretch (2870 cm-1) and the bending vibration (1460 cm-1). It should 
however be remembered that in spite of the possibility of combination bands, two 
different modes of vibration of the same group will not always combine [Miller, 
2001]. 

Beer’s law (Equation 2-1) stated that the absorption (also in the NIR range) is linearly 
related to the concentration of any NIR-active analytes. This means that I samples 
measured at J wavelengths forms a data set of size I × J that may be approximated by 
means of bilinear models such as Principal Components Analysis (PCA) or Partial 
Least Squares (PLS) – methods that will be introduced in section 3. 

 

2.1.1 Sample handing for NIR 
There are in general two different methods for sample handling in NIR 
spectroscopy: Transmission or diffuse reflectance (Figure 2-3) 

 
Figure 2-3 Schematic drawings of different sample handling techniques in NIR 
spectroscopy, transmission (top) and diffuse reflectance (bottom) 

In transmission the absorbance/transmittance in the samples is measured, and a 
blank measurement is made beforehand where water or air is often used as 
reference [Folkenberg et al., 2008]. In diffuse reflectance the sample is illuminated 
and the reflected light is measured [Workman & Burns, 2008], a white reflection-
standard made of plastic (such as Spectralon®) is often used as standard/blank in 
this case. Transmission can be used both for IR and NIR. It has the advantage that 
the total sample thickness is used for the measurement. Errors due to heterogenic 
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samples (e.g. caused by separation of fat) can hereby be minimized [Workman & 
Burns, 2008]. There is however also a disadvantage in transmission. The absorbance 
of liquids (in IR) can be very high, and narrow cuvettes have to be used. This may 
complicate both correct sampling and cleaning in between different samples 
[Folkenberg et al., 2008]. Sampling is, as explained above, easier for NIR since 
absorbencies are lower; transmission is therefore a very common solution for on- 
and in-line NIR measurements [Wust & Rudzik, 2003; Huang et al., 2008]. Diffuse 
reflectance is frequently used for NIR of powders and solids. An advantage of this 
method is that sampling is easy, liquid samples that are too strongly absorbing in 
transmission may be analysed by this method. A major disadvantage is that the 
spectra are dependent on particle size (or e.g. the size of fat globules in solution). 
Uniform particles are therefore required at every measurement in order to obtain 
reproducible results [Dahm & Dahm, 2001]. Much of the scattering may however be 
removed by correct pre-processing of the spectra, e.g. by the Standard Normal 
Variate (SNV) method as presented in Paper II. Since only the surface layer of the 
sample interacts with the light, another disadvantage of reflection measurements 
are that heterogeneous samples may cause measurement biases [Workman & Burns, 
2008]. 
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2.2 Fluorescence Spectroscopy 
Fluorescence is the emission of light from a molecule that has been brought to an 
electronically excited state falling back to the ground state [Lakowicz, 2006]. The 
molecule is in fluorescence spectroscopy brought from the ground state to the 
excited state by absorption of light. Fluorescence is commonly measured in the 
range 250 – 800 nm [Dickens, 2010] meaning that especially the UV-VIS range is 
used when fluorescence spectra are recorded. Figure 2-4 below illustrates the 
phenomenon of absorption and fluorescence; the ground state, first and second 
excited states are designated by S0, S1 and S2 respectively.  

 
Figure 2-4 Jablonski diagram of the phenomenon of fluorescence, molecules are excited 
from the ground-state (S0) to one of the excited states S1 or S2, fluorescence may occur 
when the molecule relaxes from S1 to the ground-state. 

As the light excites the molecules, a transition from the ground-state (S0) to one of 
the excited states S1 or S2 will happen. If the molecule was excited to S2 it will 
normally relax to S1 within 10–12 s or less, by transferring the energy to other 
molecules (e.g. the solvent) though collisions. This process is known as internal 
conversion [Lakowicz, 2006; Harris, 2007]. The molecule may from S1 relax to the 
ground-state either through further internal conversion, or by emission 
(fluorescence). The first law of thermodynamics states that “The algebraic sum of all 
energy changes in an isolated system is zero” [Smith, 1990], this has the consequence 
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that only red-shifted fluorescence is seen – the emitted light will always be of longer 
wavelengths (λem) than the light used for excitation (λex) since this light is less rich 
in energy and some of the energy is lost through internal conversion. The difference 
between the two wavelengths is known as the Stokes shift [Lakowicz, 2006]. 

Fluorescence is typically seen in aromatic or other compounds with cyclic structures 
where conjugated double bonds are found [Dickens, 2010]. Nicotinamide Adenine 
Dinucleotide (NADH), Flavin Adenine Dinucleotide (FAD), chlorophyll and many 
vitamins (including B2 as shown in Paper I, III and IV) may therefore be measured 
and quantified with fluorescence spectroscopy [Christensen, 2005]; the method is 
thereby thus a potential candidate for direct monitoring of the metabolism of 
microorganisms in bio-reactors. 

Different types of fluorescence spectra may be recorded:  

• Emission spectra, where one given excitation wavelength is used and the 
emission is measured at different wavelengths, one vector is recorded per 
sample. 

• Excitation spectra, where the excitation wavelengths are scanned while the 
spectra are recorded at one single emission wavelength, one vector is 
recorded per sample. 

• Emission-Excitation Matrix (EEM) spectra, where both excitation and 
emission wavelengths are scanned, a matrix is recorded per sample. 

The fluorescence data presented in this thesis (Paper I, III and IV) were recorded as 
EEM spectra. Beer’s law also applies to EEM spectra; they are therefore known to be 
tri-linear, essentially meaning that a low rank PARAFAC model may be used for a 
unique decomposition of the data [Smilde et al., 2004], PARAFAC and its 
uniqueness property are elaborated on further in section 3.1.3. 

 

2.2.1 Sample handling for Fluorescence 
The most common sample geometry used in fluorescence spectroscopy is right-
angle observation of the sample (Figure 2-5, left) where the fluorescence detector is 
placed perpendicular to the light source [Lakowicz, 2006].  
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Figure 2-5 Different sample geometries for fluorescence spectroscopy, Left: Right-angle 
observation of sample, Right: Front-face 180o observation of sample 

The EEM spectra presented in Paper I, III and IV were recorded using the BioView 
EEM fluorescence process spectrometers (Delta Light and Optics, Hørsholm, 
Denmark), one of the only fluorescence process spectrometers available on the 
market [Dickens, 2010]. This instrument records the EEM spectra using by front-face 
180o sampling (Figure 2-5, right). The excitation light is via a light-guide sent to a 
process probe (Figure 2-6) where the sample is illuminated. The emitted light is 
subsequently collected using the same probe but sent via another light-guide to the 
detector.  

 
Figure 2-6 BioView process probes mounted on a ultra-filtration (UF) process as 
monitoring tool. Further details on the UF process and experiments may be found in 
section 3.3.3. 
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The instrument is filter based using a combination of 15 excitation filters 
(equidistantly spaced from 270 to 550 nm) positioned on the light source 
sequentially and 15 emission bands filters (equidistantly spaced from 310 to 590 nm) 
positioned on the detector sequentially. The front-face 180o sampling results in a 
high degree of backscattered light at λem = nλex where n is an integer larger than zero 
(so-called Rayleigh scattering). Due to the Stoke shift and to avoid Rayleigh 
scattering the BioView therefore only measures the emission/excitation 
combinations where λem > λex. A band of missing values surrounding the Rayleigh 
scatter band may be used during modelling, since the scatter is inconsistent with the 
PARAFAC model [Bro & Vidal, 2011]. With the first two excitation wavelength being 
270 and 290 nm, 2nd order Rayleigh scattering could be expected at λem = 540 nm 
and λem = 580 nm. The scatter was however not observed in the data presented in 
this thesis. This could to a certain degree be a result of the much lower intensity of 
the second order scatter when compared to the first order, but could also be due to 
the fact that both 2nd order Rayleigh scattering wavelengths are positioned exactly 
right between the maximum bandpass of the neighbouring filters (as illustrated for 
the 2nd order Rayleigh at 540nm in Figure 2-7 below). 

 
Figure 2-7 Maximum bandpass of optical filters and 2nd order Rayleigh scatter, the 
influence of the scatter is minimized due to the bandwidth of the filters. 

The low intensity 2nd order Rayleigh scatter is hence split on two filters resulting in 
no or little disturbance of the spectra, and since the emission and excitation spectra 
in general are much broader than 20 nm, problems with not detecting the analyte 
due to splitting on two filters are not expected. 
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3 Process Modelling 
 

Many different reasons for process modelling exist; a key one is to obtain a better 
process understanding. A good process model will however also offer many other 
possibilities: Simulation, prediction, optimization, operator training, fault diagnosis, 
quality and safety monitoring, model-based control and many others [van 
Overschee & De Moor, 1996]. Various simple rules should however be kept in mind 
during modelling. Since much information can be obtained simply by plotting the 
data a thorough inspection of the raw results should be conducted before any 
modelling. The power of visualization can be easily illustrated by the univariate 
data-set “Anscombe’s Quartet”, 4 sets each consisting of 11 observation pairs (x,y) 
[Anscombe, 1973]. 

Table 3-1 Anscombe's Quartet 

Set I II III IV 
Variable 
Obs. no. 

x1 y1 x2 y2 x3 y3 x4 y4 

1 10 8.04 10 9.14 10 7.46 8 6.58 
2 8 6.95 8 8.14 8 6.77 8 5.76 
3 13 7.58 13 8.74 13 12.74 8 7.71 
4 9 8.81 9 8.77 9 7.11 8 8.84 
5 11 8.33 11 9.26 11 7.81 8 8.47 
6 14 9.96 14 8.10 14 8.84 8 7.04 
7 6 7.24 6 6.13 6 6.08 8 5.25 
8 4 4.26 4 3.10 4 5.39 19 12.50 
9 12 10.84 12 9.13 12 8.15 8 5.56 
10 7 4.82 7 7.26 7 6.42 8 7.91 
11 5 5.68 5 4.74 5 5.73 8 6.89 

Mean 9 7.50 9 7.50 9 7.50 9 7.50 
Variance 11 4.127 11 4.128 11 4.122 11 4.123 

R2 0.667 0.667 0.667 0.667 
 

The four sets have the same mean, variance and correlation between x and y. If 
linear regression is made on the data, the same equations will be obtained: y = 
0.346x + 4. Solely based on these statistics no big differences between the sets are 
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therefore to be expected, if the data are plotted however the differences become 
apparent (Figure 3-1). 

 
Figure 3-1 Ancombe's Quartet; the four sets has same mean, variance, correlation 
coefficient and first order least squares regression line fit. 

This illustrates two points: 1) Outliers can severely hamper any conclusions made 
and 2) blindly applying models on data without thorough inspection may lead to 
false conclusions. A first order polynomial may be appropriate for data-set 1 and 3, 
but a second order polynomial is probably more suitable for set no.2 – this illustrates 
the power of data driven modelling. Based on inspection of raw data many patterns 
can be seen in data, thereby providing a good starting point for modelling. Modern 
process analysers (such as NIR spectrometers) in combination with more traditional 
process sensors (e.g. pH-meters, pressure and temperature sensors) can however 
gather hundreds of variables each minute. Simply just plotting data like these may 
be informative, but a reduction of the dimensionality is often required in order to 
facilitate any interpretation. This is where the field of multivariate statistics or 
chemometrics comes into play. 
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3.1  Chemometrics 
Three different chemometric methods will be outlined in this section: Principal 
Components Analysis (PCA) [Pearson, 1901], Partial Least Squares (PLS) [Wold, 
1966] and Parallel Factor Analysis (PARAFAC) [Carroll & Chang, 1970; Harshman, 
1970]. All three methods are based on projection; the large dimensionality of the 
original data space is reduced by projecting the samples/objects onto underlying or 
latent components of lower dimensionality. The projection may either be 
orthogonal (as in PCA) or oblique (as in PLS and PARAFAC). The difference 
between orthogonal and oblique projection can for a simple 2 dimensional vector be 
illustrated as in Figure 3-2. 

 
Figure 3-2 Orthogonal (left) and oblique projections(right) 

In the case of orthogonal projection the vector a is projected in a right angle onto b 
resulting in the vector a/b⊥⊥⊥⊥ or, stated otherwise, a is projected onto b along or 
parallel with b⊥⊥⊥⊥ the vector orthogonal to b. In the case of oblique projection the 
vector a is projected onto b along the non-orthogonal vector c resulting in the 
vector a/bcccc.  

The chemometric methods described in this thesis is much related to the concept of 
rank of a system. In the case where the measured data X is a matrix of size I × J, i.e. J 
variables measured for I samples or objects, different types of rank can be defined 
for X. The column rank of X is defined as the number of linearly independent 
columns in X, the row rank of X the number of independent rows. A central 
theorem in linear algebra states that the row rank is equal to the column rank which 
overall is just known as the rank of X, written as r(X) [Strang, 2006]. This means 
that the (mathematical) rank of X is r(X)≤min(I,J), i.e. the rank is smaller or equal to 
the number of columns or rows whichever is the smaller. If the rank is equal to the 
number of rows or columns, whichever is smaller, X is called full rank. The 
mathematical rank of a matrix is in many cases not very interesting when modelling 
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of chemical systems is to be performed. Here the concept of chemical (or practical) 
rank is more useful [Smilde et al., 2004]. The chemical rank of a system can be 
defined as the number of observable chemical sources of variation in the system. 
This can be illustrated e.g. in the case where NIR spectroscopy is used to monitor 
milk coagulation (Paper II). The first batch of coagulating milk was measured at 57 
time points at 1400 wavelengths (X size 57 × 1400). The mathematical rank of this 
matrix is 57, a result of the random measurement noise that is present in the NIR 
data. Moreover, milk does consist of several hundred different chemical compounds 
[Fox & McSweeney, 1998]; it is however highly doubtable that 57 chemical sources of 
variation can be observed with NIR spectroscopy during the coagulation. Upon 
inspection and modelling of the data it could be shown that a chemical rank of 1 was 
sufficient to describe the system. 

3.1.1 Principal Components Analysis (PCA) 
PCA is a bilinear method for describing two-way data (X size I × J). The original 
matrix is decomposed into sets of vectors, scores (t) and loadings (p), plus a 
residuals matrix (E). This principle is illustrated graphically below (Figure 3-3) for a 
two-component model: 

 
Figure 3-3 Pictorial illustration of the principle behind Principal Components Analysis the 
original data X is decomposed into scores (T), loadings (P’) and residuals (E) 

The idea is to have the systematic information in the scores and loadings and the 
noise in the residuals. The individual element xi,j in the matrix X (size I × J) is for an 
R-component model thus estimated by [Næs et al., 2002; Smilde et al., 2004]:  
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, =  ,,  ,



	 = 1, . . . , ; 	  1,… 	

  

 

Equation 3-1 

Or if matrix notation is preferred: 

Equation 3-2 

where T is the scores matrix (I × R), PT the transposed loading matrix (R × J) and E 
the residual matrix (I × J). Geometrically PCA can be thought of as orthogonal 
projections of the original data onto latent variables. The first latent variable or 
principal component (set of scores and loadings, t1 and p1) is therefore selected so 
that it describes the maximum variation within data. The first loading vector p1 is 
found as a linear combination of the original X-variables it is selected to have unit 
length. The first set of scores (t1) are computed by orthogonal projection of the 
observed data points onto the first loading. The residual (E1) for PC#1 is the part of X 
that is not described by the combination of t1 and p1, it is found by deflating X with 
the first set of scores and loadings (E1 = X - t1pT

1). A second set of scores (t2) and 
loadings (p2) can then be found from these residuals, the deflation step ensures that 
the second loading is orthogonal to the first loading (Figure 3-4). 

 
Figure 3-4 Geometrical representation of Principal Components Analysis, (  ) original data 
point, (  ) model centre, (--) principal components (PC) 

X = TPT + E  
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The residuals can in the example illustrated in Figure 3-4 be thought of as the 
distance from the original data point (xi,j) to the plane spanned by PC#1 and PC#2. 
The distance from the model centre to the point projected onto the plane is can be 
measured by Hotelling’s T2 value defined as 

Equation 3-3 

 

Where sr is the standard deviation of the r’th score [Kourti & MacGregor, 1996]. The 
Hotelling’s T2 is, in combination with plots of the scores and plots of the residuals, a 
very powerful tool that may be used for outlier detection, one of the many 
advantages when going from univariate to multivariate statistics [Olivieri, 2008]. 

Two competing methods are in general used for estimating the scores and loadings, 
an iterative method (the so-called Non-linear Iterative Partial Least Squares 
(NIPALS) algorithm [Wold, 1966; Wold et al., 2001]) and the Singular Value 
Decomposition (SVD) based algorithm [Smilde et al., 2004]. The NIPALS algorithm 
consists of the steps outlined below:  

 ,





 

The NIPALS algorithm for PCA 
 

0) Autoscale or mean center X. For the number of 
components r=1,2…R compute T and PT by: 

1) Choose a column of Xr-1 as a start guess of tr 
(random choice or column with largest sum of 
squares) 

2) Solve Xr-1  = trpr
T with regards to pr

T: 
p r' = (tr

Ttr)-1 trX r-1 
and normalize p r to length one: p r = p r/‖p r‖ 

3) Solve Xr-1  = tr pr
T with regards to tr: 

tr = Xr-1pr (pr
Tpr)-1 = Xr-1pr (since pr

Tpr = 1) 
4) Repeat step 2 and 3 until convergence 
5) Orthogonalize Xr-1 (deflate with trpr

T): 
Xr = Xr-1 - trpr

T = Er 
6) Start again from step 1 with Xr to extract the next 

principal component 
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The NIPALS algorithm is implemented in the commercial software packages Simca-
P+ [Umetrics, 2008] and The Uncrambler X [Camo, 2004]. It can however be shown 
that the PCA model can be estimated based on SVD. The SVD approach is based on 
the fact that the loading vectors also can be seen as the eigenvectors of the 
covariance matrix of X, cov(X) given by 

 

Equation 3-4 

 

i.e.  

Equation 3-5 

Whereλr is the eigenvalue corresponding to the eigenvector pr. The chemical rank of 
X may be estimated by inspecting a plot of these eigenvalues. The chemical rank is 
estimated as the first R eigenvalues notably larger than the next eigenvalue (R+1). In 
the case of the NIR data from Paper II, a rank of one was chosen since the first 
eigenvalue of Cov(X) was almost a factor 1000 larger than the next two eigenvalues 
(1.67 vs. 6.3*10-3 and 1.66*10-3). 

The SVD of X is noted as: 

Equation 3-6 

And since U holds the eigenvectors of XXT, V the eigenvectors of XTX and S the 
singular values that are equal to the square root of the eigenvalues of both XTX and 
XXT [Strang, 2006] it can then be shown that [Smilde et al., 2004] 

Equation 3-7 

and  

Equation 3-8 

Cov(XXXX)= X
T
X

(I-1)
 

Cov(X)pr=λrpr 

X=USVT
 

T=US 

P=V 
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It is thereby possible to compute the PCA model based on SVD on the covariance 
matrix. The SVD based approach is the standard method implemented in the 
commercial software package PLS_Toolbox [Eigenvector Research, 2011]. 

 

3.1.2 Partial Least Squares Regression (PLS) 
Regression problems are found in almost all fields of science since it is a universal 
problem: Find the connection between the independent variable X (size I × J) and 
the dependent variable y  (size I × 1)3, that is we want to solve 

Equation 3-9 

with regards to b. It is from linear algebra known that the least square solution may 
be used if more samples that variables are found in data (i.e. I >> J). The solution is 
then given by [Smilde et al., 2004]:  

Equation 3-10 

This is known as Multiple Linear Regression (MLR). The requirement of I >> J is due 
to the calculation of (XTX)-1. If X is not of full rank XTX will be singular or ill-
conditioned (i.e. the inverse does not exist or is numerically unstable). This may 
pose a problem in many real life applications (e.g. spectroscopy) where more 
variables than samples are measured and/or where the chemical rank is lower than 
the mathematical rank (i.e. the measured variables are correlated). One solution to 
this problem is Principal Components Regression (PCR). The idea is to compress the 
X data by PCA followed by an MLR step where the dependent variable y is regressed 
on the PCA-scores T. PCR is thereby a two-step solution to the regression problem: 

1) PCA on X to obtain scores T (Equation 3-2) 

2) MLR on the scores [Næs et al., 2002]: 

Equation 3-11 

One drawback of PCR is that PCA has the objective of maximizing the variance 
explained in X, the scores and loadings that are found are not necessarily the 

                                                        
3
 A univariate dependent variable is assumed in this section. It should however be noticed that 

expansion to a multivariate Y is straight forward; this is known as PLS2. 

y=Xb 

b=(XTX)-1XTy 

b = (TTT)-1TTy  
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optimal for prediction of y. Partial Least Squares (PLS) Regression is a solution to 
this issue. It finds latent variables that are a compromise between explaining the 
variance in both X and y. This is done by introducing three underlying models 

Equation 3-12 

Equation 3-13 

Equation 3-14 

PLS finds the solution to this system of equations by maximizing the covariance 
between X and y. More formally this can be written as:  

 

Equation 3-15 

It can be shown that this expression is maximized if [Smilde et al., 2004]  

Equation 3-16 

 

The scores T can subsequently be found by Equation 3-14 and the regression vector 
as [Wold et al., 2001]  

Equation 3-17 

Phatak & de Jong [1997] showed that where PCR works by orthogonal projection, the 
introduction of W in PLS rotates the solution so that the projection becomes oblique 
(Figure 3-2).  

The first PLS-algorithm to appear in literature was a modified version of the earlier 
presented NIPALS for PCA [Wold et al., 2001]. Many different algorithms have since 
then been published, but it is the author’s impression that NIPALS and SIMPLS (an 
algorithm based on SVD [de Jong, 1993]) are the most commonly used ones. 
Anderson [2009] gives a review of nine different algorithms, the overall conclusion 
for NIPALS and SIMPLS are that NIPALS is numerically stable but among the slower 
algorithms, and SIMPLS fast but numerically unstable for a high number of latent 
variables. Anderson does however not consider the numerically instability of 
SIMPLS as a problem with data modelling in practice. SIMPLS is implemented as 

X = TPT + E 

y = TqT + F 

T = XW 

max
w

cov(t,y)|Xw=t and ‖w‖  1 
 

w = 

‖‖‖‖‖‖‖‖ 

b = W(PTW)-1qT 
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standard algorithm in the PLS_Toolbox [Eigenvector Research, 2011], while NIPALS 
is used in The Unscramber X and Simca-P+ [Camo, 2004; Umetrics, 2008]. 

 

3.1.3 Parallel Factor Analysis (PARAFAC) 
PARAllel FACtor analysis (PARAFAC) is a method for decomposing N-way tensors. 
The basic idea is the same as in PCA: Find sets of scores and loadings to represent 
the variation found in the N-way tensor X. The method applies to tensors with 3 
modes or more (hence the name N-way). For simplicity is PARAFAC in this thesis 
explained for N=3 (i.e. X (size I × J × K)), it should however be stressed that 
expansion for 4, 5 or higher orders of tensors are straight forward. 

In PARAFAC the original data in the tensor X, are decomposed into scores for mode 
1 (A) and two sets of loadings (B and C for mode 2 and 3 respectively) [Smilde et al., 
2004], this is illustrated below in figure 3-5: 

 
Figure 3-5 Pictorial illustration of the principle behind PARAFAC 
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The individual element in X (size I × J × K) is for a R-component PARAFAC model 
defined by [Smilde et al., 2004]: 

 

Equation 3-18 

This can in matrix notation be written as: 

 

Equation 3-19 

 

where the individual slab of X (Xk with the size I × J) is modelled by: A (I × R) the 
matrix with the collected first mode scores, BT the matrix containing the second 
mode loadings, and Dk the third mode loadings. The third mode loadings (or c-
vectors) are collected in C (K × R), the k’th column of this matrix is used as the 
diagonal in the diagonal matrix Dk [Smilde et al., 2004]. 

A very appealing feature of PARAFAC is the uniqueness of the model, which results 
in what is also known under the term “Mathematical Chromatography”. This means 
that for truly tri-linear data, where the systematic structure is dependent on three 
different phenomena, so the data therefore cannot be collapsed in either dimension 
without loss of information, a PARAFAC model with the correct number of 
components will find these underlying phenomena [Bro, 1998]. An example of this 
can be found in Paper III where EEM-fluorescence spectroscopy is used to monitor 
a model system of riboflavin breakdown. A good correspondence was found between 
the spectral loadings in the resulting PARAFAC model and the known 
emission/excitation spectra of riboflavin and its breakdown products lumiflavin and 
lumichrome (Figure 3-6). 

,, =  ,,, + ,,



	 = 1, . . . , ; 	 = 1, … 	

 

Xk = ADkBT + Ek 
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Figure 3-6 PARAFAC emission and excitation loadings of the riboflavin breakdown model 
system. Literature reports that Riboflavin has emission/excitation maximum at (λex 450nm 
/ λem 520nm), lumiflavin maximum close to riboflaivn but shifted to slightly lower em./ex. 
wavelengths and lumichrome at (λex 360nm / λem 450nm). 

Another interesting feature of PARAFAC was illustrated in Paper I, where transfers 
of three-way calibrations (based on PARAFAC) were studied. The conclusions of the 
paper was that three-way methods when compared  to two-way (PLS) had lower 
prediction errors, and that as few as four samples could be used for calibration 
transfer (see sections 3.1.4 N-way calibration and 3.1.5 Calibration Transfer) . This 
exemplifies that PARAFAC in the ideal case may use very few samples to estimate 
the underlying tri-linear phenomena. 

The advantages mentioned above are often termed the second order, three-way or 
multi-way advantage [Olivieri, 2008]. There are though, some challenges in applying 
PARAFAC, some of which are associated with the algorithms used for finding the 
models. Most PARAFAC algorithms are based on an Alternating Least Squares (ALS) 
approach [Bro, 1998]. The ALS algorithms works by splitting the parameters that are 
to be estimated into sets. ALS then estimates one set of parameters in a least squares 
sense given initial estimates of the remaining, uses the updated estimates to find the 
next set and iterates over all the sets until convergence [Bro, 1998]. In case of a 
PARAFAC model, an ALS algorithm would therefore iterate over the following steps: 
Estimate A given initial estimates of B and C, then estimate B given C and the 
updated estimate of A, and finally C given the updated A and B until convergence 
(hence the name Alternating Least Squares). The NIPALS algorithm for PCA 
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outlined in section 3.1.1 can thus also be seen as an ALS algorithm (it alternates 
between estimating t and p), but where an deflation step is included in NIPALS to 
ensure orthogonallity between the PC’s this is not done in the PARAFAC algorithms 
since the PARAFAC model does not imply orthogonallity between the PARAFAC 
components [Smilde et al., 2004]. This has the consequence that where the 
sequential NIPALS algorithm provides a nested PCA model (PC#1 in a two 
component PCA model is the equal to PC#1 in a three component PCA model), this 
is not the case for the ALS based PARAFAC algorithms. It will fit all the components 
simultaneously, with the result that the first R components in a given model are 
different from the first R components in a model with (R+1) components for the 
same data [Bro, 1997]. Since the ALS based algorithms may require long computer 
time to fit the individual model, it could therefore be tempting to fit a more complex 
model than expected, and then just inspect the first components, as is often done for 
PCA. Due to the non-nesting it is necessary to fit and inspect the different models 
individually [Bro, 1997]. 

Another effect of the simultaneously fitted components is that if a data set is divided 
in two, the same loadings are found for two sub sets (if the underlying structure in 
data is the same for both sub sets and the correct number of components are used). 
The order of the loadings may however be different for the two sub sets (e.g. loading 
1 for sub set1 = loading 3 for sub set 2). The approach with splitting the data set into 
two is called split half analysis. An example of split half analysis can be found in 
Paper III. Here were the same emission and excitation loadings (Figure 3-6) found 
for several individual three-way tensors that were independently decomposed by 
means of PARAFAC, indicating that the estimated loadings reflect the true 
chemistry in the system. 

Finally it should be mentioned that constrains may be put on the ALS solution. In 
the case presented above, where PARAFAC is applied on EEM-fluorescence data, 
one would expect the excitation and emission loadings to be positive and non-
negativity constrains may therefore be imposed on the mode 2 and 3 loadings to 
force this situation. More advanced constrains may also be imposed. The PARAFAC 
scores can be seen as pseudo concentrations due to the uniqueness of the model 
[Bro, 1997], and in the case where reaction dynamics are followed, constraining the 
scores to follow e.g. first order kinetics would therefore make sense. Paper IV 
presents how such functional constrains can be applied on the PARAFAC scores.  
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3.1.4 N-way calibration  
In section 3.1.2 it was shown how MLR, PCR and PLS can be applied for regression of 
a two-way independent variables X (size I × J) on a dependent variable y. In the case 
where the independent variables form an N-way tensor (X size I × J × K), two 
possible options exists: Either the X data are unfolded to a two-way matrix keeping 
the sample direction intact (X size I × JK) and PLS is applied, or dedicated N-way 
methods are to be used. In the papers by Ståhle [1989], Bro [1996] and Bro et al. 
[2001] PLS was extended to handle N-way data (N-PLS). It is however also possible 
to combine PARAFAC with MLR (or another regression method) in a PCR-like 
manner to obtain an N-way regression model: Decompose X using PARAFAC and 
regress y on the PARAFAC scores A (Figure 3-7). 

 
Figure 3-7 Principal behind PARAFAC based N-way calibration for a one component 
PARAFAC model 

It is in general accepted that N-PLS produces better predictions (just as PLS 
outperforms PCR), but also that interpretation of the model is easier for the 
PARAFAC based regression [Bro et al., 2001; Pedersen et al., 2002]. The PARAFAC 
based approach was applied in Paper I. In this case a non-linear dependence was 
observed between the PARAFAC scores and y. A quadratic function was therefore 
fitted using total least squares. When the N-way method was compared to 2-way 
PLS (based on unfolding X), a poorer performance was seen for the latter. 
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3.1.5 Calibration Transfer 
Section 2 introduced how spectroscopy may be used to monitor food and pharma 
production processes. As also mentioned in the introduction, the on-line 
implementation of e.g. a NIR-spectrometer is not maintenance-free. Apart from the 
spare part replacements needed due to physical wear and tear on the equipment (it 
is placed in a process environment!), the calibration also needs to be maintained. 
This is needed, for instance, due to small continuous changes in the instrument (e.g. 
drift due to filter bleaching) or more sudden changes (e.g. if the instrument lamp is 
replaced by a new one). The spectra obtained using the two lamps for the same 
sample measured under the same conditions will be different and the calibration 
models will thus not necessarily be valid for the new situation. The most 
straightforward solution, of course, would be to re-calibrate for the new 
measurement conditions or to expand the original model for the new situation. 
Unfortunately, this is also the most expensive solution and sometimes technically 
impossible. Standardization and calibration transfer methods have been developed 
aimed at eliminating the need for a full recalibration and to preserve the 
information collected in an existing model. A commonly used approach for updating 
the calibration is so-called slope/off-set correction, either directly on the recorded 
spectra or on the predictions from the calibration model. The method is thus based 
on simple univariate correction between the spectra recorded on the primary and 
secondary instrument or the predicted and the actual y-value for a given control 
sample set [van den Berg & Rinnan, 2009].  This approach is however not always 
sufficient for achieving satisfactory results and more advanced methods have 
therefore been developed. 

The two most popular methods for standardization of two way data are Direct 
Standardization (DS) and Piecewise Direct Standardization (PDS), introduced in a 
series of studies conducted by Wang and co-authors [Wang et al., 1991; Wang & 
Kowalski, 1993a; Wang & Kowalski, 1993b]. The principle behind DS is to find the 
transfer matrix F (J × J) that connects the spectra measured on the primary 
instrument (Xp - I × J) with the spectra recorded on the secondary instrument (Xs- I 
× J). This is in essence a regression problem and is in the DS approach solved by 
using the Moore-Penrose pseudo-inverse: 

Equation 3-20 

Equation 3-21 F = Xs
+ Xp 

Xp = XsF 
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Where Xs
+ indicates the Moore-Penrose pseudo-inverse of the transfer sample 

matrix. Computing the pseudo-inverse may however lead to numerical instabilities 
especially in the case where more variables than transfer samples are measured. PDS 
was developed as a solution to this problem. In this approach the transfer function 
for each variable in the spectrum of the primary instrument is estimated from a 
(symmetric) window surrounding the same variable on the secondary instrument. 
This results in a much smaller (and thus more stable) local inversion step [Wang et 
al., 1991]. 

While a wide array of different methods for transfer of two-way data can be found in 
literature, far less work is available for three-way data. Paper I therefore had the 
focus of modifying existing two-way transfer methods and developing new three-
way methods for calibration transfer. An uncomplicated local linear method was 
demonstrated to be the most favourable of the new methods. The method was based 
on the observation that the on the level of individual emission/excitation channels, 
the counts on the primary and the secondary instrument had a relationship that 
could be modelled with a low order polynomial. Similar performance results were 
obtained for the modified DS/PDS methods and the newly developed three-way 
methods. It was also shown that the three-way advantages allowed application of 
very few transfer samples, though with results that was highly dependent on the 
selection of the transfer set. 

 

3.1.6 Multivariate Statistical Process Control (MSPC) 
Statistical Process Control (SPC) has the objective to investigate whether a process is 
in a state of statistical control [Massart et al., 1997]. It is (in spite of the name) 
concerned with process monitoring rather than process control. In order to keep to 
the terminology of the field the acronym SPC is maintained in the following. The 
monitoring scheme in SPC is largely based on so-called control charts, charts 
showing one or more process variable plotted over time (Figure 3-8).  
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Figure 3-8 Mean or Shewart chart, process variable is plotted over time with process target 
plus upper and lower warning and control limits.  

Figure 3-8 is a so-called mean or Shewart chart; the process variable is charted over 
time with a target or centre line (CL), upper and lower warning limits (UWL/LWL) 
and upper and lower action or control limits (UCL/LCL). Typically the target and 
control limits are based on historical process data where the process was deemed to 
be in statistical control (so-called Normal Operating Conditions/NOC). The target is 
then defined as the mean, and the upper and lower warning and control limits as 
±2σ and ±3σ where σ is the standard deviation around the process mean. Other 
types of charts, such as the Cumultative Sum (CUSUM) chart (good for detecting 
drifts), or the Exponentially Weighted Moving Average (EWMA) chart (which puts 
more emphasis on the last observation than the earlier) may also be used for 
tracking the process variables. The Shewart chart is however by far the most popular 
one in industry [Massart et al., 1997], the focus is therefore kept on this chart and 
the reader is referred to literature for further details on CUSUM or EWMA charts. 

The Shewart chart is based on an assumption of normality of the data, meaning that 
the ±2 and 3σ limits correspond to 95.5 and 99.7% confidence intervals. This also 
has the consequence that for a process which is in statistical control, we may expect 
9 out of 200 samples to be placed outside the warning limits, and 3 out of 1000 
samples to be placed outside the control limits. Different rules for deeming the 
process in or out of statistical control may therefore be encountered in literature, 



Process Modelling 
 

38 

the best known are the eight Western Electric rules which includes two extra 
additional lines at ±1σ in the control chart [Massart et al., 1997; Harris, 2007]: 

1. One point outside UCL or LCL. 
2. Nine points in a row on one side of the CL. 
3. Six decreasing (or six increasing) points in a row. 
4. Fourteen points in a row, alternating down and up. 
5. Two out of three points outside UWL or LWL. 
6. Four out of five points outside the 1σ  line on the same side of the CL. 
7. Fifteen points in a row within the two 1σ  lines. 
8. Eight points in a row beyond either of the two 1σ  lines 

 
When several (correlated) process measurements are to be monitored, the 
univariate methods outlined above might not detect if the correlation structure is 
broken. Methods based on reduction of dimensionality (e.g. PCA [Jackson, 1959] or 
PLS [Kresta et al., 1991]) might in such cases be useful instead. This is known as 
Multivariate Statistical Process Control (MSPC). In the case where a PCA approach is 
taken the Hotellings T2 (Equation 3-3 - distance from the model centre) known as 
the D-statistic, and the residuals (E), the variation not explained by the model, 
measured in the Q-statistic, are applied. The Q-statistic is for the i’th sample based 
on the sum of squared residuals [Jackson & Mudholkar, 1979]:  

 

Equation 3-22 

By charting D and Q it is possible to get an answer to the question of whether the 
process is behaving according to NOC. Since both D and Q always are positive only 
upper control limits are used for D and Q charts [Massart et al., 1997]. 

The process illustrated in Figure 3-8 assumes a stationary process where the target is 
not changing over time. It should be mentioned that charts with a moving mean 
may be constructed; such charts were presented in Paper II and III, just as charts 
with non-symmetrical CI’s may be constructed e.g. based on re-sampling of the 
NOC data [Conlin et al., 2000]. 

The main set of methods within MSPC is primarily post-problem, rather than pre-
problem (i.e. there needs to be an error before we see it). If pre-problem monitoring 

 (, − ,)



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is to be achieved time series models are needed. One possible class of these – the 
state space models – will be introduced in section 3.2 State Space Models. 

As it was outlined in the introduction an end-target is often used in the case of 
batch process monitoring. Predicting this end-point (or the quality at the end-point) 
is therefore of interest. A commonly used method for predicting end-point quality of 
batches was presented in 1995 by Nomikos & MacGregor [Nomikos & MacGregor, 
1995a]. In the case that a number (j = 1, 2… J) of process variables are followed over 
time (k = 1, 2… K) for several batches (i = 1, 2… I), a three-way tensor of the observed 
data Y (I × J × K) can be formed. The method is based on collecting the 
corresponding quality variables (m = 1, 2… M) in matrix Z (I × M), unfolding the 
observed training data in the batch direction to obtain Y (I × JK) and regressing the 
autoscaled Y on Z using PLS2 (Figure 3-9) [Nomikos & MacGregor, 1995a]. 

 
Figure 3-9 Nomikos & MacGregor PLS-approach for end-point prediction 

A challenge when applying the method on-line for new batches is the fact that not 
all data points for the new vector are available. E.g. if the total batch run is 89 steps 
long (K = 89) and we are currently at k = 20 the remaining 69 time steps are yet 
unknown. Different methods are available for estimating the process outputs during 
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the remaining time steps. Nomikos & MacGregor [1995b] showed that simply setting 
the remaining time steps to missing, and using the ability of PLS to estimate the 
missing data is the best in a range of methods compared. It does though require the 
trajectories not to exhibit frequent discontinuities and approximately 10% of the 
batch history needs to be recorded before reliable results can be obtained [Nomikos 
& MacGregor, 1995a; Nomikos & MacGregor, 1995b].  

 

3.2 State Space Models 
Where chemometric methods has their origin in analytical chemistry [Esbensen & 
Geladi, 1990], the state space model has its origin in control or systems engineering 
(especially the fields of aerospace and electrical engineering [Luyben, 1996]). This 
has the consequence that slightly different notations will be used in this section. In 
the introduction the concepts of system, input, output and disturbances were 
introduced. Following the conventional notation in the field of systems engineering 
the following representation is used:  The output vector (at time k) will be labeled 
yk, the input uk, system and measurement noise wk respectively vk and the state 
vector, a latent representation of the current state of the system xk [van Overschee & 
De Moor, 1996; Ljung, 1999].  

State space models are linear, time-invariant relations between the physical inputs 
to the system at time k, and the physical outputs (measurements) at time k, 
connected via the state-vector [van Overschee & De Moor, 1996; Ljung, 1999]. A 
discrete time state space model can be written via vector/matrix products as shown 
in Equation 3-23 and Equation 3-24. 

Equation 3-23   

Equation 3-24   

Equation 3-23 is often referred to as the system equation (reflecting that it describes 
how the system evolves over time via the difference relationship of the state vector 
xk) while Equation 3-24 is called the measurement equation (it describes how the 
measured output is related to the state of the system). The A-matrix is called the 
system matrix which describes how the system (or the states) evolves from one 
time-step to the next; A thereby describes the system dynamics. The input matrix B 
explains how a control input at time-step k would affect the system at k+1. C is 

xk = Axk-1
 + Buk-1 + wk 

yk  = Cxk + Duk +vk 
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referred to as the measurement matrix representing, as stated previously, how the 
states are reflected in the physically measured outputs (yk). The fourth matrix (D) is 
called the (direct) feed-though, it explains how a control input (at time step k) can 
directly be observed in the output at time step k. This term is however seldom 
included in modelling, and is also not included in the models presented in this 
thesis. In case of purely stochastic time series (without any inputs such as in Paper 
II) state space equations may also be used to model the data and this is done by 
leaving out the B and D terms of the equations. The conceptual links between the 
input/output formulation of a system and the state space notation can be illustrated 
as in Figure 3-10. 

 
Figure 3-10 Data flow in state space models, only the input (uk) and the output (yk) are 
observed. ∇∇∇∇ is the backward-shift operator (∇∇∇∇(xk+1)= xk) 

Several things are worth noticing in Figure 3-10. First of all it is seen how all system 
dynamics are collected in A, this has the consequence that inspection of the 
eigenvalues of A can be used for assessment of the system or model stability. This is 
a central diagnostics tool for state space models, further notes on stability and these 
eigenvalues can be found in section 4.3. Figure 3-10 also illustrates that disturbances 
affect both the system (wk) and the measured output (vk). Finally the figure also 
illustrates why D is referred to as the (direct) feed-though; D takes the input (uk) 
and directly feeds it to the output (yk). An important note should be attached to the 
system states (xk). Just as loadings and scores in a PCA model not necessarily 
correspond to e.g. pure compound spectra or concentrations, so do the system states 
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not necessarily coincide with physical phenomena in the system (e.g. concentrations 
in a chemical reactor). They should instead be seen as a latent representation of the 
dynamics spanning the subspace of relevance for the system. It may however 
sometimes be possible to rotate the states into physically meaningful entries [van 
Overschee & De Moor, 1996] similarly to that PCA scores and loadings in some cases 
may be rotated to ease interpretation [Lawaetz et al., 2009]. 

Just as PCA models may be estimated by the iterative NIPALS or the SVD based 
method, state space models may either be fitted using iterative predictor-error 
methods (PEM), or by using so-called subspace methods that are based on 
projection of data on subspaces using SVD.  Section 3.3.1 – on system identification 
will elaborate on the algorithms and how the models can be estimated. 

 

3.2.1 The Kalman Filter 
A common challenge faced when applying process models is the difference between 
measurement and model prediction: The measurement gives one estimate of the 
current process output, but the process model suggests another. It is known that 
both model and measurement are hampered by inaccuracy and uncertainty. One of 
the strengths of the state space model is easy implementation of what is known as 
the Kalman filter, a so-called optimal linear observer. It gives an answer to the 
challenge of measurement vs. model, making it possible on one hand to find the 
best compromise between the two, but also to estimate confidence intervals of the 
future process output. The filter was (in the form presented in this thesis) originally 
published by Rudolph Kalman in 1960 [Kalman, 1960a]. Previous work had been 
done on filtering of time series (e.g. the Wiener filter [Wiener, 1949]), but only very 
few practical implementations of the filtering algorithms were found in literature 
during the 1950’ies. This was however changed with the introduction of the Kalman 
filter, mainly due to its adaptive nature, but also as a result of the quick adaptation 
by NASA for the Apollo space program [Simon, 2006]. The filter became hereby 
well-known and has since spread to other fields of science and engineering. 

The Kalman filter works by balancing the system noise (wk Equation 3-23) and the 
measurement noise (vk Equation 3-24). Both noise sequences are in the Kalman filter 
assumed to follow a normal distribution with wk ∼N(0,Q) and vk ∼N(0,R). This 
indicates that both the system and the output measurements are affected by 
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uncertainty at each time step. The Kalman filter combines the noise corrupted 
measurements of the system output (yk) with the predicted system output (Cxk) in a 
statistical optimal manner [Maybeck, 1979]. 

Equation 3-23 makes it possible to estimate the state at time-step k (xk
-) from the 

previous state (xk-1) and the previous input (uk-1), this estimate is known as the a 
priori estimate at time step k (indicated by the “super minus”). The Kalman filter 
combines the noisy measurements yk with the predicted system output Cxk by 
finding the a posteriori system state as a linear combination of the a priori system 
state and a weighted difference between measured yk and anticipated response Cxk

-. 

Equation 3-25 

The difference (yk - Cxk
-) (also known as the innovation) can be computed straight 

forward, and reflects how large the agreement between the actual system output 
measurement and the system model is. 

The estimation errors for the system states are given by:  

Equation 3-26 

Equation 3-27 

With the a priori Pk
- and a posteriori Pk covariances defined as: 

Equation 3-28 

Equation 3-29 

Kk in Equation 3-25 is known as the Kalman gain; it is chosen so that the a posteriori 
system state error covariance (Pk) is minimized. One common definition of the 
Kalman gain is [Maybeck, 1979]: 

Equation 3-30 

Where R is the measurement noise covariance (associated with vk in Equation 3-24). 
Equation 3-30 illustrates how the Kalman filter balances the error covariances to 
give weight to either the actual measurement (yk) or the predicted measurement 
(Cxk

-). If the measurement noise covariance (R) is small (the measurements are 
trusted), the Kalman gain becomes large and Equation 3-25 subsequently weights up 
the innovation, driving the a posteriori system state away from the predicted 

xk = xk
- + Kk(yk - Cxk

-) 

ek
- = xk - xk

- 

ek = xk - xk 

Pk
- = E[ek

- ek
-T] 

Pk = E[ek ek
T] 

Kk = Pk
- CT(C Pk

-CT + R)-1 
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measurement (xk
-) towards the actual measurement (yk). The opposite is of course 

also the case, the a priori system state error covariance (Pk
-) depends on the system 

noise covariance matrix Q (see Equation 3-32 below). If Q is small, Pk
- will also be 

small, resulting in a likewise smaller Kalman gain, meaning that the predicted 
measurement will be trusted more. Using the right estimates for Q and R (or rather 
the relative size ratio) is therefore of key importance to obtain the right Kalman 
filter estimates. And while the measurement noise covariance (R) is often known or 
easily estimated, the process noise covariance matrix (Q) is less easily available since 
the states in xk themselves are estimates that are not directly observed. Mehra [1970; 
1972] showed that a sub-optimal estimate can be obtained as:  

Equation 3-31 

With P0 being the initial error covariance matrix for the system states and K0 the 
initial Kalman gain. Procedures for better estimates of Q have been published (e.g. 
Odelson et. al. [2006] and Rajamani & Rawlings [2009]), but they do not provide a 
simple closed form expression. The approach presented in Equation 3-31 was applied 
in Paper III; it was however also shown that more attractive process output 
estimates could be achieved when the Q/R-ratio was tuned (discussed below).  

The a priori error covariance matrix (Pk
-) can at time step k be found from the 

relationship  

Equation 3-32 

It is updated after a measurement updated to the a posteriori error covariance (Pk) 
by: 

Equation 3-33 

Where I is the identity matrix, and Kk the Kalman gain from Equation 3-30. Based on 
the a posteriori error covariance the output covariance matrix Sk is found by [Mehra, 
1972]:  

Equation 3-34 

It can be shown that under the assumption that the process and measurement noise 
are normal, the state estimates are also normal [Welch & Bishop, 2006]. 
Furthermore it is well known that a linear transformation of a normally distributed 

Sk = CPkCT + R 

Q = P0–A(I-K0C)P0AT 

Pk
- = APk-1AT+Q 

Pk = (I-KkC) Pk
- 
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process results in a process that is also normally distributed. The vector of (1-α) 
confidence intervals cik for the predicted output at time k can therefore be found as: 

Equation 3-35 

Where Φ1-α/2 is the (1-α/2) quantile of the standard normal distribution and diag(Sk) 
the diagonal elements of Sk [Brockwell & Davis, 2002]. 

Paper III showed how a combination of state space models and Kalman filters could 
be used for batch process modelling and monitoring. Based on NOC training data, it 
was shown how the proposed method was able to capture and model the dynamics 
of a batch process. The implementation of the Kalman filter made the method 
adaptable to new non-NOC conditions (Figure 3-11).  

 
Figure 3-11 Kalman filter estimates and predictions of future process output. 

Figure 3-11 shows the observed process outputs (grey), Kalman filter estimates (blue) 
and predictions of future process output (black) with 95% CI (dotted).  The figure 
illustrates the adaptive nature of the Kalman filter. At k = 3 a bias is seen between 
the predicted and observed system outputs, likely due to an inaccurate estimate for 

cik = yk ± Φ1-α/2 diag() 
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the batch boundary conditions x0. After observing the next data points and 
correcting the states correspondingly the bias is removed, and there is a good 
correspondence between the predicted and the observed system outputs. One would 
of course not have access to the future outputs in a monitoring situation, but the 
comparison is nevertheless very valuable as a validation tool for the models at hand. 
Figure 3-11 also indicates why the term Kalman filtering is used; the noisy 
measurements are passed through a filter whereby the noise is reduced, the 
resulting process output then appears as a smoother trajectory that corresponds well 
to the trajectory that one would intuitively expect based on chemical insight in the 
absence of noise. This illustrates that the Kalman filter essentially is a statistically 
optimal compromise between the observed trajectory and the trajectory predicted 
by a model. 

Paper III also compared methods for end-point prediction in batch modelling. The 
average of the PARAFAC scores for the last five time points was in this case used as 
end-point estimate. Figure 3-12 shows control charts for end-point prediction of a 
NOC batch. The Nomikos-MacGregor PLS method (section 3.1.6) is compared to the 
Kalman filter with Q/R estimated with the Mehra approach (Equation 3-31) and a 
tuned version of Q/R. 

 
Figure 3-12 Control charts for end-point prediction. Nomikos-MacGregor PLS end-point 
method is compared to Kalman filter estimates with Q/R estimated using the Mehra 
approach (Left) and a tuned version (Right). 

It is noticed that both the PLS and the Kalman predictions are close to the actual 
end-point already from the beginning. The figure also illustrates that fairly noisy (or 
jerky) end-point predictions are obtained by the Kalman method for the Mehra 
estimate of Q/R. It is known that the Mehra approach gives a sub-optimal estimate 
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of Q, and it has been shown that the estimates are pessimistic [Odelson et al., 2006]. 
It was speculated that the filter was able to suppress this noise by tuning the ratio 
between Q and R. Warning limits and other parameters are normally tuned in 
MSPC (section 3.1.6) based on validation performance indicators of the control 
charts ones in use. The right panel in Figure 3-11 gives an illustration of this where a 
twenty times reduction of Q is used. This comes however with the price of trusting 
the model more and therefore with the risk of delays in capturing deviating 
behaviour in a statistical monitoring situation. 

It should be kept in mind that though both the state space/Kalman method and the 
PLS method have the aim of modelling batch data, the objective of the two methods 
are quite different. Where the first method has the goal of capturing and modelling 
the dynamics via the system matrices [van Overschee & De Moor, 1996], the 
unfolding and autoscaling in the latter method has according to Nomikos & 
MacGregor the objective of “removing the main non-linear and dynamic components 
in the data” [Nomikos & MacGregor, 1995b]. This has the consequence that different 
questions can be answered with the two methods (Figure 3-13).  

 
Figure 3-13 Different questions may be answered with the different available modelling 
tools 
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As it was outlined in the introduction different questions may be asked during real-
time surveillance of processes. One common question to ask is whether the process 
is on track or not (“where is the process now?”). Control charts of the observed 
outputs (Figure 3-13B) may help in answering this question but do not necessarily 
reflect if the dynamics are behaving according to NOC, while control charts of the 
states and dynamics can. Paper II presented such control charts. Another question 
that could be of great interest is what the end-point quality of the batch is going to 
be (“where is the process going?”). The PLS method is especially suited for predicting 
the end-point quality, but does not include predictions on how the batch will evolve. 
As Figure 3-13C shows, this is the aim of the state space/Kalman filter model. Via a 
combination of model predictions and observations the batch trajectory is predicted 
for the remaining time steps. A final question that may be of interest is whether the 
initial conditions for the process were within the specifications (“where did the 
process start from?”). PLS – or any other regression algorithm - may be used for 
predicting the initial conditions, but where the state space model directly gives 
initial condition estimates, a separate PLS regression model would be required for 
predictions of the initial conditions because model inversion is not obvious. Paper 
II presented dynamical control charts of the initial conditions estimates based on 
state space models, directly providing an overview of whether the batch started at 
NOC. In the case where post-batch analysis is wanted, e.g. to compare long-term 
performance of a batch-wise production environment, this may be based on either 
PCA or PARAFAC (Figure 3-13A) of the recorded batch data, dependent on the data 
structure. Paper IV presented how such post-batch charting of the relevant process 
parameters – the kinetic constants - may be performed. The method thereby made it 
possible to assess if the batch had followed NOC or not based on PARAFAC, 
corresponding to the question “Did my batch do okay?”. 
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3.3 System Identification 
The state space model was introduced previously. The question of how to identify 
the matrices in the state space equations (Equation 3-23 and Equation 3-24) 
remained however open. Overall there can be three levels of process knowledge: 

1. Physics and chemistry governing the process is well known (e.g. we know 
that the process can be described by a first order differential equation with 
known coefficients) 

2. Physics and chemistry governing the process is somewhat known (e.g. we 
know that the process can be described by a first order differential equation, 
but we don’t know the coefficients) 

3. Only limited knowledge is available on the physics and chemistry governing 
the process (e.g. we can observe the input and the outputs of the system, but 
don’t know how they are connected). 

In the case of level 1 knowledge, so-called white box modelling can be applied. 
White box modelling consists of process models based on mechanistic or first 
principles. Unfortunately this is often not the case, and only limited knowledge on 
the physics and chemistry is typically available (level 3). This leads to the need of 
System Identification (SI) tools; so-called black box methods that allow modelling of 
processes (or systems) based only on observations of system inputs and outputs. An 
appealing feature of many of the SI-tools is that they allow inclusion of a priori 
knowledge on the system, i.e. the intermediate knowledge level 2 where some 
process knowledge is available. This is (for obvious reasons) known as grey box 
modelling [Roffel & Betlem, 2006]. 

It was indicated in the introduction to state space models that the estimation 
algorithms could be specified using the projection based subspace methods, they 
may however also be specified by means of the iterative predictor-error algorithms. 
The predictor error method works by iteratively changing the model coefficients in 
order to minimize the prediction error (hence the name) [Ljung, 1999]. A wide range 
of different weights, criteria and settings can be used for the PEM. It is out of scope 
for this thesis to cover them all, the reader is therefore referred to Ljung  [1999] for 
more details on PEM, but some comparing notes on the subspace methods vs. PEM 
should however be made here (Table 3-2) 
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Table 3-2 Comparison of Predictor Error and Subspace Methods 

 Predictor Error 
Methods 

Subspace Methods 

Algorithm is based on Iterations Projections (SVD-based) 
What needs to be pre-
defined? 

Full parameterization 
needed 

Size of Hankel matrix 
and system order 

Has the smallest 
prediction error 

Yes No 

Potential convergence 
problems? 

Yes No 

Speed of algorithm Slow - May require many 
iterations 

Fast – no iterations 
needed 

From Table 3-2 it is evident that there are advantages and drawbacks of both PEM 
and subspace methods. A full parameterization is needed for the PEM (i.e. we need 
to know/guess the model structure), this is not the case for the subspace methods, 
where it is required to select the size of the so-called Hankel matrix (defined below), 
and the order of the model - both can be determined during modelling. The lack of 
parameterization can however also be a drawback if grey-box modelling is wanted; 
in that case PEM is more applicable [Ljung, 2010]. The iterative nature of PEM 
makes it slower than the subspace methods and also introduces a risk of not 
achieving convergence. The prediction error is however intrinsically smaller for the 
PEM than for the subspace methods. Procedures where a subspace method is used 
for initial modelling followed by PEM optimization has therefore been proposed 
[van Overschee & De Moor, 1996; Ljung, 2010], experience from industry has 
however shown that the improvements gained by the PEM step is limited [Wahlberg 
et al., 2007]. 

 

3.3.1 Subspace Methods for State Space Modelling 
As Table 3-2 indicates two decisions have to be made during subspace modelling: 
The size of the Hankel matrices and the model order n. A Hankel matrix is 
symmetric and has the same elements across the off-diagonals. Written out for the 
input series (u0, u1, u2 … ui+j-1) and corresponding output series (y0, y1, y2 … yi+j-1) in 
Equation 3-23 and Equation 3-24, the Hankel matrices would thus be [van Overschee 
& De Moor, 1996]: 
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Equation 3-36 

A similar Hankel matrix (effectively a row and column time-shifted data 
representation) can be defined for the states series (x0, x1, x2 … xi+j-1) where each 
entry is a vector of length n (the rank of the system) instead of a scalar. The 
separation between “past” and “future” data reflects how future inputs, outputs and 
states can be regressed on past inputs, outputs and states. The selection of the 
number of block rows (the “past” and “future” horizons) should be made so that i is 
larger than the expected system order n, while i+j+1 is determined by the length of 
the available training time series.  

The input and output Hankel matrices can be combined in a block Hankel matrices 
W. The “past” block Hankel matrix Wp would thereby e.g. be defined as [van 
Overschee & De Moor, 1996]: 

 

Equation 3-37 

 

The chemical/physical rank of Wp is an estimate of the true underlying number of 
dynamic components (which could be called eigenfrequencies) in the system. Wp 
can therefore be used to estimate the system order n. Just as the eigenvalues of the 
covariance matrix can be used for decision on the chemical rank of the system (the 
number of PCA components), the singular values of the block Hankel matrix may be 
inspected to assess the number of dynamic components/ the system order. Paper II 
and III illustrated how this may be done. The block Hankel matrices for the 
observed data are closely related to the concepts of observability and controllability 
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of the system states [van Overschee & De Moor, 1996]. States can in general terms be 
said to be observable if they can be uniquely determined from the output yk of the 
system. A useful system related matrix is the observability matrix Γ, it was originally 
introduced by Kalman [1960b] defined as:  

 

 

Equation 3-38 

 

 
If the rank of Γ is equal to n (the system order or number of elements in the state 
vector xk) then the system is observable [Kalman, 1960b; van Overschee & De Moor, 
1996]. Another useful system related matrix is the controllability matrix Δ. It is, as 
the name suggests, related to the controllability of the system. The system is 
controllable if it can be brought to any desired state by the input series uk. The 
controllability matrix is defined as [Kalman, 1960b; van Overschee & De Moor, 1996]: 

  

Equation 3-39 

The last system related matrix that needs to be defined is the lower block triangular 
Toeplitz matrix H:  

 

 

Equation 3-40 

 

 

It can be shown [De Moor, 1988] that the original vector/matrix computations in 
Equation 3-23 and Equation 3-24 can be reformulated in the following format by 
means of the system related matrices as defined above:  
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Equation 3-41 

Equation 3-42 

Equation 3-43 

The different subspace algorithms available essentially solve this set of equations 
from which the A, B, C and D matrices in Equation 3-23 and Equation 3-24 for a user 
defined rank n of the system are estimated. The term “subspace” refers to the fact 
that the first step in the algorithms is an oblique (or non-orthogonal) projection O 
of the “future” outputs (Yf) on the “past” block Hankel matrix Wp along the future 
inputs Uf (Figure 3-14). 

 
 
Figure 3-14 Oblique projection  of "future" outputs on "past" block Hankel matrix along 
future inputs 
 

SVD is then calculated for this weighted oblique projection:  

Equation 3-44 

Where G1 and G2 are weights determined by the specific algorithm (discussed 
below).  and  are then used to determine the observability matrix (Г) by  

Equation 3-45 

And since the oblique projection is equal to the product of Г and the states (Xk), is it 
possible to determine the states by  

Equation 3-46 

where the Moore-Penrose pseudo inverse of the observability matrix is used. The 
boundary between “past” and “present” can then be shifted one step in order to 

Yp = Г Xp + H Up 

Yf  = Г Xf +  H Uf 

Xf  = AXp + Δ Up 

 

G1OG2 =  

Г= G1 ½ 

X = Г+O 
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determine the states at the next time step (Xk+1), making the A, B, C and D matrices 
the only unknowns in the system of linear equations that can thus be solved by least 
squares.  

Paper III showed how a deterministic time series (with input signals) could be 
modelled. The computations were in this case made using the Numerical algorithm 
for Subspace State Space System Identification (N4SID algorithm) from the Systems 
Identification toolbox. N4SID uses the data flow outlined above where G1 and G2 is 
identity [van Overschee & De Moor, 1996]. 

Paper II discussed and presented the case where a purely stochastic time series 
(without input signals) is modelled. The Canonical Variates Analysis (CVA)-based 
stochastic Algorithm 3 from the book “Subspace Identification for Linear Systems” 
by Peter van Overschee and Bart de Moor was used. G1 contains in this case the 
inverse square roots of the covariance estimate of the future outputs and G2 is 
identity. Since no input signals are available the “past” block Hankel matrix is in this 
case equal to the “past” outputs (Yp) and the algorithm then follows the same flow as 
in the deterministic case: Determine O from “future” outputs and the block Hankel 
matrix (=“future” outputs Yf), determine the observability matrix (Г) from the 
weighted O, determine the states by X = Г+O, and solve the system of linear 
equations by least squares. The algorithm furthermore has the additional feature to 
produce positive real covariance sequences, making the solutions produced by the 
algorithm physically/chemically meaningful. The price to pay for this is a bias in the 
solution [van Overschee & De Moor, 1996]. 
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3.3.2 Designing Experiments for process modelling 
Much process knowledge can be gained by inspecting and modelling historical 
process data. There are however also some drawbacks on only using historical data 
[Roffel & Betlem, 2006]: 

1. The historical data is often collected under closed loop conditions (see 
section 4.1 for definitions of open and closed loop). Assuming the process is 
well controlled, this has the consequence that only limited variation is to be 
seen in data. 

2. The process is only operating in a given range, knowledge on possible new 
operating points outside this range is therefore not available. 

3. Under NOC is there a risk of correlation between the different inputs, this 
confounding makes it impossible to find the effect of each input. 

This illustrates the need for designed experimental data if the full potential of the 
process models outlined above is to be exploited. How the experiments should be 
designed is however dependent on the type of model and what the aim of the 
modelling is.  

The first question to ask is if the model should describe dynamics or statics of a 
process. The statics of a process may on first hand sound uninteresting, but this is 
far from the case! The statics of a process is what is explored when a design space 
investigation is made for the process [Roffel & Betlem, 2006]. As also outlined in the 
introduction response surface modelling [Box et al., 1978] is of key interest in such 
cases, illustrating that Design of Experiments (DoE) is (or should be) central during 
modelling. This is also the case when a PLS calibration should be build, since a good 
model depends on a good calibration data-set, literature on mixture designs (e.g. 
[Smith, 2005]) could in these cases prove useful. 

The dynamics of a process is related to how the system evolves from one time-step 
to the next. The state space models and subspace methods outlined above are 
therefore good tools for modelling the dynamics. In the case where such models are 
wanted, systematic perturbation of the process input is to be done [Roffel & Betlem, 
2006]. These perturbations may be done using different patterns (Table 3-3).  
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Table 3-3 Different perturbation patterns and corresponding outputs 

Signal name Perturbation 
pattern 

Notes 

Step 

 

Simple, may be used for 
estimating rise- and dead-times, 
often easy to implement in daily 
production 

Pseudo Random 
Binary Sequence 
(PRBS) 

 

In general a good pattern for 
exciting different modes in 
process, long run-times may 
however be required 

Sinusoid 

 

Good alternative to PRBS, only 
limited frequencies are however 
excited  

An overall guiding principle is however that the input signal should have the largest 
possible frequency content [Ljung, 1999], meaning that the only the 
eigenfrequencies of the system that are excited by the signal can be observed in the 
corresponding output. The term a “rich” input signal, or a signal of “sufficient 
excitement” has been used for signals that fulfil this requirement [Ljung, 1999]. One 
can as an analogy think of fluorescence spectroscopy (section 2.2); with this method 
we are only able to measure the analytes that we actually excite, and if the excitation 
frequency does not correspond to a given analyte we will not be able to detect its 
presence. 

The step function is a simple input change that is often used for identification 
purposes in industry [Wahlberg et al., 2007], it may be used to find the system dead 
time (“if I change the input now, how long time does it take before I see the output 
change”), but it can also be used to find the system rise time (“when the output 
starts to change, how long time does it take before it is at the new equilibrium”). 

The Pseudo Random Binary Sequence (PRBS) can be seen as a series of step 
functions at random time points. It is a well-defined signal that can be designed to 
ensure that the mean and covariance matrix have some mathematically attractive 
properties (such as easy analytical inversion of the covariance matrix) [Ljung, 
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1999].The attractive features of the PRBS comes however also with a price to pay: In 
order to achieve the attractive mathematical properties the PRBS length should be 
equal to at least five times the major time constant of the process, plus dead time 
[Roffel & Betlem, 2006]. This may result in long required run-times, plus knowledge 
on the dead time and the major time constants are needed – which in essence is 
what we want to find … 

Sinusoids may be a good alternative if it is not feasible to use a PRBS. It may for 
some systems (e.g. due to safety reasons) not be possible to change the input level in 
steps. Perturbing the input to follow a sinusoid may then be an alternative, a 
drawback is however that the signal is not necessarily as “rich” as for a PRBS [Ljung, 
1999].  

It may also be of interest to select the sampling frequency. A differentiation between 
the sampling frequency done during the experiment, and the actual data points 
included during modelling phase should be made. Modern process monitors may 
gather e.g. spectra at a very high frequency almost without any cost. Intuitively one 
would therefore most likely go for the highest possible sampling frequency. During 
the modelling phase it may however be required to either up- or down-sample the 
data (i.e. either resample the data or only use every 10th data-point). Care should be 
taken if up-sampling is to be done, since this easily may introduce new false 
dynamic components in the data. Paper II showed how so-called zero-order-hold 
re-sampling could be done to avoid introduction of false dynamic components. 
Blindly using the highest possible sampling frequency during modelling is also not 
advisable, since it can be shown [Ljung, 1999] that too high a sampling frequency 
may lead to a large variance of the estimated coefficients. The optimal sampling 
frequency is therefore a trade-off between the two: On one hand we want to capture 
the dynamics of the system, but on the other hand we want a small variance of the 
estimated model coefficients. This also means that the term “real time” used 
habitually in literature by itself is meaningless and instead depends on the system 
dynamics; if the dynamics are slow (e.g. time constants in the range of hours) “real 
time” may be a sampling frequency of 1 h-1. Seen from a practical viewpoint an 
estimate of the optimal sampling frequency can be made by making a step change in 
the input, and then selecting the sampling frequency so that 4-6 samples are 
recorded during the rise time [Ljung, 1999]. 
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3.3.3 System Identification of an Ultrafiltration Process 
During the initial phase of this PhD-study experiments were conducted on an 
Ultrafiltration (UF) process with the aim of performing System Identification on the 
process. UF is a membrane-based separation method commonly used as an up-
concentration method in the dairy industry [Walstra et al., 2006]. The method is 
based on feeding the raw material (typically skimmed milk or whey) on a membrane 
using a high pressure. Depending on the pore size of the membrane some larger 
molecules (e.g. proteins) will be retained while smaller molecules (e.g. salts or 
sugars) will be able to pass through the membrane [Walstra et al., 2006]. The feed is 
hereby separated in two streams, a high concentration stream known as the 
retentate, and a low concentration stream known as the permeate (Figure 3-15).  

 
Figure 3-15 Principle in membrane filtration, the feed is separated in a high concentration 
retentate stream and a low concentration permeate stream (Modified after Walstra et al. 
[2006]). 

Experiments were conducted using recombined skimmed milk as raw material. The 
initial experiments on the process showed that, from a range of candidate methods - 
EEM-fluorescence, IR and NIR spectroscopy - the first mentioned had the potential 
to serve as a tool for process monitoring. Two BioView EEM fluorescence process 
spectrometers were therefore used as in-line spectrometers, one on the permeate 
stream and one on the retentate stream (Figure 2-6).  Based on the initial 
experiments a PRBS was designed to excite the system, changing the feed pressure 
(60 or 80% of maximum) and the concentration of the feed (55 or 50% dry matter) 
Figure 3-16. 
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1999].The attractive features of the PRBS comes however also with a price to pay: In 
order to achieve the attractive mathematical properties the PRBS length should be 
equal to at least five times the major time constant of the process, plus dead time 
[Roffel & Betlem, 2006]. This may result in long required run-times, plus knowledge 
on the dead time and the major time constants are needed – which in essence is 
what we want to find … 

Sinusoids may be a good alternative if it is not feasible to use a PRBS. It may for 
some systems (e.g. due to safety reasons) not be possible to change the input level in 
steps. Perturbing the input to follow a sinusoid may then be an alternative, a 
drawback is however that the signal is not necessarily as “rich” as for a PRBS [Ljung, 
1999].  

It may also be of interest to select the sampling frequency. A differentiation between 
the sampling frequency done during the experiment, and the actual data points 
included during modelling phase should be made. Modern process monitors may 
gather e.g. spectra at a very high frequency almost without any cost. Intuitively one 
would therefore most likely go for the highest possible sampling frequency. During 
the modelling phase it may however be required to either up- or down-sample the 
data (i.e. either resample the data or only use every 10th data-point). Care should be 
taken if up-sampling is to be done, since this easily may introduce new false 
dynamic components in the data. Paper II showed how so-called zero-order-hold 
re-sampling could be done to avoid introduction of false dynamic components. 
Blindly using the highest possible sampling frequency during modelling is also not 
advisable, since it can be shown [Ljung, 1999] that too high a sampling frequency 
may lead to a large variance of the estimated coefficients. The optimal sampling 
frequency is therefore a trade-off between the two: On one hand we want to capture 
the dynamics of the system, but on the other hand we want a small variance of the 
estimated model coefficients. This also means that the term “real time” used 
habitually in literature by itself is meaningless and instead depends on the system 
dynamics; if the dynamics are slow (e.g. time constants in the range of hours) “real 
time” may be a sampling frequency of 1 h-1. Seen from a practical viewpoint an 
estimate of the optimal sampling frequency can be made by making a step change in 
the input, and then selecting the sampling frequency so that 4-6 samples are 
recorded during the rise time [Ljung, 1999]. 
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Figure 3-16 Manipulation patterns used in UF-experiments 
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Fluorescence EEMs were recorded each minute and PARAFAC models were fitted 
for the spectra. A one component model was made for the permeate stream and a 
two component model for the retentate stream. Inspection of loadings (not shown) 
revealed that the permeate component corresponded to riboflavin and the two 
retentate components to riboflavin and the milk proteins. The corresponding score 
values are given in Figure 3-17 together with the manipulation profile. 

 
Figure 3-17 PARAFAC scores and PRBS applied in UF experiments 

Figure 3-17 shows how no clear effect of the PRBS is seen in neither the retentate nor 
the permeate signal. The concepts of sufficient excitation, stability and observability 
were introduced above (section 3.3.1).  The experiments conducted on the UF plant 
showed how the high stability of the system prevented successful identification due 
to lacking observability of any changing states which in turn corresponds to the fact 
that the input signal was not of sufficiently rich. Several other experiments were 
done with other step or PRBS signals as inputs though without obtaining any better 
results. The process or unit operation in focus for the PhD-study was for this reason 
(among others) changed towards the other cases covered in this thesis. 
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3.4 State space and other dynamic models in 
chemometrics – review of relevant literature 

In the introduction to the state space models (section 3.2) it was indicated that the 
state space model, the Kalman filter and System Identification algorithms originated 
in the control community. This means that many papers on the three subjects may 
be found in dedicated control engineering journals such as Journal of Process 
Control, Automatica, Chemical Enginerring Science, The American Institute of 
Chemical Engineers Journal or Technometrics. A literature search, March 2012, on the 
three subjects in Thompson Reuters Web of Science also reveals that an impressive 
amount of papers are published each year on the three subjects. 

 

Figure 3-18 Number of publications for the search terms “System Identification” (SI), 
“Kalman Filter” and “State Space” 

The following (non-exhaustive) literature review on state space and other dynamic 
models is therefore limited to the papers found in the three main chemometric 
journals: Journal of Chemometrics, Chemometrics and Intelligent Laboratory Systems 
and Analytica Chimica Acta. 
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3.4.1 State Space Models in Chemometrics 
The requirement for dynamic models in process monitoring and control was 
recognized from early on, as Callis et al. in 1987 formulated the need for real-time 
process control based on multivariate statistics [Callis et al., 1987]. The idea of 
applying state space models in chemometrics is therefore not new, albeit not widely 
spread. A series of papers on state space modelling were published in the 
chemometric literature in the late 1990’s and early 2000’s, but the research area has 
received less attention during the last 10 years. A chemometric paper on state space 
models was published in 1997 by Negiz and Çinar [Negiz & Çinar, 1997]. It was 
shown that PLS can be used to fit state space equations, but it was at the same time 
shown that modifications of the PLS algorithm were necessary to give useful results. 
A method based on CVA proved to give the best outcome. Hartnett and co-workers 
published two different papers in the end of the 1990’ies. In the first of the two 
papers were genetic algorithms in combination with PCR used to do dynamic 
inferential estimation of process variables [Hartnett et al., 1998]. The measurement 
equation of an underlying state space model is used, but focus is not on the state 
space model itself. This is done in the later paper [Hartnett et al., 1999] where it is 
shown how a non-linear multivariable production plant can be modelled using a 
combination of PCA and state space modelling. Wise showed [1991] how observable 
states could be estimated based on SVD/PCA. This observation is the idea used by 
Hartnett and co-workers in 1999. PCA is done on the process outputs, the scores 
obtained are then used as states and the loadings used as C-matrix (no input is used 
in the measurement equation in this paper [Hartnett et al., 1999]). The system 
equation is subsequently identified by concatenating state- and input-matrices and 
regressing the concatenated matrix on future states by means of PCR. The PCA 
based state space model was compared to an analytical state space model. Both had 
good performance in approximating the non-linear system. The authors note that no 
prior decision on model order needs to be taken when using this PCA based 
approach. This is correct, but a decision on the number of principal components in 
both the PCA and the PCR step needs to be made. Ergon [1998] uses state space 
equations, PCR and PLS to derive relations that can be used to predict one output 
variable from another. An example of state space modelling is also given, but this is 
via PEM. Dynamic system PCR and PLS solutions for output predictions are also 
presented, again based on a PEM state space model. In a later paper by Ergon and 
Halstensen [2000] these results are elaborated on for a system with low-sampling-
rate reference measurements - a combination of PCA and PEM is utilized to produce 
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predictions of the reference measurements with a better performance as compared 
to PLS. Shi and MacGregor give a complete review [Shi & MacGregor, 2000] of 
different subspace methods and compare them to different latent variable 
techniques (PCA, PLS and PCR). They come to two overall conclusions: 1) for 
process monitoring (“Is my process on-track?”) latent variable methods are to be 
preferred, but for process identification (“What are the process dynamics?” or 
“Where is my process heading?”) dedicated subspace identification methods are 
preferential; 2) CVA and the N4SID algorithm have the best performances of the 
subspace methods they tested. In a more recent paper Pan et al. [2004] showed, 
contrary to the first conclusion by Shi and MacGregor, that better monitoring 
performances could be archived if a state space/subspace method was applied 
compared to PCA-based monitoring. The authors use PCA to reduce the 
dimensionality of the output, followed by fitting state space models by means of 
N4SID. A Kalman filter is subsequently used. A large part of the advantage from this 
model is according to the authors a result of the implementation of the Kalman 
filter. In most recent paper in the chemometric literature on state space models 
Odiowei and Cao [2010] presents how a combination of Independent Component 
Analysis (ICA), CVA and state space models allowed dynamic process monitoring of 
the non-linear benchmark The Tennessee Eastman Process. 

 

3.4.2 Other dynamic models 
State space models are far from the only type of dynamic models encountered in the 
chemometric literature. A wide array of dedicated dynamic models and 
modifications of well-known static models may be found. An example of the latter is 
the dynamic version of PCA, Dynamic Principal Components Analysis (DPCA) [Ku 
et al., 1995]. The principle in DPCA is simple: Form a Hankel matrix of X (Equation 
3-36) and do standard PCA on this Hankel matrix. Ku et al. suggest inspecting the 
auto- and cross-correlations of the PCA scores to assess the number of PC’s and the 
correct size of the Hankel matrix. Russel et al. compared fault detection capability of 
DPCA to PCA on The Tennessee Eastman Process. These authors applied however 
an automated selection criteria (based on the Akaike Information Criteria (AIC) 
[Brockwell & Davis, 2002]) for selection of model complexity and Hankel matrix 
size. Russel et al. found that PCA and DPCA had similar performance in terms of 
sensitivity, promptness and robustness. 



Process Modelling 
 

64 

In the case where both process inputs and outputs are included in the Hankel 
matrix, DPCA may be seen as an autoregressive model with exogenous input (ARX), 
where the current output is a function of the past inputs and the past outputs. 
DPCA is however not the only method for estimating ARX models, the iterative PEM 
method (section 3.2) may be used for estimating both state space, ARX and Finite 
Impulse Response (FIR) models [Ljung, 1999]. FIR models are relevant when the 
current output is a function of the past values of the inputs. Wise & Kowalski [1995], 
showed how a SVD-based method called Continuum Regression (CR) [Wise & 
Ricker, 1993] in the case of correlated inputs produced better estimates of the true 
system output.   
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4 Process Control 
 

The introduction presented how the concept of QbD was related to process control 
and Model Predictive Control (MPC). This section will elaborate further on these 
subjects and how knowledge on process control may be used in the pursuit of QbD. 

Figure 1-5 illustrated how a design space may be constructed based on response 
surface modelling. It was shown how the design space and control target should be 
based on considerations off product safety and yield. Paper III and IV present a 
model system of riboflavin breakdown; base was in combination with light used to 
induce the breakdown reaction. All reagents were added to the reactor 
simultaneously and pH, temperature and fluorescence measurements were done 
over time. The process was thus not run as a fed batch - if this was wanted the base 
could have been fed to the process as it was consumed by the reaction. In this case a 
scenario as outlined in Figure 4-1 may have been experienced, where the speed of 
conversion is given as the full line, and the volume of base dosed pr. minute is given 
as the dotted line. 

 
Figure 4-1 Design space based on considerations of product safety and yield (Based on 
[Roffel & Betlem, 2006] and [ICH, 2009]).  

Figure 4-1 illustrates how three equilibrium-points (p1, p2 and p3) exist between the 
amount of base added pr. min. and the reaction rate. P1 is located at a low flow rate 
which in turn corresponds to a low pH and thereby a low reaction rate, in a real 



Process Control 
 

66 

world process setting this may not fulfill the existing requirements for a subsequent 
down-stream step. P3 is located at a correspondingly high pH which may be 
unwanted seen from an operator/product safety point of view. P2 is thereby the only 
desirable operation point. In a QbD setting a range surrounding this point would 
therefore be selected as design space. Unfortunately it is also evident from Figure 4-1 
that monitoring and control of the process is needed since p2 is an unstable 
equilibrium point (a small deviation from p2 could easily lead to the process running 
to one of the other equilibrium point). A control-loop may therefore with advantage 
be introduced in the process. 

 

4.1 Control loops 
The concepts and notation of input (uk), output (yk) and disturbance/noise (wk/vk) 
were introduced in Figure 3-104 when state space models were presented. Figure 4-2 
illustrates how this notation may be used to introduce a control loop on a generic 
system as well.  

 
Figure 4-2 Feedback control loop 

There are in general two different approaches to control of a process: open or closed 
loop control. Open loop control is essentially letting the process run without control 
action, i.e. no feedback is given to the control signal. Open loop control therefore 
corresponds to selecting an input that is known to result in the desired output and 

                                                        
4 For ease of notation scalar in- and outputs are used in this section. 
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letting the process run at these settings [Luyben, 1996]. It would in the fed-batch 
example from above correspond to selecting a given flow rate of base near p2 and 
not changing this selected flow rate during processing. Many processes in industry 
are open loop stabile [Luyben, 1996], meaning that in spite of the apparent over-
simplistic appearance of open loop control, it will often do the trick. Closed loop 
control is however needed in the example above since disturbances working on the 
system would easily tip the process to p1 or p3. Closed loop control includes a feed-
back as illustrated in Figure 4-2. The process output is compared to a set-point (sp) 
and the difference (e) is via a controller fed back to the system as a change in the 
process input [Stephanopoulos, 1984]. Feed-back control is however, as also stated 
in the introduction, always “post-problem”, a deviation from the set-point is needed 
before any corrective action is taken, resulting in production of sub-standard 
products. This observation leads to the concept of feed-forward control (Figure 4-3). 

 
Figure 4-3 Feed-forward control of process 

The principle behind feed forward control is based on the fact that some of the 
disturbances working on the system may be observable. Once a disturbance entering 
the system is detected the input variables are manipulated so that the system output 
is kept constant [Luyben, 1996]. Feed forward control is thereby closely related to 
the core idea of Quality by Design: If I know how to manipulate the input variables 
(I have a good process knowledge, i.e. a model that explains the connection between 
input and output), and I am able to detect the disturbances, than I can ensure the 
quality of my product by designing the control action correctly. Feed-forward 
control is however most often used for systems with slow dynamics [Roffel & 
Betlem, 2006]. The milk coagulation system studied in Paper II has fairly slow 
dynamics; feed forward control of this system should therefore be feasible. It is for 
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instance known that the coagulation-reaction is temperature dependent [Fox & 
McSweeney, 1998]. In order to control the temperature the coagulation in industry is 
done in jacket-heated vessels [Walstra et al., 2006]. Feed-forward control could for 
such a vessel e.g. be implemented by changing the temperature based on raw 
material measurements to circumvent any changes in raw material composition, the 
impact of the disturbance acting on the process would hereby be limited. 

It is however not always possible to directly measure the output or process variable 
that we are interesting in controlling. It may be the case that the output can be 
modelled as a (linear) combination of some easily measurable variables. This is 
known as inferential control [Stephanopoulos, 1984], and is recognizably closely 
related to the combination of chemometrics and spectroscopy. Paper II may thus be 
seen as an example of inferential control. The stage of coagulation is not easily 
measured directly, but NIR spectroscopy may serve as an indirect measure of the 
coagulation. If a control-loop is wanted for the coagulation process, this may 
therefore be based on the PCA-scores from the NIR-spectra. It may also be the case 
that the process variable we want to control is sampled at a low frequency, in these 
cases the Kalman or state space approach from Paper II and III could be applied to 
estimate the process variable between measurements. 
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4.2 Selecting the control input signal (PID and 
Model Predictive Control) 

Feed-back is the most commonly applied control-loop in industry, mainly in the 
form of Proportional-Integral (PI) or Proportional-Integral-Derivative (PID) 
controllers [Roffel & Betlem, 2006]. The controller consists (as the name suggests) of 
two or three components: 

• The proportional term: Ensures that the input change is proportional to the 
change in error, i.e. a small error change results in a small input change, and 
a larger error change results in a larger input change. It is thereby a function 
of the current error. Controllers consisting of the P-term alone may however 
result in an off-set since no change in the error results in no change in the 
input [Stephanopoulos, 1984]. 

• The integral term: An integral term in the controller will accumulate the 
previous errors and ensure that it asymptotically approaches zero. It is 
thereby a function of the past errors. It may however result in overshoot, 
meaning that the controlled output or process variable may exceed the set-
point [Luyben, 1996]. 

• The derivative term: Include the current change of the error in the 
controller. The term is thus a very crude estimate of the future errors (i.e. a 
positive derivative means an increasing error-term) [Luyben, 1996]. It may 
therefore be used to limit the overshoot produced by an I-term. PI control is 
nevertheless more commonly applied in industry than PID control, since the 
D-term also may induce oscillation of the system output, especially in the 
case when measurement noise is present [Roffel & Betlem, 2006]. 

The general PID-controller equation may be written as [Roffel & Betlem, 2006]: 
 
 

Equation 4-1  
 

Where u(k) is the controller output at time-point k,  the steady-state controller 
output, e(k) the error to time k, G  the controller gain, τi the controller integral time 
constant and τd the controller derivative time constant. Different methods exist for 
tuning the PID controller (finding the gain and time constants) such as the Ziegler-

()   +  () + 1
  () +  ()

  
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Nicholos [Ziegler & Nicholos, 1942] or the Cohen-Coon [Cohen & Coon, 1953] 
methods. It is out of scope to cover these methods within this thesis, the reader is 
therefore referred to the original papers or other references (e.g. Roffel & Betlem  
[2006]) for further discussion on the method-principles and the pros and cons of the 
different tuning methods. 

In the case of feed-forward control, no general closed form equations are readily 
available in the time-domain. Specialized feed-forward control-laws may be 
obtained based on Laplace transforms of the specific process-model. More details on 
construction of feed-forward control-laws are available in Stephanopoulos [1984]. 

In section 3.2.1 it was shown how the Kalman filter in combination with the SI-tools 
allowed dynamic models of systems. As it was shown in Paper II and III these 
models may be used to find deviations from process targets ahead in time. Model 
Predictive Control (MPC) uses this predicted deviation to find the optimal input 
[Rawlings, 2000] to minimize the future errors. The input is determined by 
minimizing a cost function based on process inputs and states. The overall MPC 
procedure may thus be summarized as [Findeisen et al., 2007]: 

1) Obtain estimates of current system-state 
2) Estimate optimal input by minimizing cost-function J(x(t),u(t)) 
3) Implement input until next sampling step 
4) Return to 1) 

The cost function is commonly subject to constrains, meaning that fairly complex 
functions are obtained where numerical solutions are needed. The reader is referred 
to dedicated literature for details on the different MPC algorithms, constrains and 
cost functions (e.g. Rawlings [2000] or Findeisen et al. [2007]). 

Paper II showed how subspace methods allowed on-line system identification of the 
milk coagulation process. This form of MPC is also known as adaptive control; it 
may be useful when changing process conditions are expected from one batch to the 
next [Luyben, 1996]. It could for instance in the milk coagulation example be useful 
when milk from different farmers with different coagulation properties is used in the 
process. 
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4.3 Stability of systems 
In the introduction to state space models (Section 3.2) it was indicated that the 
eigenvalues of the state space system matrix (the A-matrix) could be used to access 
the stability of the system. This section will, among other things, elaborate more on 
the subject of stability. Figure 4-4 illustrates how the position of an eigenvalue in the 
complex plane (ℂ) affects the system behavior.  

 
Figure 4-4 Eigenvalues of the state space system matrix (A-matrix) may be used to access 
the system stability (based on Luyben [1996], Roffel & Betlem [2006] and Simon [2006]) 

Different types of stability may be found in linear system theory. In this thesis the 
following definition of stability will be used [Simon, 2006]: 
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A system is stabile if and only if 

Equation 4-2  
 

for all bounded initial states (x0). 

It can be shown [Simon, 2006] that the system will be stabile if the eigenvalue(s) 
lie(s) inside the unit-circle. It can also be shown [Roffel & Betlem, 2006] that in the 
case where a complex pair is found as one or more of the eigenvalues the system will 
oscillate. The frequency will depend on the imaginary part of the pair and the 
damping of the real part of the pair [Roffel & Betlem, 2006]. This has the 
consequence that a complex pair inside the unit-circle will result in an oscillating 
but stabile system, while a complex pair outside the unit-circle will result in a 
chaotic oscillation meaning that the system is unstable. The concepts of 
observability and controllability were introduced in section 3.3.1. A system was 
defined as controllable if it could be brought to any desired state by the input. 
Figure 4-1 illustrated a system where operation at p2 was unstable. Correct 
implementation of a control-loop should however make the system controllable, 
this illustrates that operation of unstable systems may still be feasible. The concepts 
of detectability and stabilizability are closely connected to observability and 
controllability, as a less strict form of the two. An unobservable system may thus be 
defined as detectable if the unobservable modes are stable, and an uncontrollable 
system be stabilizable if the uncontrollable modes are stabile (i.e. the eigenvalues 
are inside the unit circle) [Simon, 2006].  

A case study on SI on an ultrafiltration unit operation was presented in section 3.3.3. 
The concepts of observability, stability and sufficient excitation came to play a major 
role in this study. The reader is therefore referred to this section for further details 
on the practical implications of these concepts. 

  

lim→  0 
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5 Conclusions and future perspectives 
 

The purpose of this PhD project was to show how modern process sensors based on 
spectroscopy in combination with chemometrics and dynamic models allowed real-
time monitoring of processes. 

Paper I investigated how three-way calibrations for EEM-fluorescence spectroscopy 
could be transferred. The study showed that it was possible to develop simple, 
intuitive transfer methods for three-way EEM fluorescence calibration. An 
uncomplicated local linear method was demonstrated to be the most favourable of 
the new methods. When the two- and three-way calibration methods were 
compared, the three-way method showed slightly lower prediction errors both for 
calibration and re-calibration, essentially underlining the fact that three-way models 
are required for three-way data. The new transfer methods were compared to the 
classical methods found in literature (Direct and Piecewise Direct Standardization 
on unfolded data). Similar results were obtained for the new and the classical 
methods. It was additionally shown that though good transfer models could be 
found for the PARAFAC models with as few as four transfer samples, the results 
were highly dependent on the selection of the transfer set. When recalibration and 
calibration transfer was compared for the fluorescence data set used, calibration 
transfer was better with lower prediction errors and fewer samples needed. The 
paper thereby illustrated how three-way EEM fluorescence calibration made in an 
off-line setting (i.e. in the laboratory) with ease could be transferred to an on-line 
application. 

Paper II introduced the state space model and showed how subspace methods 
allowed state space modelling without a-priori assumptions on model shape/form. 
In this sense the subspace methods enabled the modelling to be data rather than 
hypothesis driven, essentially allowing modelling of the process without the 
requirement of any prior knowledge on the underlying physics or chemistry. The 
paper presented how a non-linear milk coagulation process could be approximated 
by linear state space models. The models were estimated recursively i.e. the models 
were re-estimated in real-time as the measurements became available. This 
adaptable approach to modelling thereby showed that state space models were 
potential tools for process monitoring. Where conventional MSPC control charts 
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reflects the process in a static manner, the control charts proposed in Paper II 
reflected the dynamic behaviour of the process. 

Paper III elaborated further on the conclusions from Paper II. In this paper a 
combination of state space models, subspace methods and Kalman filters were 
shown to have the potential of a versatile tool in batch process modelling and 
monitoring. A model system of riboflavin breakdown was presented as an example 
of a batch process. It was shown how the combination of EEM-fluorescence 
spectroscopy and PARAFAC modelling allowed direct surveillance of the on-going 
chemistry in the process. The proposed combination of state space models, subspace 
methods and Kalman filters were able to capture and model the dynamics of the 
batch process. Where recursive modelling allowed adaptive monitoring in Paper II, 
the introduction of the Kalman filter in Paper III had the same objective, however 
with the extra advantage of improved predictions of future process variable 
trajectories including 95% confidence intervals of the variables. The method was 
thus shown to be adaptable to new non-NOC conditions and allowed for dynamic 
control charting of initial condition estimates and current system-states. For end-
point prediction a dedicated method based on Partial Least Squares was found to 
produce slightly better predictions. 

Paper IV presented further studies on the model system introduced in Paper III. 
The paper illustrated what is also known as so-called grey box modelling: Modelling 
in the case where the physics and chemistry governing the process is known to a 
limited extend. In Paper IV it was shown how the a-priori knowledge on the 
reaction kinetics governing the process could be implemented during PARAFAC 
modelling, hereby allowing post-batch charting of the relevant process parameters – 
the kinetic constants. 

In conclusion this study has presented how the combination of spectroscopy, 
chemometrics and dynamic models may be used in process monitoring of batch 
processes. It was shown how different statistical/chemometric models made it 
possible to answer different types of questions. The post-batch approach presented 
in Paper IV made it possible to assess if the batch had followed NOC or not based 
on PARAFAC, corresponding to the question “Did my batch do okay?”. A classical 
PLS based MSPC method for end-point prediction was used in Paper III. This 
method provided good end-point predictions and was thus well suited for answering 
the question of “Where is the process going?”. The method was however not able to 
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provide details on the trajectory towards the end-point. The state space/Kalman 
method presented in Paper II and III was able to provide such trajectory estimates, 
and the method also provided the option of estimating initial conditions and current 
process states. The method was thus able to answer all three questions: “Where is 
the process now?”, “Where did the process come from?” and “Where is the process 
going?”. The possibility of predicting future process characteristics and variable 
trajectories opens up for the option of model predictive control which in turn may 
bring the goal of Quality by Design closer to reality. 

Future research in line with the present results could therefore include application 
of the proposed combination of subspace methods, state space models and Kalman 
filters on a real-world process, such as a fermentor where the combination of EEM-
fluorescence spectroscopy and PARAFAC models would allow direct monitoring of 
the microbial growth conditions. Real world application of the proposed methods 
would however require some adaptation; a more robust version of the Kalman filter 
(known as the H∞ filter [Simon, 2006]) might in such cases be needed. A full blown 
design space investigation including a MPC-identification would in this a case also 
be very interesting. From a modelling point of view, a comparative study between 
the state space models and the other dynamic models (e.g. DPCA, FIR and ARX) 
would also be of interest. And finally would expanded comparisons on grey-box 
modelling most likely show interesting results as well. 
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a b s t r a c t

The main part of the wide array of different calibration transfer methods found in literature is ded-
icated to two-way data arrangements (m × n matrices). Less work has been done within the area
of calibration transfer for three-way data structures (m × n × l tensors) such as calibrations made for
excitation–emission-matrix (EEM) fluorescence spectra. There are two possible ways to attack the prob-
lem for EEM transfer. Either the tensors are unfolded to two-way data, whereby the existing methods
can be applied, or new methods dedicated to three-way calibration transfer have to be developed. This
paper presents and compares both.

It was possible to make a local linear pixel-based model that could be used for transfer of EEM’s. This new
method has a similar performance to the classical methods found in literature, direct- and piecewise direct
standardization. The three-way advantages made it possible to use as few as four samples to build useable
transfer models. Care has to be taken though when choosing the samples. When subset recalibration of the
systems is compared to calibration transfer, better performance is seen for the transferred calibrations.
Overall the three-way calibration transfer methods have a slightly better performance than the two-way
methods.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The subject calibration transfer or standardization in chemo-
metric model building and process analytical chemistry &
technology (PACT) really falls under economics. Constructing a
high-quality inverse multivariate calibration model such as partial
least squares (PLS) in the presence of unknown interfering signals
requires tens, hundreds or sometimes up to a thousand samples
plus reference analysis, often collected over a long period of time.
This is a big investment. Calibration transfer focuses on preserving
this investment by keeping the model valid over time for the same
instrument (model maintenance) or by sharing the cost where a
model developed on one system (the primary or master instru-
ment) is applied to one or more other systems of a similar nature
(the secondary or slave instrument). The relevance of the subject
is emphasized by the fact that in July 2010 over 20 references
with calibration transfer or standardization in their title appeared
in the open literature, and a relatively large number of these indi-
cate connections with industry. Most of these papers are found in
the analytical chemistry/chemometric and spectroscopy literature
focusing on computational methodologies; three comprehensive
reviews are available [1–3]. Moreover, just like chemometric data
analysis in general, the potential of calibration transfer is being rec-

∗ Corresponding author. Tel.: +45 3533 3500.
E-mail address: thygesen@life.ku.dk (J. Thygesen).

ognized by the outside world [4–8]. Economics also play a role in
the reverse direction: since we are trying to minimize our expenses
on the collection of sample and reference analysis, the model will
always be suboptimal compared to full recalibration (e.g. on a sec-
ondary instrument) and, moreover, an independent evaluation via
a test set or uncertainty estimation by re-sampling is typically not
feasible due to the small number of samples involved. This makes
an understanding of the mathematical operations involved in cal-
ibration transfer and the effects on spectroscopic data crucial for
proper and safe use.

A number of scenarios could result in a multivariate calibration
model being or becoming invalid. This would occur, for instance,
if the original instrument is replaced by a new one. The responses
from two instruments for the same sample measured under the
same conditions will be different and multivariate calibration mod-
els will thus not necessarily be valid for this new situation. It
must be stated that big improvements have been achieved by
instrument manufacturers on hardware harmonization in recent
years, especially in Near InfraRed (NIR) spectroscopy. Diode
lasers for wavelength alignment, internal (reflection) standards for
intensity corrections, and charged-coupled device (CCD) similarity-
matching at the manufacturer by characteristics comparison are
just a few measures on offer to improve instrument-to-instrument
compatibility. Nevertheless, the instability of one and the same unit
over time is another problem which can seriously affect the perfor-
mance of a model. Small continuous changes (e.g. instrumental drift
due to filter bleaching in fluorescence instruments) and sudden

0003-2670/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.aca.2011.04.017
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changes (response shifts caused by repairs or replacements of light
sources for example) in the instrument still cause signals to change,
leading to increased prediction errors in the absence of proper
model maintenance. The most straightforward solution, of course,
would be to re-calibrate for the new measurement conditions or
to expand the original model for the new situation. Unfortunately,
this is also the most expensive solution and sometimes technically
impossible. Standardization and calibration transfer methods have
been developed aimed at eliminating the need for a full recali-
bration and to preserve the information collected in an existing
model. Even if instrumental hardware is matched well, sampling for
in-process measurements could still render the calibration model
invalid. For example, interfacing to a process stream via different
routes such as multiplexers and/or fiber optics will not always be in
the hands of the instrument manufacturer. Bend angles of the fibers
and optical components for different sampling points will differ, all
influencing the detector responses in a unique way. This is precisely
the direction where new developments in process monitoring and
control on NIR (still the workhorse in PACT) are heading: various
measurement points for similar streams in the factory based on
multiplexers or a family of relatively cheap CCD-based systems
that depend on one global calibration [9]. Almost all methods for
calibration transfer dependent on measuring several samples on
both primary and secondary instrument, spanning the variation
in responses between the instruments that way. The cost-saving
aspect of calibration transfer is thus very much active. From an
operational point of view generic standards – is an easy-to-handle
and storable form such as polystyrene standard materials, certi-
fied reference materials, easily reproducible mixtures, etc. – are
preferred. However, it is essential that these generic standards are
compatible with regular samples from an information point of view,
both in desired (e.g. the concentration to be predicted) and unde-
sired properties (e.g. scatter properties), which is seldom a simple
requirement in process monitoring.

It should be noted that almost all of the wide array of dif-
ferent methods found in literature are dedicated to transferring
calibrations for two-way data (m × n matrices). Much less work
has been done within the field of transferring calibrations for
three-way data (m × n × l tensors), such as calibrations made for
excitation–emission-matrix (EEM) fluorescence spectra. The objec-
tive of this study is therefore to develop and evaluate new, simple
methods for N-way calibration transfer. The current work is based
on two process EEM fluorescence spectrometers of the same man-
ufacturer. They are produced to be alike, but due to differences in
the optical fibers used and inherent, small differences in the filters
e.g. due to aging/bleaching, there is a clear distinction between the
spectra the two spectrometers record. It is well established that
so-called three-way advantages can be obtained when EEM fluo-
rescence spectroscopy is combined with PARAFAC modeling [10].
The three-way advantages allows (among other things) for fewer
samples to be used during calibration when compared to two-way
factor models such as PLS, and it could also potentially make cal-
ibration transfer a less complicated task. It is therefore of interest
to see if it is possible to develop new minimal three-way meth-
ods for calibration transfer. Alternatively, modification of existing
two-way transfer methods is also of interest.

2. Materials and methods

A set of milk samples was spiked with pure riboflavin (vitamin
B2 ≥ 98%; Sigma Aldrich Inc., Saint Louis, MI, USA). All samples were
produced from the same skimmed milk powder base (Arla Foods
Amba, Viby, Denmark) and riboflavin was added in levels ranging
from 0 to 100% of the nominal value of skimmed milk. 39 different
levels of riboflavin were used, the lowest being 0.181 mg100 mL−1

and the highest 0.344 mg 100 mL−1, all levels were produced in
independent duplicates – a total of 78 milk samples.

All samples were measured on two different BioView EEM flu-
orescence process spectrometers (DELTA Danish Electronics, Light
& Acoustics, Hørsholm, Denmark). Both instruments use a com-
bination of 15 excitation filters (�ex; equidistantly spaced from
270 to 550 nm) positioned on the light source sequentially and
15 emission bands filters (�em; equidistantly spaced from 310 to
590 nm) positioned on the detector sequentially. Both instruments
work with a weakly non-linear analogue amplifier and an analogue-
to-digital-converter with 212 = 4096 steps/counts resolution. The
instrument gains were established before experimentation such
that the signal maxima per landscape are between 1000 and 2000
counts. The short-term stability of the instruments was tested on
generic materials and no changes were observed over the period of
a day, just as no changes in either instrument were observed during
experimentation.

The high grade narrow band filters are designed to have their
throughput maxima at the same wavelength as accurately as tech-
nically possible. However, the primary instrument is older and used
more frequent, and bleaching by the strong light source will influ-
ence the filter characteristics over time. The primary instrument
is equipped with high-throughput compressed liquid filled fibers
while the secondary instrument is equipped with conventional
normal-throughput quartz–fibers. Samples were measured at milk
processing/storage temperatures (5 ± 2 ◦C).

3. Theory

3.1. Calibration of fluorescence data

There are two general methods for calibration of fluorescence
data. The first method would unfold the three-way tensor into a
matrix with the format Nsamples × (�em × �ex). Two-way methods
(such as PLS) can hereafter be used to build the sought calibra-
tion. The method has the advantage that many different calibration
transfer concepts are available. The disadvantages of unfolding the
tensors are that the information in the three-way structure of the
data is lost. The second method is therefore to utilize the N-way
structure of the tensor directly [10]. In this study calibrations were
obtained as follows (Fig. 1):

1. The measured EEMs are collected in three-way arrays (sam-
ples × emission × excitation).

2. PARAFAC decomposition of the data with the correct number of
factors/model complexity is performed.

3. Sample scores from PARAFAC models are combined with refer-
ence y-values. A non-linear dependence was observed between
counts and concentrations of vitamin B2. A quadratic function
is therefore fitted using total least squares (B2 as dependent
variable).

4. New data can be predicted by projecting the EEM onto the
PARAFAC model emission and excitation loadings, and combin-
ing the retrieved score with the quadratic function for prediction.

3.2. Calibration transfer methods

An example of the same milk sample measured on the primary
and secondary instrument is given in Fig. 2, shown as intensity
maps/landscapes.

It can be observed that the two maps are alike but not perfect
copies of one another. The most noticeable is the large intensity dif-
ference (approximately a factor 2). A simple intensity correction of
the entire matrix would therefore remove a large part of the differ-
ences. But, at second evaluation, one can also observe that the ratio
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Fig. 1. Principal behind PARAFAC based EEM calibration.

Fig. 2. Intensity maps of the same milk sample measured on the primary and secondary instrument.

between some of the pixels in the matrix is not the same for the
two instruments. This is most obvious for the middle part of the
map. The pixel at e.g. �em 450 nm/�ex 370 nm is relatively more
intense for the secondary instrument than for the primary instru-
ment. Fig. 3 shows that the high level of selectivity by fluorescence
spectroscopy (in this case towards vitamin B2) makes calibration
a relatively easy task. It also makes obvious that not all pixels in
the map are vitamin concentration dependent which advocates the
combination with uniqueness properties of multi-way modeling.

We also observe a modest different tendency in curvature between
the analyte signal peak for primary and secondary instrument; this
suggests that a more complex correction could be necessary.

One straightforward correction could be on the individual emis-
sion/excitation channels level (the individual pixels in the matrix).
The counts for different pixels on two different instruments are
expected to have a relationship that can be modeled with a low
order polynomial. If for instance a sample gives a high signal on
the primary instrument, the same is expected for the secondary

Fig. 3. Single pixel intensities versus known vitamin B2 concentration for analyte signal peak (left) and background signal (right).
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instrument. For information rich pixels with a good signal-to-noise
ratio (such as the centre pixel at �em 530 nm/�ex 450 nm) a lin-
ear first order polynomial could be used. But if the pixel has little
or no information (such as the pixel at �em 350 nm/�ex 290 nm),
no real relation between the pixels can be expected, and any linear
model fitted to the numbers would therefore carry risk of modeling
random noise rather than true information; a weighted regression
form could thus potentially improve the models. Based on these
observations six different methods for calibration transfers were
investigated:

1. Single scalar intensity correction (global).
2. Non-weighted univariate linear (pixel-to-pixel).
3. Weighted univariate linear (pixel-to-pixel).
4. NaN filtering (pixel-to-pixel).
5. Direct standardization (DS; global multivariate).
6. Piecewise direct standardization (PDS; local multivariate).

Each method falls, as indicated, in one of three classes: (1) global
methods, working simultaneously on the whole EEM; (2) pixel-to-
pixel methods, relating a pixel in the primary instrument EEM to
the corresponding secondary, and (3) multivariate, that is not only
pixel to pixel, but including the neighbor points. The methods are
described in detail below.

3.2.1. Single scalar intensity correction
The single scalar method is the most simple calibration transfer

method included in this study. The principle is to find one single
scalar (f) that all elements in the secondary tensor are multiplied
by to obtain an estimate to use in the model build on the primary
instrument. The method can therefore be seen as a global intensity
correction. The multiplier is found by unfolding the tensors from
the n transfer samples on the two instruments into augmented col-
umn vectors (xp and xs), and subsequently finding the least squares
solution for f by:

xp = xs × f → f = (xT
s xs)

−1
xT

s xp

3.2.2. Non-weighted and weighted univariate linear
For both the weighted- and non-weighted univariate linear

regression modeling is done by fitting a slope (b1) and intercept (b0)
for all the channels seperately (the non-weighted model is treated
as weighted model with equal weights for all data points).

(w × xc
p) = b0 + (w × xc

s) × b1

where xc
p is the n element vector of counts for n transfer samples for

one EMM pixel/channel on the primary instrument, xc
s the similar

n element vector for the secondary instrument, and w contains the
weights for the different transfer samples – in case of non-weighted
regression a vector of ones is used as weights. For weighted regres-

sion the norm or the Euclidean length w(n) =
√

xc
p(n)2 = xc

s(n)2 of

the combined counts is used. Since counts are positive this norm
reflects the amount of information in the channel (the combined
distance away from zero); it will be large if much information
(=high counts) are present in both the primary and secondary
instrument, and small if only little information is present (=noise).

3.2.3. NaN filtering
In Not-a-Number (NaN) filtering PARAFACs ability to handle

missing values is utilized [10]. The first step in NaN filtering is to fit
a non-weighted univariate pixel-to-pixel linear model. If the corre-
lation between the primary and secondary measurements is below
a given cut-off value (R2 = 90.0%), the pixel is set to missing (NaN).
Hereby only information rich channels are used in the calibration

transfer step. The method can be seen as an extreme version of the
weighted regression with a hard threshold, where pixels with low
correlation are given the weight zero.

3.2.4. Direct standardization
Direct standardization (DS), introduced in a series of studies

conducted by Wang and co-authors [11–13], is one of the two
established multivariate standardization methods applied. It can
be seen as a global multivariate version of the non-weighted uni-
variate linear pixel-to-pixel method explained in the section above.
The three-way array of EEMs is unfolded in order to apply DS.
The data are unfolded to matrices with the format n transfer sam-
ples × (�em × �ex) and the empty columns – where the excitation
wavelength is higher than the emission wavelength – are removed.
The transferred data is subsequently refolded back into a three-way
tensor. In DS the dependence between the primary and secondary
instruments modeled by a linear model using the Moore–Penrose
pseudo-inverse [3]:

Xp = XsF → F = X+
s Xp

3.2.5. Piecewise direct standardization
One major problem with DS is the step where the transfer

matrix F is determined by the Moore–Penrose pseudo-inverse.
This step can easily lead to numerical instabilities translating
into poor results, especially if the number of transfer samples n
is much smaller than the number of variables in the spectrum
(15 × 15 − 105 = 120 variables in each EEM in our case). This obser-
vation led to the alternative model PDS where the transfer for each
variable in the spectrum of the primary instrument is estimated
from a (symmetric) window surrounding the same variable on the
secondary instrument [11]. A much smaller (and thus more stable)
local inversion step is used. A window size of 7 points was used
in this study. The window is moved over the total spectrum, and a
band diagonal F transfer matrix with regression vectors equal to the
window size is formed [3]. Issues and possible remedies have been
reported concerning artifacts introduced in the transferred spectra
due to local rank differences [14], but are not employed here.

4. Results and discussion

4.1. Presentation of data and calibration development

A score plot for a two component PARAFAC model of the EEMs
for the milk data-set measured on the primary and secondary
instrument combined is given in Fig. 4, no samples were removed
as outliers.

As expected – two clear groups are found within the data based
on both instruments. Within each group a one component PARAFAC
model was found to be optimal. Seen from a chemical viewpoint
this makes sense since only one chemical component (vitamin B2)
is varying in-between the samples. The excitation and emission
loadings (not shown) are very similar to pure B2 loadings. The qual-
ity of the models is further supported if regression is made on the
PARAFAC scores (as outlined in Fig. 1). The model for the primary
instrument shows a low leave-one-out cross-validation prediction
error (RMSECV = 5.61 × 10−3mg·100 mL−1) and a good correlation
between the measured and the predicted values (R2 = 99.4%; see
Table 1). This model will therefore serve as a basis of compar-
ison. To have a similar basis of comparison for the PLS models,
the data tensor is unfolded and a PLS model is made. Also in
this case one component is optimal with a low prediction error
(RMSECV = 6.78 × 10−3mg·100 mL−1) and high correlation between
measured and predicted (R2 = 99.1%). The PLS loading vector resem-



J. Thygesen, F. van den Berg / Analytica Chimica Acta 705 (2011) 81–87 85

Table 1
Performance of calibration and recalibrated models.

PARAFAC PLS

RMSECV/RMSEP (10−3 mg 100mL−1) R2 (%) RMSECV/RMSEP (10−3 mg 100 mL−1) R2 (%)

Full calibration (CV 78 samples) primary
instrument

6.50 99.1 6.91 99.0

Full calibration (CV 78 samples) secondary
instrument

6.66 99.0 8.27 98.5

Calibration primary instrument using 34
calibration samples, test-set validation 36
samples

7.73 97.8 7.94 98.9

Recalibration secondary instrument using 8
samples, test-set validation 36 samples

8.22 98.9 9.54 98.7

bles the unfolded B2 spectra. This model is therefore used as a basis
of comparison for the PLS models.

4.2. Recalibration

Calibration transfer would, as mentioned in Section 1, often
compete with recalibration of the secondary instrument. It is there-
fore of interest to compare the methods developed below with
simple recalibration of the secondary instrument. Many different
algorithms for sample selection can be found in literature, e.g. lever-
age based methods such as the Kennard-Stone algorithm [15]. In
this study a transfer set was selected based on a priori knowledge
on the vitamin content in the sample. Eight samples were selected
to span the vitamin range evenly. Of the remaining 70 samples, 34
were used for calibration development (calibration samples) and 36
were used as test-set. The calibration- and test-set samples were
also selected to span the vitamin range evenly. Table 1 summa-
rizes the performance of the calibrated and re-calibrated PLS and
PARAFAC based models.

Table 1 show that PARAFAC overall has a lower prediction error
than PLS for both instruments. It also shows that the models for the
primary instrument are better than the models for the secondary
instrument. Recalibration of the secondary instrument is possible
if PARAFAC is used, but recalibration of PLS models gives unac-
ceptable large prediction errors. The remainder of this paper will
therefore focus on PARAFAC rather than PLS. The PARAFAC calibra-
tion made using 34 calibration samples measured on the primary

Fig. 4. Score plot for 2 component PARAFAC model of EEMs for all milk samples.

instrument, in the following will be transferred to the secondary
instrument via the different transfer methods developed. The actual
vs. predicted plot for the calibration is given in Fig. 5.

4.3. Initial screening

Several different methods are available when one has to com-
pare the transferred data from the secondary instrument to the data
from the primary instrument; in this study the relative residual
sum of squares (RSS) is used. When the test-set data from the two
instruments (before and after transfer) is augmented into column
vectors (xp, xs and xtr,s) RSS is defined as:

e = xp − xs, etr = xp − xtr,s, RSS = eT
tr,setr,s

eTe

A RSS close to one indicates that not much similarity between
the two instruments was gained by the transfer; a RSS close to zero
indicates that the transferred secondary data is very close to the
primary data. The performance of the different transfer methods
using the same 8 transfer samples and 36 validation samples as in
Table 1 is shown in Table 2.

We noticed that all methods reduce the instrument-to-
instrument differences. The simple single scalar intensity correc-
tion is not sufficient to correct for all the differences as anticipated
from Fig. 3. Furthermore it is observed that weighted regres-
sion would be a poor choice. Information is apparently removed
by applying the suggested weighing during regression. It is also
noticed that the NaN filtered method produces data with a good
fit/correction. This is not surprising since the filtering essentially
removes all problematic points in the EEM landscapes (those where
little information/systematic variation is available). The multivari-
ate methods fit the data nicely, as expected.

Fig. 6 shows three different EEM maps: a recording on the pri-
mary instrument, a refolded landscape from PARAFAC modeling
and a transferred sample using NaN filtering. Comparison shows
that for these data the NaN filtering removes almost all data below
emission wavelengths 510 nm. The second sub-plot shows that
the PARAFAC model also weights down the data at wavelengths
below 510 nm. For these data the NaN-filtering therefore removes
data points that anyhow would not be included in the PARAFAC
model but in the residuals. No aditional advantage for prediction

Table 2
Transfer method comparison using RSS criterion.

RSS

No transfer 1.000
Single scalar intensity correction 186 × 10−4

Non-weighted univariate linear 2.94 × 10−4

Weighted univariate linear 22.5 × 10−4

NaN filtered 2.94 × 10−4

Direct Standardization 3.60 × 10−4

Piecewise Direct Standardization 2.69 × 10−4
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Fig. 5. Actual vs. predicted plot for PARAFAC model using using 34 calibration samples, test-set validation 36 samples.

Table 3
Re-sampling estimate of RMSEP and R2 for different transfer functions. 200 resampling loops were used.

4 transfer samples 8 transfer samples 16 transfer samples

RMSEP/R2 (10−3 mg/100 mL)/(%) RMSEP/R2 (10−3 mg/100 mL)/(%) RMSEP/R2 (10−3 mg/100 mL)/(%)

No transfer Lower 450.20/98.6 444.62/98.7 434.49/98.9
Median 523.29/97.8 518.18/98.0 516.11/98.0
Upper 608.75/96.8 604.16/96.8 598.99/96.7

Scalar Lower 16.45/99.1 17.09/99.2 16.33/99.3
Median 24.49/98.9 23.47/98.9 23.66/98.9
Upper 41.02/98.4 35.19/98.4 34.91/98.3

Linear Lower 6.89/99.2 6.18/99.3 5.81/99.4
Median 9.31/98.9 7.56/99.0 7.44/99.0
Upper (2.24 × 1015/10.2) 9.93/98.4 9.62/98.4

NaN Lower 6.87/99.3 6.20/99.3 5.78/99.4
Median 8.93/99.0 7.60/99.0 7.44/99.0
Upper 38.75/98.5 10.14/98.4 9.94/98.4

DS Lower 6.48/99.6 5.88/99.6 5.40/99.6
Median 10.17/98.9 8.35/99.1 7.87/99.1
Upper 30.24/96.1 13.33/97.6 11.12/98.2

PDS Lower 6.69/99.3 6.50/99.4 6.33/99.4
Median 9.02/99.0 7.88/99.0 7.87/99.0
Upper 28.08/98.4 11.02/98.5 10.63/98.5

Fig. 6. Fluorescence landscapes of primary instrument, transferred secondary instrument using NaN filtering and outer product of PARAFAC model loadings.
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of vitamin B2 via the PARAFAC based method is therefore expected
by means of NaN-filtering, when compared to the linear transfer
method.

4.4. Robustness of transfer model and number of transfer samples
needed

The robustness of the different transfer models are investigated
in this section. The sample set was divided into a calibration-, test-
and transfer-set for PARAFAC modeling. 34 samples were always
used for calibration, 4, 8 or 16 of the remaining samples were
randomly selected and used as transfer samples, the remaining
samples (not in the test or calibration set)were used as test-set
samples. This procedure was repeated 200 times for each transfer
method and transfer set size. The resulting RMSEP and R2 (actual
vs. pred.) were sorted according to size. The 95% CI were approx-
imated by removing the ten lowest and highest RMSEP and R2

values. Table 3 presents the median, the lower and upper bound
of the sorted values.

In Table 3 several things are noticed: first that for most mod-
els, not surprisingly the median RMSEP decreases as more samples
are included for estimating the transfer model. This is though
not the case for the scalar transfer model, indicating that this
extremely minimal model can be estimated using very few sam-
ples. Nevertheless, care has to be taken when making conclusions
based on Table 3, since the table is based on resampling and a
certain Monte Carlo error can therefore be expected. For the lat-
ter four transfer models it is therefore noticed that the median
RMSEP is very similar, the difference between the models is espe-
cially small for 8 or 16 transfer samples. It is possible to use
four samples to build the transfer models. It requires though
that care is taken when selecting the transfer set. If the right
samples are selected, it is possible to obtain calibration errors
very close to the error of the original transfer. If a poor/blind
choice is made during transfer set selection large prediction errors
can be found. This is especially the case for the linear transfer
model, here numerical instabilities can occur if poor choices are
made.

When the RMSEP values of Table 3 are compared to the perfor-
mance of the recalibrated models (Table 1), we see that transfer
is to be preferred over recalibration. The median RMSEP values is
slightly lower for the transferred data, but for the optimal transfer
sets, even lower prediction error scan be obtained with the same
transfer set size (size 8). Lower prediction error can also be obtained
for just four transfer samples. This means that by making the right
choices in transfer-set selection, effort can be saved if calibration
transfer is used instead of recalibration. Although fluorescence is a
selective measurement principle, unknown matrix effects of future
samples (e.g. seasonal variations in protein percentage in the milk)

might change the model performance. If this is the case a more
elaborate investigation is required.

5. Conclusions

This study showed that it was possible to develop simple, intu-
itive transfer methods for three-way EEM fluorescence calibration.
An uncomplicated local linear method was demonstrated to be the
most favorable of the new methods. When the two- and three-
way calibration methods were compared, the three-way method
showed slightly lower prediction errors both for calibration and
re-calibration. The new transfer methods were compared to the
classical methods found in literature (direct and piecewise direct
standardization on unfolded data). Similar results for the new and
the classical methods were obtained. It was additionally shown
that though good transfer models could be found for the PARAFAC
models with as few as four transfer samples, the results are highly
dependent on the selection of the transfer set. When recalibration
and calibration transfer are compared for the fluorescence data set
used, calibration transfer is better with lower prediction errors and
fewer samples needed.
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Subspace methods for dynamic model
estimation in PAT applications
Jonas Hoeg Thygesen and Frans W. J. van den Berg

One primary goal in the application of process analytical technology tools is improved process monitoring and
control. A second is to obtain a better understanding of how a normal process behaves (i.e. the normal dynamics).
In order to perform feed-forward control, time series models of the process data are required. Such models could
be developed on the basis of known physical/chemical knowledge of the system (i.e. first principal or mechanistic
modeling). However, very often, this is not possible because of the lack of sufficient information. This leads to the
need of system identification (SI). One class of models within SI is the state space models, linear models that relate
the input of the system at time k to the output at time k via estimation of the so-called system states. State space
models may be fitted using what is known as the subspace methods. Subspace methods are based on the projec-
tion of data on subspaces identified by, for example, the singular value decomposition of time-shifted data during
a training phase. This paper introduces state space models, illustrates how subspace methods are closely related to
known chemometric tools, and how they can be applied in, for example, model-based feed-forward process mon-
itoring and control. The concepts are illustrated using a data set from an intrinsically nonlinear milk coagulation
process that can be approximated well by a linear dynamic model using a small set of virtual (or principal) states.
We present an alternative process-monitoring strategy where the dynamic components and boundary conditions
of a developing milk coagulation batch are estimated in real-time and compared to normal operating conditions.
Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: state space models; subspace methods; process monitoring; dynamic models; milk coagulation

1. INTRODUCTION

A primary goal in the application of process analytical technology
(PAT) and quality by design (QbD) tools is the so-called real-time
release. Real-time release is, according to the 2004 FDA guidance
on PAT, “the ability to evaluate and ensure the acceptable quality
of in-process and/or final products based on process data” [1].
This means that (multivariate) process monitoring and control
of dynamic (changing) systems is asked for. Different multivariate
statistical process control (MSPC) methods have therefore long
been of research interest within the chemometric society [2–5].
Themain set of methods within the MSPC is however more suited
for feed-back control (post-problem), rather than feed-forward
control (preproblem). In order to facilitate feed-forward control,
time series models of the process data are desired. This could
be achieved on the basis of known physical/chemical knowledge
of the system (first principal or mechanistic modeling [6]). Very of-
ten, however, this is not possible because of the lack of (sufficient)
knowledge on the system, for example in such complex pro-
cesses as food production, leading to the need of system identi-
fication (SI). One class of models within SI is the state space
models. They are linear, time-invariant models that relate the in-
put to the system at time k to the output at time k via estimation
of the system states. These states try to capture or model the
dynamic behavior or development of a system without having a
direct physical meaning, much like the concept principal compo-
nent or latent variable in, for example, principal component anal-
ysis (PCA). State space models may either be fitted using iterative
predictor error algorithms or by using the so-called subspace
methods that are based on the projection of data on subspaces
identified by, for example, singular value decomposition. The

aim of this paper is to discuss state space models, illustrate that
subspace methods are closely related to known chemometric
tools, and show how they can be applied in feed-forward process
monitoring and control.

2. THEORY

Discrete time state space models can be written via vector/ma-
trix products as in Equations 1 and 2. They are linear models that
link the input to the system at time k (uk), to the output at time k
(yk), via the system state vector xk (size n� 1; for ease of nota-
tion, we will assume univarite inputs and outputs here, but ex-
pansion is straight forward):

xkþ1 ¼ Axk þ Buk þwk (1)

yk ¼ Cxk þ Duk þ vk (2)

The A matrix (size n� n) is called the system matrix and
describes the system dynamics (i.e. how the system states in
vector xk evolve from one time step to the next xk+1). The order
(or rank) of this matrix determines how many distinct
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components or states are identified in the system and their con-
nectivity (determined by the entries in A). As reported, the states
do not necessarily coincide with the physical phenomena in the
system (e.g. biomass in a bioreactor) but can be seen as a latent
representation of the dynamic behavior. B is called the input ma-
trix that relates the control input at the current time step to the
system states one step ahead. It shows how an input to a system
at time k (e.g. feed to a bioreactor) would influence the state of
the system at time k + 1 (e.g. biomass growth conditions in the
reactor). C is the output matrix that describes how the system
states are reflected in the measurable system output (which, typ-
ically, is a physically identifiable entity). It is the link between the
principal model at time k and the physical world at time k (e.g.
between biomass and growth conditions and actual cell count).
D is called the (direct) feed-through term (e.g. how the feed of
the reactor is seen instantaneously in the measured response,
hence, not how feed changes the system); this term is often
not included in the modeling. The careful reader will notice that
for the univariate case B, C, and D in Equations 1 and 2 should
officially be lowercase vectors. However, to stay with common
notation, we will keep using matrix capitals instead. wk and vk
are noise sequences representing model inaccuracy and mea-
surement uncertainty, respectively. Equation 1 is often referred
to as the system equation (reflecting that it describes how the
system evolves over time), whereas Equation 2 is called the mea-
surement equation (indicating that it describes how the mea-
sured output is related to the state of the system). We will only
use discrete time state space models in our study where the ef-
fective time between two observations (delta-time, k + 1minus k)
is the clock time, assumed equidistant and decided by the mea-
surement instrumentation. This could, for example, be the mea-
surement frequency of a spectroscopic determination (or, more
accurately, the inverse of the sampling frequency, being the time
between two measurements, becoming available).

In order to employ Equations 1 and 2 in a time series-based
process-monitoring scheme, the system matrices must be know
or estimated. As stated previously, this could theoretically be
achieved on the basis of known physical/chemical knowledge
of the system, but very often, this is not possible because of
the lack of (sufficient) knowledge on the system. This, leads to
the need of SI, with one class of algorithms within SI being sub-
space identification. The reader is referred to the Appendix and
van Overschee and De Moor [7] for more details on how estima-
tion of the system matrices is performed for the subspace algo-
rithm that is used in this paper. Because several studies have
found canonical variates analysis-based (CVA) algorithms outper-
form others (see subsequent sections for details), the state space
model is fitted using this method (see Appendix). The systems
studied in our research are pure batch processes with no exter-
nal inputs, resulting in a so-called stochastic time series (e.g. beer
production in a bioreactor is often run as pure batch with no ac-
tive input). The computations/estimations remain the same,
where all input-related parts are canceled by zero-entries. The
applied algorithm produces state space models in a forward in-
novation form, meaning that an optimal least squares gain (K)
is used as driving term in the prediction (to substitute the deter-
ministic input Buk, plus purely stochastic part wk in Equation 1).
The state space model for the (reduced) stochastic case is, thus,
to be reformulated as (see Appendix):

xkþ1 ¼ Axk þ Kek (3)

yk ¼ Cxk þ ek (4)

Here ek, the innovation at time step k, is equal to the difference
between the observed output and the output predicted by the
model (the prediction error at time k). Notice that despite their
apparent simplicity, stochastic systems can still approximate
complex, nonlinear phenomena because of the interaction be-
tween the states in xk via the entries in system matrix A, plus
the initial conditions for the system (e.g. in the bioreactor for beer
production, for example, the biomass growth and amount of
sugar available for conversion into alcohol might lead to a com-
plex development over time on the basis of internal feedbacks,
interacting with the raw material properties and quantities at
the batch start/charge plus the yeast’s biological efficiency).

3. STATE SPACE MODELS IN CHEMOMETRICS

The idea of applying state space models in chemometrics is not
new, albeit not widely spread. A series of papers on state space
modeling were published in the chemometric literature in
the late 1990s and early 2000s, but the research area has re-
ceived less attention during the last 10 years. Here, we will give
an (nonexhaustive) overview. A chemometric paper on state
space models was published in 1997 by Negiz and Cinar [8]. It
was shown that partial least squares (PLS) can be used to fit state
space equations, but it was, at the same time, shown that mod-
ifications of the PLS algorithm were necessary to give useful
results. A method, based on CVA, proved to give the best out-
come. Hartnett and coworkers published two different papers
in the end of the 1990s. In the first of the two papers, genetic
algorithms are used in combination with principal components
regression (PCR), to do dynamic inferential estimation of process
variables [9]. The measurement equation of an underlying state
space model is used, but the focus is not on the state space
model itself. This is performed later in the paper [10], where
how a nonlinear multivariable production plant can be modeled
using a combination of PCA and state space modeling is shown.
The idea is to perform PCA on the process outputs; the scores
obtained are then used as states, and the loadings used as the
C matrix (no input is used in the measurement equation in this
paper [10]). The system equation is subsequently identified by
concatenating state matrices and input-matrices and by regres-
sing the concatenated matrix on future states by means of
PCR. The PCA-based state space model was compared with an
analytical state space model. Both had good performance in ap-
proximating the nonlinear system. The authors note that no prior
decision on model order needs to be taken when using this PCA-
based approach. This is correct, but a decision on the number of
principal components in both the PCA and the PCR step needs to
be made. Ergon [11] uses state space equations, PCR and PLS, to
derive relations that can be used to predict one output variable
from another. An example of state space modeling is also given,
but this is via the predictor error method (PEM). Dynamic system
PCR and PLS solutions for output predictions are also presented,
again, based on a PEM state space model. In a later paper by
Ergon and Halstensen [12], these results are elaborated for a sys-
tem with low-sampling-rate reference measurements – a com-
bination of PCA and PEM is utilized to produce predictions of
the reference measurements with a better performance as com-
pared with the PLS. Shi and MacGregor give a complete review
[13] of different subspace methods and compare them to
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different latent variable techniques (PCA, PLS, and PCR).
They come to two overall conclusions: (i) for process monitoring
(“Is my process on track?”), latent variable methods are to be pre-
ferred, but for process identification (“What are the process
dynamics?” or “Where is my process heading?”), dedicated sub-
space identification methods are preferential; and (ii) CVA
and the N4SID algorithm [7] have the best performances of
the subspace methods they tested. In the most recent paper, ap-
plying state space models in the chemometric literature, Pan
et al. [14] showed, contrary to the first conclusion by Shi and
MacGregor [13], that better monitoring performances could be
archived if a state space/subspace method was applied com-
pared to PCA-based monitoring. The authors use PCA to reduce
the dimensionality of the output, followed by fitting state space
models by means of N4SID. A Kalman filter is subsequently used.
A large part of the advantage from this model is, according to
the authors, a result of the implementation of the Kalman filter.

4. MILK COAGULATION MONITORING

In this paper, it is shown how the dynamics of the coagulation of
milk can be observed and modeled by combining near infrared
(NIR) spectroscopy, PCA, and subspace-based state space estima-
tion. The example, milk coagulation for cheese production, is a
purely stochastic time series with no input or control, and is
therefore modeled according to Equations 3 and 4. Twelve
batches of coagulating milk were monitored by NIR spectros-
copy. The data was first published by Lyndgaard et al. [15], and
for further details on the procedures and measurements, includ-
ing the batch numbering, we refer to this publication. In that pa-
per, it was shown that scores from a PCA decomposition of the
NIR data could be modeled by mechanistic models [15]. In this
manuscript, it is shown that it also is possible to model the data
via SI without prior assumptions on the process dynamics.
Throughout this paper, we will follow the standard notation used
in state space literature. xk is therefore the process states at time
point k, and yk the system output at time point k – in our case, it
is the first PCA score vector from the decomposition of the NIR
spectra recorded during the batch process. Figure 1(A) shows
the NIR spectra of a representative normal operating conditions
(NOC) batch color-coded by runtime, whereas Figure 1(B) shows
the first PCA score of all 12 batches used in this research [15]. It is
seen that the main effect over time is a narrowing and an

increase of the water band around 1400–1500 nm which can
be attributed to gel formation and hardening [16]. This is a gen-
eral trend for all twelve batches. In order not to mix symbols, this
PCA step is written as Z= ypT+ E with Z, y, p, and E, respectively,
being a set of NIR spectra sorted as a function of time, the first
PCA score vector (equaling the output of our state space model),
the corresponding PCA loading vector, and the residuals. The
data flow for the state space-based process monitoring is shown
in Figure A1 in the Appendix.

Eight batch runs will be considered as training NOC batches,
four runs as the test set (Batches 1 and 12 as NOC, and Batches
3 and 8 as extremes/non-NOC). The general PCA score trajectory
can be described by three different phases: a very short lag-phase
plus a decaying sigmoidal curve and an exponential decay, all
superimposed on each other with ill-defined boundaries/transi-
tion times [15]. Knowing/predicting the development of the last
phase (gel hardening) is of great importance for cheese manufac-
turing because it gives information on the optimal cutting time
(the following step in production [15]), and thus, the quality of
the end product. It is, in spite of the clear nonlinear tendencies
that can be observed, expected that the data can be well approx-
imated by the linear state space models of sufficient rank. It can
furthermore be noticed that two batches differ noticeable from
the others: Batch 3 has increasing score values during the first
5min followed by a very short sigmoidal part which results in
the highest “end-value” of all the batches. Batch 8 has a low
“end-value” and a longer lag-phase. It should be noted that all
experimental runs were performed as similar as possible, and
outlying behavior is thus caused by unanticipated but natural
variation [15].

5. STATE SPACE BASED MONITORING

In our milk coagulation investigation, delta-time is the measure-
ment frequency of the NIR spectrometer (which gives a new out-
come every 36 s, hence, k to k + 1 takes 36 seconds). Each new
NIR data collection is scatter corrected by means of standard nor-
mal variate scaling right after collection. The new, expanded
spectral matrix Z is centered, and a PCA decomposition is per-
formed. During the calibration phase, it was established that a
one-component PCA model using centered data was essentially
the same as a two-component model on the noncentered data,
with the first principal component being close to the average

Figure 1. (A) Near infrared (NIR) reflection spectra of coagulating milk in one batch. (B) PCA scores over time from the NIR spectra of 12 different
coagulating milk batches.
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NIR spectra and the second showing the dynamics of interest in
this study. Following the notion of parsimony, a one-component
PCA model on the centered data is therefore preferred. In order
to avoid numerical problems due to a sign change in the score-
values vector during the subsequent state space modeling, all
scores are lifted to be positive. This is performed by simply add-
ing the right, same amount to all score values collected thus far
to make the first score value equal to 10 (y0 = 10). This operation
is performed after each new PCA decomposition. The PCA score
time trajectory is zero-order-hold resampled [6] to double the
number of data points, after which, a state space model can be
fitted. In this procedure, the number of data points is doubled
by repeating a measured data value once at the intermediate
time for this true value and its proceeding measured neighbor
(giving a “staircase” resampled signal that will not introduce false
dynamics in the system). This is performed to achieve a more sta-
ble estimate of the Hankel matrices (see Appendix) in the begin-
ning of the batch monitoring where only a few measurement
observations are available. The models are fitted recursively,
meaning that real-time acquisition of data is simulated by step-
wise, including more and more observations. The first state
space model for each batch is fitted when the first k= 16 NIR
spectra are collected (corresponding to approximately 9min into
the coagulation process, well pass the initial lag-phase of gel
formation, inside the sigmoidal phase for normal batches [15],
Figure 1(B)). At the next time step, one more NIR spectrum is in-
cluded in the data set, and a state space model is determined
from the newly computed, offset-corrected and resampled PCA
scores for k=17. In this way, it is possible to make an estimate
of the A matrix (which contains the estimated dynamics of the
system) and the initial state vector x0 (which represents the esti-
mated initial or boundary conditions of the system) at each time
step. All these computation steps take less than 1 s on a normal
personal computer and can thus be performed in “real-time” for
an NIR measurement rate of 36 s (see Figure A1 for the full com-
putational procedure).

The eigenvalues of A reflect the dynamics and stability of the
system [6]; stable discrete linear time-invariant systems have
eigenvalues within the unit circle (where complex eigenvalues
indicate an oscillating system [6]). By comparing the eigenvalues
of A for different runs, the development of different batches can
be compared. On the basis of a training set of NOC batches, sta-
tistical process control (SPC) charts for the system matrix A over
time can be constructed and applied to new production runs.
The initial state estimate x0 gives information on the boundary
conditions of the difference equation in Equations 1 or 3. This
represents the best estimate for the initial conditions in the
batch. For monitoring purposes, we propose 95% confidence
intervals (95% CI) for the elements of x0 and the eigenvalues l
of A on the basis of a Student’s t-statistic of the values for the
NOC training batches. Although it is not guaranteed that normal
probabilities are valid for either set of parameters (e.g. because
of the mentioned bias in the solution [7], see Appendix), it can
serve as a first approximation. The surveillance of the initial con-
ditions in x0 and the system dynamics in A, thus, tracks whether
the batch evolves according to NOC or not (“Did the batch start
at normal conditions, and is it developing as expected?”). The
dynamic representation in Equations 3 and 4 (or Equations 1
and 2 in the nonstochastic case) can further be used to predict
progress of the system – by developing, in time, the equations
starting from time zero (x0), an estimate of future states and
measurement observations can be made.

6. RESULTS

A critical step in state space modeling is the order or rank selec-
tion, the number of states in the system. Different tools can be
used for this, and as outlined in the Appendix here, we will use
the singular values of the block Hankel matrix (which is built
from time-shifted versions of the time series for each batch). As
the eigenvalues of the covariance matrix can be used for deci-
sion on the number of PCA components, the idea is to inspect
the singular values of the block Hankel matrix. Figure 2 presents
the average singular values and the approximate 95% confi-
dence limits on the basis of a Student’s t-statistic for the Hankel
matrix of the eight full NOC batch runs with six block rows.
Figure 2 shows how the first two singular values are very stable,
whereas the remaining four have a higher variance/uncertainty.
From this plot, the system order is therefore deemed to be
two, which also seems reasonable from the observation of the
two main phases in the PCA score trajectory (a sigmoidal and
an exponential decay, where the lag-phase is too short and is
weakly present for our sampling rate of 36 s to capture). No sig-
nificant difference in predictive performance of the model was
observed for a rank three system (where one real and two com-
plex eigenvalues were found for system matrix A), whereas a
rank one model severely underperformed with a biased predic-
tion (results not shown).
Equations 3 and 4 enable the prediction of future system out-

puts. A natural way of validating state space models is therefore
to compare the predicted output to the actual system output.
Figure 3 shows how the models fitted on each individual batch
run handle the one-step-ahead prediction for the four test
batches. Data is collected for K= 1 to k; state space modeling is
performed on the collected data, and the one-step-ahead predic-
tion is found using Equations 3 and 4. Figure 3 shows that the
one-step-ahead predicted score vector is very close to the ob-
served profile for all the batches, including the non-NOC batches.
The order two state space models are thus good at capturing the
essential dynamics and producing predictions over a short time
horizon. It should, however, be remarked that only testing the
one-step-ahead prediction is not very powerful because this
may lead to very optimistic prediction errors. In order to test
the longer time horizon predictions, the end-score value of each
batch, taken here as 36min into coagulation [15], is therefore

Figure 2. Scaled singular values of the block Hankel matrix for the nor-
mal operating conditions data.

J. H. Thygesen and F. W. J. van den Berg

wileyonlinelibrary.com/journal/cem Copyright © 2012 John Wiley & Sons, Ltd. J. Chemometrics (2012)



predicted after each measurement point. The first prediction is
therefore a 27-min horizon prediction (corresponding to a 45
steps-ahead prediction). At the next time step (36 s later), one
more data point is obtained, a new system including the initial
state identified and the end-value predicted from this informa-
tion. Figure 4 shows the error for end-value prediction. A chal-
lenge when predicting more than one step ahead is that it is
not possible to obtain an innovation (ek+n) for future values in
Equation 3. The best guess for future time points – used in
Figure 4 – is ek, the last known innovation as a substitute for
the remaining time steps.
Several things can be noticed in Figure 4. As anticipated, the

end-value estimate gets better as more and more measure-
ments are available for fitting the model and less extrapolation
is required, and already after approximately 12min, an accept-
able estimate of the batch end-value can be obtained for
Batches 1, 3, and 12. The initial models have clear difficulties
in predicting the end-value of the non-NOC Batch 8; the end-
value cannot be predicted with a satisfactory small error until

20min into the batch. This is caused by the longer lag-phase
(not present in the NOC set) and delayed response for this
batch.

SPC charts for the eigenvalues of A and the elements of x0 are
implemented for process monitoring. These charts are shown in
Figure 5 for the four test batches. It can be observed that the
NOC batches stay inside or close to the proposed 95% confi-
dence limits in all control charts, whereas the two deviating
batches clearly break the limits for several of them. For example,
it can be observed that both of the non-NOC batches already
break the 95% CI in the control chart of the first eigenvalue of
A after 9–10min, clearly indicating that these two batches do
not follow the NOC dynamics. The two deviating batches are also
seen to exceed the control limits for x0, again indicating that
these batches did not obtain the same estimated starting or
boundary values as the training batches. It is also worth noticing
that the confidence intervals for the first 10–12min, on the basis
of the NOC set, are fairly broad – reflecting the fact that the mod-
els based on the first few data points are obviously less well de-
fined than the later models (especially for the exponential decay
part representing coagulate hardening) [15].

In Figure 1(B), it was noticed that Batch 3 had a short sigmoi-
dal (or an early onset of the exponential decay) and that Batch
8 was delayed when compared with the NOC batches. This is
reflected in the control charts for the eigenvalues. Batch 3 in
Figure 5 has an offset that places it outside the confidence limits,
but nevertheless, follows the same trajectory as the NOC
batches, whereas the slow kinetics of Batch 8 is seen as a delay
for the first eigenvalue of A.

7. CONCLUDING REMARKS

In this work, state space models and subspace methods for sys-
tem identification in a PAT application are suggested. It was
shown that the subspace methods enabled state space model-
ing without a priori assumptions on model shape/form. In this
sense, the subspace methods enabled the modeling to be
data-driven rather than hypothesis-driven. The models were able
to produce both good short and long time horizon predictions. It
was furthermore shown that state space models are potential

Figure 4. Prediction error for the end-value prediction of the four test
batches.

Figure 5. Statistical process control charts for eigenvalues of the A
matrix and the initial state vector x0.

Figure 3. Observed score vector and one-step-ahead prediction (mar-
kers) for the four test batches.
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tools in process monitoring. Where conventional MSPC control
charts reflects the process in a static manner, the control charts
proposed in this work reflect the dynamic behavior of the
process.
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APPENDIX
Different algorithms for state space modeling are available. One
method, which is popular within the control engineering society,
is the prediction error method (PEM). PEM has the advantage that
any first principal knowledge on the system can be included
during modeling [17]. But this is also the disadvantage of PEM
algorithms – they are strongly dependent on the chosen param-
eterization. The main competitors of PEM are the subspace
methods. One class of subspace methods is based on singular
value decomposition (SVD). This means that these methods, as

opposed to the PEM, are noniterative and require no other pa-
rameterization choice than the model order which can be esti-
mated from the singular values of the input/output data [7].
Two decisions should be made during subspace modeling:
the size of the Hankel matrices and the model order n. A Hankel
matrix is symmetric and has the same elements across the off-
diagonals. Written out for the input series (u0, u1, u2 . . . ui+j�1)
and corresponding output series (y0, y1, y2 . . . yi+j�1), in Equations
1 and 2, the Hankel matrices would thus be [7]:

A similar Hankel matrix (effectively, a row and column time-
shifted data representation) can be defined for the states series
(x0, x1, x2 . . . xi+j�1), where each entry is a vector of length n
(the rank of the system), instead of a scalar. The separation be-
tween “past” and “future” data reflects how future inputs, out-
puts, and states can be regressed on past inputs, outputs, and
states. The selection of the number of block rows (the “past”
and “future” horizons) should be made so that i is larger than
the expected system order n, whereas i+ j+ 1 is determined by
the length of the available training time series.
The input and output Hankel matrices can be combined in a

block Hankel matrixW. The “past” block Hankel matrixWp would
thereby, for example, be defined as [7]:

Wp¼ UP

Yp

� �

The chemical/physical rank ofWp is an estimate of the true un-
derlying number of dynamic components (which could be called
eigenfrequencies) in the system.Wp can therefore be used to es-
timate the system order n. The block Hankel matrices for the ob-
served data are closely related to the concepts of observablity
and controlablity of the system states [7]. States can, in general
terms, be said to be observable if they can be uniquely deter-
mined from the output yk of the system. A useful system-related
matrix is the observability matrix Γ, defined as:

Γ¼

C
CA
CA2

. . .
CAj�1

0
BBBB@

1
CCCCA

If the rank of Γ is equal to n (number of elements in the state
vector xk), then the system is observable. Another useful system-
related matrix is the controllability matrix Δ. It is, as the name
suggests, related to the controllability of the system. The system
is controllable if it can be brought to any desired state by the in-
put series uk. The controllability matrix is defined as:

Δ¼ Aj-1B Aj-2B . . . AB B
� �

The last system-related matrix that needs to be defined is the
lower block triangular toeplitz matrix H:
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H ¼

D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0
. . .
CAj�2B CAj�3B CAj�4B . . . D

0
BBBB@

1
CCCCA

It can be shown [18] that the original vector/matrix compu-
tations in Equations 1 and 2 can be reformulated in the follow-
ing format by means of the system-related matrices as defined
previously:

Yp ¼ ГXp þ H Up

Yf ¼ ГXf þ H Uf

Xf ¼ AXp þ Δ Up

The different subspace algorithms available essentially solve
this set of equations from which the A, B, C, and D matrices in
Equations 1 and 2 for a user-defined rank n of the system are es-
timated. The term “subspace” refers to the fact that the first step
in the algorithms is an oblique (or nonorthogonal) projection O
of the “future” outputs (Yf) on the “past” block Hankel matrix
Wp along the future outputs Yf. Singular SVD is then calculated
on this weighted oblique projection: G1OG2 =ŨSVT, where G1

and G2 are weights determined by the specific algorithm (where
– in the case of a CVA solution – G1 contains the inverse square
roots of the covariance estimate of the future outputs, and G2 is
the identity [7]). Ũ and S are then used to determine the observ-
ability matrix (Г) by Г=G1ŨS½. Because the oblique projection is
equal to the product of Г and the states (Xk), is it possible to de-
termine the states by X= Г+O, where the Moore–Penrose pseudo
inverse of the observability matrix is used. The boundary be-
tween “past” and “present” can then be shifted one step in order
to determine the states at the next time step (Xk+1), making the
A, B, C, and Dmatrices the only unknowns in the system of linear
equations that can thus be solved by least squares.
For the batch situation without input signals discussed in this

manuscript, CVA–based stochastic Algorithm 3 from the book
“Subspace Identification for Linear Systems” by Peter van
Overschee and Bart de Moor [7] is used. The “past” block Hankel
matrix is, in this case, equal to the “past” outputs (Yp), and the
algorithm then follows the same flow as in the deterministic
case: determine O from “future” outputs and the block Hankel
matrix (=“future” outputs (Yf)), determine the observability
matrix (Г) from the weighted O, determine the states by
X= Г+O, and solve the system of linear equations by least
squares. The algorithm, furthermore, has the additional feature
to produce positive real covariance sequences, making the
solutions produced by the algorithm physically/chemically
meaningful. The price to pay for this is a bias in the solution
[7]. The equivalent of controllability for the stochastic system,

Equations 3 and 4, is sometimes called reachability [11] (those
latent states of the system that can be reached by the system
dynamics and noise input), whereas the observability is some-
times substituted by detectability (those latent states of the
system that can be observed/detected or “are excited by” the
system dynamics, plus noise input).

Figure A1. Dataflow for state space-based monitoring.
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Dynamic Model Based Monitoring of Batch Processes 

Jonas Hoeg Thygesen* and Frans W.J. van den Berg, University of Copenhagen, Faculty of Science, 
Department of Food Science, Quality and Technology, Rolighedsvej 30, DK-1958 Frederiksberg C, 
phone: (+45) 3533 3500, fax: (+45) 3533 3245, e-mail: thygesen@life.ku.dk 

Abstract 
Typically only limited process knowledge is available for batch modeling and monitoring in 
industry. This paper suggests state space modeling estimated by subspace identification in 
combination with Kalman filters for application in real-time monitoring and prediction of batch 
trajectories without the need for such prior process knowledge. A model system of riboflavin 
(vitamin B2) breakdown is studied. Riboflavin is light sensitive and may, depending on pH, be 
broken down to the fluorescing compounds lumiflavin and lumichrome at different rates. 
Excitation–Emission Matrix (EEM) fluorescence spectroscopy is used to monitor the breakdown 
and it is shown how state space models plus Kalman filters can be used to monitor and predict the 
different breakdown dynamics. The state space/Kalman method is compared to Partial Least 
Squares (PLS) regression based monitoring. 

Keywords:  Subspace identification, state space models, Kalman filtering, dynamic model, process 
monitoring 
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1 Introduction 

Modeling of batch data for process monitoring and control purposes has long been, and still is, of 
interest within chemometrics [1-5]. With the increasing demand for Model Predictive Control 
(MPC) solutions in the process industry [6] time series models are required. Frequently only 
limited process knowledge is available for modeling, especially in the food and biotechnology 
areas. Process models based on mechanistic or first principles are therefore seldom an option. This 
leads to the need of System Identification (SI) tools that allow modeling of batch processes based 
only on observations of system inputs and outputs. One subclass of such methods within the SI-
toolset are state space models that may be found via so-called subspace methods [7-9]. The state 
space models have the advantage that they allow for easy implementation of the so-called Kalman 
filter. The Kalman filter is an optimal least squares error solution to the common challenge faced 
when applying process models: finding the best compromise between the measured process 
output at time point k, and the output predicted by the dynamic process model at this same time 
point k. Since both the measurement and prediction are hampered by noise and error there will be 
an intrinsic difference between the two. One method of finding the statistically optimal 
compromise between the two output estimates is via the Kalman filter [10-12]. This paper 
illustrates how batch trajectories, without any prior process knowledge, can be modeled, 
monitored and predicted via an approach based on state space models and Kalman filters. The 
proposed method is compared to a Partial Least Squares (PLS) regression for endpoint prediction, 
a method commonly applied in literature [2]. It is shown how the two methods in spite of different 
objectives may complement each other, with the state space methods capturing and describing the 
dynamics, and the PLS method predicting only the endpoint of the batch trajectories. 

2 Theory 

2.1 State space notation and the Kalman filter 
State space models are linear, time-invariant relations between the physical inputs to the system at 
time k (uk), and the physical outputs (measurements) at time k (yk), connected via the vector xk 
which contains the (most often) virtual or principal states of the system [7-9]. A discrete time state 
space model can be written via vector/matrix products as shown in Equations 1 and 2. 

xk = Axk-1
 + Buk-1 + wk  (1) 

yk  = Cxk + vk  (2) 

Equation 1 is habitually referred to as the system equation (reflecting that it describes how the 
system evolves over time via the difference relationship of the state vector xk) while equation 2 is 
called the measurement equation (it describes how the measured output is related to the state of 
the system). The A-matrix is called the system matrix which describes how the system (or the 
states) evolves from one time-step to the next. The input matrix B explains how a control input at 
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time-step k would affect the system at k+1. C is referred to as the measurement matrix 
representing, as stated previously, how the states are reflected in the physically measured outputs 
(yk). A fourth matrix (D) is sometimes included in equation 2, called the (direct) feed-though, to 
explain how a control input (at time step k) can directly be observed in the output at time step k. 
This term is however seldom included in modeling, and is also not included in our work. An 
important note should be made on the system states (xk). Just as loadings and scores in a PCA 
model not necessarily correspond to e.g. pure compound spectra or concentrations, so do the 
system states not necessarily coincide with physical phenomena in the system (e.g. concentrations 
in a chemical reactor), they should instead be seen as a latent representation of the dynamics 
spanning the subspace of relevance for the system. The matrices are in this study identified during 
a training phase where subspace identification algorithms are applied to a training data set 
consisting of Normal Operating Condition (NOC) batches. More details on the state space models 
and subspace identification algorithms can be found in [7].  

wk and vk in equations 1 and 2 are noise sequences assumed to follow a normal distribution with wk 

∼N(0,Q) and vk ∼N(0,R). This indicates that both the system (equation 1) and the output 
measurements (equation 2) are affected by uncertainty at each time step. The dynamic nature of 
the state space models are in this study utilized via implementation of a Kalman filter - a so-called 
optimal linear observer - for the prediction of future system outputs. It combines the noise 
corrupted measurements of the system output (yk) with the predicted system output (Cxk) in a 
statistical optimal manner [13]. 

Equation 1 makes it possible to estimate the state at time-step k ( ̂k
-) from the previous state (xk-1) 

and the previous input (uk-1), this estimate is known as the a priori estimate at time step k 
(indicated by the “super minus”). The Kalman filter combines the noisy measurements yk with the 
predicted system output Cxk by finding the a posteriori system state as a linear combination of the 
a priori system state and a weighted difference between measured yk and anticipated response C ̂k

-

. 

   ̂k =  ̂k
- + Kk(yk - C ̂k

-) (3) 

The difference (yk - C ̂k
-) (also known as the innovation) can be computed straight forward, and 

reflects how large the agreement between the actual system output measurement and the system 
model is. 

The estimation errors for the system states are given as: 

ek
- = xk -  ̂k

-   (4) 

ek = xk -  ̂k   (5) 

With the a priori Pk
- and a posteriori Pk covariances defined as: 

Pk
- = E[ek

- ek
-T] (6) 
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Pk = E[ek ek
T]  (7) 

Kk in equation (3) is known as the Kalman gain; it is chosen so that the a posteriori system state 
error covariance (Pk) is minimized. One common definition of the Kalman gain is [13]: 

Kk = Pk
- CT(C Pk

-CT + R)-1 (8) 

Where R is the measurement noise covariance (associated with vk in equation 2). Equation (8) 
illustrates how the Kalman filter balances the error covariances to give weight to either the actual 
measurement (yk) or the predicted measurement (C ̂k

-). If the measurement noise covariance (R) 
is small (the measurements are trusted), the Kalman gain becomes large and equation 3 
subsequently weights up the innovation, driving the a posteriori system state away from the 
predicted measurement (C ̂k

-) towards the actual measurement (yk). The opposite is of course also 
the case, the a priori system state error covariance (Pk

-) depends on the system noise covariance 
matrix Q (see equation 9 below). If Q is small, Pk

- will also be small, resulting in a likewise smaller 
Kalman gain, meaning that the predicted measurement will be trusted more. Using the right 
estimates for Q and R (or rather the relative size ratio) is therefore of key importance to obtain the 
right Kalman filter estimates. And while the measurement noise covariance (R) is often known or 
easily estimated, the process noise covariance matrix (Q) is less easily available since the states in 
xk themselves are estimates that are not directly observed. Mehra [14,15] showed that a sub-
optimal estimate can be obtained as: 

Q = P0–A(I-K0C)P0AT  (9) 

with P0 being the initial error covariance matrix for the system states and K0 the initial Kalman 
gain. Procedures for better estimates of Q have been published (e.g. Odelson et. al. (2006) [16] and 
Rajamani & Rawlings (2009) [17]), but they do not provide a simple closed form expression.  

The approach presented in equation (9) is applied in this paper. The a priori error covariance 
matrix (Pk

- ) can at time step k be found from the Lyapunov function: 

  Pk
- = APk-1A

T+Q  (10) 

With Q being the covariance matrix for the system noise sequence wk in equation (1). It is after a 
measurement updated to the a posteriori error covariance (Pk) by: 

Pk = (I-KkC) Pk
-  (11) 

Where I is the identity matrix, and Kk the Kalman gain from equation (8). Based on the a posteriori 
error covariance the output covariance matrix Sk is found by [14]: 

Sk = CPkC
T + R (12) 

It can be shown that under the assumption that the process and measurement noise are normal, 
the state estimates are also normal [12]. Furthermore it is well known that a linear transformation 
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of a normally distributed process, results in a process that is also normally distributed. The vector 
of (1-α) confidence intervals cik for the predicted output at time k can therefore be found as: 

cik =  ̂k  Φ1-α/2 √         (13) 

Where Φ1-α/2 is the (1-α/2) quantile of the standard normal distribution and diag(Sk) the diagonal 
elements of Sk [18]. 

In our case study described in the remainder of the paper discrete time monitoring is prefomed for 
kstart = 3 to kend = 89. Based on the theory described so far an overall monitoring cycle consisting of 
the five steps listed below is implemented: 

0)  Identify system - obtain estimates of A, B, C, K0, P0, Q and R during the training phase from full 
NOC batches. 

1)  Initial conditions - estimate x0, based on k = 1 and k = 2 [7], k = kstart 

2)  Predict state - the a priori state estimate  ̂k
- is found using equation (1), and the error 

covariance is estimated by equation (10) 

3)  Perform measurement- obtain yk 

4i) Correct measurement - computing the Kalman gain Kk by equation (8), use this gain to update 
the measurement  ̂k by equation (3), update the a posteriori error covariance Pk by equation (11) 

5)  If k < kend then k = k + 1, return to 2) else end 

For the simulation of future system outputs a four-step inner-cycle is included; in order not to mix 
symbols, the future time-steps are denoted by g: 

4ii) g = k + 1 

4iii) Predict state – the state ahead ( ̂g) is predicted using equation (1), and the error covariance Pg 
is predicted by equation (10) 

4iv) Translate output - the output yg corresponding to the predicted state found using equation 
(2), and the predicted output confidence intervals cig are found by equation (12) and equation (13) 

4v) if g < kend then g = g + 1, return to 4iii) else return to 2) 

2.2 Partial Least Squares for endpoint prediction 
Multivariate Statistical Process Control (MSPC) is a mature research area for which many models 
and applications are described in literature. A commonly used method for predicting endpoint 
quality of batches was presented in 1995 by Nomikos & MacGregor [2]. In the case that a number (j 
= 1, 2… J) of process variables are followed over time (k = 1, 2… K) for several batches (i = 1, 2… I), a 
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three-way tensor of the observed data Y (I  J  K) can be formed. The method is based on 
collecting the corresponding quality variables (m = 1, 2… M) in matrix Z (I  M), unfolding the 
observed training data in the batch direction to obtain Y (I  JK) and regressing the autoscaled Y 
on Z using PLS2 [2].  

A challenge when applying the method on-line for new batches is the fact that not all data points 
for the new vector are available. E.g. if the total batch run is 89 steps long (K = 89) and we are 
currently at k = 20 the remaining 69 time steps are yet unknown. Different methods are available 
for estimating the process outputs during the remaining time steps. Nomikos & MacGregor [19] 
showed that simply setting the remaining time steps to missing, and using the ability of PLS to 
estimate the missing data is the best in a range of methods compared. It does though require the 
trajectories not to exhibit frequent discontinuities and approximately 10% of the batch history 
needs to be recorded before reliable results can be obtained [19,20]. It should be kept in mind that 
though both the state space/Kalman method and the PLS method have the aim of modeling batch 
data, the objective of the two methods are quite different. Where the first method has the goal of 
capturing and modeling the dynamics via the system matrices [8], the unfolding and autoscaling 
in the latter method has according to Nomikos & MacGregor the objective of “removing the main 
non-linear and dynamic components in the data” [19]. This has the consequence that different 
questions can be answered with the two methods. One common question to ask is whether the 
process is on track or not (“where are we now?”). Control charts of the observed outputs may help 
in answering this question but do not necessarily reflect if the dynamics are behaving according to 
NOC, while control charts of the states and dynamics can [7]. Another question that could be of 
great interest is what the endpoint quality of the batch is going to be (“where are we going?”). The 
PLS method outlined above is especially suited for predicting the endpoint quality, but does not 
include predictions on how the batch will evolve. This on the other hand is the aim of the state 
space/Kalman filter model, via a combination of model predictions and observations the batch 
trajectory is predicted for the remaining time steps. A final question that may be of interest is 
whether the initial conditions for the process were within the specifications (“where did we start 
from?”). PLS – or any other regression algorithm - may be used for predicting the initial 
conditions, but where the state space model directly gives initial condition estimates, a separate 
PLS regression model would be required for predictions of the initial conditions because model 
inversion is not obvious. 

3 Material and methods 

3.1 Model system design 
Riboflavin (vitamin B2) is bright yellow and can in solution be quantified by means of excitation-
emission (EEM) fluorescence spectroscopy [21,22]. The vitamin is relatively heat stabile but may, 
depending on pH, be hydrolysed into lumichrome and lumiflavin when light is present. 
Lumichrome formation is favored at neutral or acid pH while lumiflavin formation is favored 
under basic conditions [23]. Multivitamin effervescent tablets (Vitafit Multivitamin) were bought 
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from a local grocery store (Lidl Stiftung & Co. KG, Necklarsulm, Germany). One tablet weighs 4.5 g 
(random selected from 6 containers to induce natural variation) with a content of approximately 
1.6 mg riboflavin among other vitamins. One tablet was dissolved in 600 mL water and the 
solution was allowed to settle for 2 minutes before 20 mL 2 M NaOH was added (regulated to pH ≈ 
10). Magnetic stirring was applied and three white LED light sources were constantly used as light 
source during the experiments. Each batch was measured for approx. 60 min and a total of 76 
batches were measured over 8 days. 57 of these batches were selected for modeling and test, 44 
batches were recorded under NOC, the remaining 13 batches were manipulated by turning off one 
or more of the light sources for short periods, changing the amount of tablet material or amount 
of NaOH added. The manipulations were carried out in order to yield modestly trajectories 
different from the NOC. The remaining 76 - 57 = 19 non-NOC batches have deliberately induced 
gross errors (e.g. no light sources) and are designed for early detection strategies not pursued in 
this paper. Instead we focus on the identification of more subtle non-NOC behavior.    

3.2 Online monitoring 
Temperature (uncontrolled, corresponds to room temperature) and pH in the reactor vessel were 
continuously logged during the experiments (MadgeTech pHTemp2000 Data Logger, MadgeTech, 
Contoocook, NH, USA). Fluorescence EEMs were recorded using a BioView EEM fluorescence 
process spectrometer (DELTA Danish Electronics, Light & Acoustics, Hørsholm, Denmark). The 
EEMs were recorded using a combination of 11 excitation filters (λex; equidistantly spaced from 330 
to 530 nm, positioned on the light source sequentially) and 11 emission bands filters (λem; 
equidistantly spaced from 370 to 570 nm, positioned on the detector sequentially). A sampling rate 
of 30 sec/EEM was used. Concentrations of the EMM components are expressed as PARAFAC 
scores [24]. 

3.3 Data modeling 
State space models were fitted using the n4sid algorithm from the System Identification Toolbox 
version 7.4.1 in MATLAB R2010b (The Mathworks Inc., Natick, MA, USA). PARAFAC modeling was 
done using the N-way Toolbox for MATLAB (http://www.models.life.ku.dk/source/nwaytoolbox/ 
[24]). All other computations were also done in MATLAB using in-house routines. 

4 Results and discussion  

4.1 Data inspection and training/test set formation 
A four component PARAFAC model was fitted for each batch, a representative selection of the 
resulting scores and spectral loadings are shown in Figure 1 and Figure 2, respectively. Marked in 
bold are the NOC batches 5 and 29, plus the non-NOC batches 45 (less NaOH added) and 74 (less 
tablet added). Since the spectral loadings in PARAFAC are normalized to unit length we can safely 
use the time-scores as (pseudo) concentrations of the four chemical components relying on the 
uniqueness property [24]. 
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Figure 1 Concentration-scores from a four component PARAFAC model, one model was made for each 
batch. 

It can be seen that one of the PARAFAC components decreases over time, two grow and one stays 
constant. An inspection of the emission and excitation loadings reveals that the decreasing 
component corresponds to riboflavin (λex 450nm / λem 520nm [25]). The first of the two increasing 
components with a slightly shifted peak as compared to the riboflavin peak corresponds to 
lumiflavin since it is known to be yellow as well but has a peak maximum shifted to slightly lower 
emission and excitation wavelengths [23]. Lumichrome is from literature known to have a 
maximum peak at approximately λex 360nm / λem 450nm [23], which corresponds nicely to the last 
increasing component. The fourth (stable) component is unknown.  

 

Figure 2 Spectral-loadings from a four component PARAFAC model, one model was made for each batch. 
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A close inspection of Figure 1 also illustrates that the one of the increasing components 
(lumiflavin) is formed at a slightly higher rate than the other increasing component (lumichrome). 
This makes sense seen from a chemical viewpoint since the formation of lumiflavin at pH 10 
should be favored over lumichrome. Furthermore it can be observed that the PARAFAC scores for 
the non-NOC batches especially are deviating for the first and second PARAFAC scores. For batch 
74 it is also worth noticing that lower scores in general are seen, corresponding nicely to a lower 
concentration of both riboflavin and reaction products.  

Because the riboflavin hydrolysis reaction is pH-dependent and fluorescence response is known to 
be temperature dependent [26], the PARAFAC scores will be modeled for the state space case with 
the three significant scores as outputs (yk), and the easily measureable reaction solution pH and 
temperature as inputs (uk), plotted in Figure 3 for the selected number of batches. 

  

Figure 3 pH and temperature of reaction solutions measured over time. 

44 NOC batches were recorded; every fourth was used as test data together with the selected non-
NOC batches (24 in total) the remaining 33 NOC batches were used as training data. 

4.2 State space modeling and Kalman filtering 
In order to determine the number of underlying dynamic components (the order of system matrix 
A in equation 1), time shifted matrices of the input and output data are formed from the training 
NOC batches, a so-called block Hankel matrices (for more details see Thygesen and van den Berg 
[7]). An indication of the correct number of system states that can be observed in the data can be 
found by inspecting the singular values of this Hankel matrix, just as the eigenvalues of the 
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covariance matrix can be used for deciding the number of PCA components. Inspection of these 
singular values (Figure 4) shows that a fourth order state space model is suitable. 

 

Figure 4 Logarithm of singular values of the block Hankel matrix based on training NOC data. 

The state space equation allows prediction of future system outputs (i.e. future riboflavin, 
lumiflavin and lumichrome score values), this prediction is further enhanced by implementation 
of a Kalman filter. The filter requires, as outlined in the theory section, estimates of the process 
noise covariance matrix (Q) and the measurement noise covariance matrix (R), estimated from the 
NOC training data. When using the System Identification toolbox in MATLAB for fitting the state 
space models, an estimate of the measurement noise covariance matrix is directly available. This 
covariance matrix is used as R where the diagonal elements are the assumed value for the variance 
of the individual measurements (i.e. the different PARAFAC scores), and the square root of the 
elements are thus the standard deviations on the measured scores. The standard deviations are in 
this case equal to: 57.1 (riboflavin), 32.6 (lumiflavin) and 29.9 (lumichrome; compare with Figure 
1). The process noise covariance matrix (Q) is estimated by the method proposed by Mehra, 
equation (9) [14,15]. The initial Kalman gain K0 is (just as R) available from the estimated model. 
After fitting the state space model on the training data, the initial state of each batch (x0) is 
estimated by finding the estimate that minimizes the prediction error. The variance of this 
sequence of estimates is subsequently used to form P0 as a diagonal matrix with the estimated 
variances as its elements. 

Figure 5 and Figure 6 presents the Kalman filter estimates and predictions of riboflavin, lumiflavin 
and lumichrome PARAFAC scores at time steps k = 3, 20, 40 and 60 for NOC batch 5 and non-
NOC test batch 45, respectively. 
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Figure 5 Kalman filter estimates and predictions of future riboflavin, lumiflavin and lumichrome PARAFAC scores at time steps k = 3, 20, 40 
and 60 for the NOC batch 5. 
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Several things can be noticed in Figure 5. First of all it shows that the state space model overall 
captures the system dynamics well. At k = 3 a small bias is seen between the predicted and 
observed system outputs for the middle part of the curve, likely due to a inaccurate estimate for 
the batch boundary conditions x0,  but the overall trajectory is the same. One would of course not 
have access to the future outputs in a monitoring situation, but the comparison is nevertheless 
very valuable as a validation tool for the models at hand. Furthermore, the adaptive nature of 
Kalman filters can also be noticed. At k = 3 a bias is seen, after observing the next data points and 
correcting the states correspondingly the bias is removed, and there is a good correspondence 
between the predicted and the observed system outputs. Finally Figure 5 also indicates why the 
term Kalman filtering is used; the noisy measurements are passed through a filter whereby the 
noise or erratic jumping is reduced, the resulting concentration-profiles thereby appear as a 
smoother trajectory that corresponds well to the trajectory that one would intuitively expect based 
on chemical insight in the absence of noise. This illustrates that the Kalman filter essentially is a 
statistically optimal compromise between the observed trajectory and the trajectory predicted by a 
model. 
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 Figure 6 
Kalman filter estimates and predictions of future riboflavin, lumiflavin and lumichrome PARAFAC scores at time steps k = 3, 20, 40 and 60 for 
the non-NOC batch 45. 
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Also in Figure 6 for non-NOC batch 45 a bias is seen, especially for the riboflavin score trajectory. 
The model clearly over estimates the riboflavin scores as a result of the higher starting values and 
different dynamics for this non-NOC run. It is however able to correct the predictions as more 
measurements become available. 

4.3 Dynamic control charts 
Despite not being directly interpretable as physical quantities the state space model does suggest 
control charts for the individual states. This chart for the states - the principal behavior of the 
system - thus reflects the dynamic behavior of the system. If the outputs are evolving according to 
NOC the states will fall inside the control limits; if the dynamic are different (e.g. faster or slower) 
the states will fall outside the control limits. Control charts for the four states were made based on 
the training set (Figure 7). The 95% CI for state i at time k (ci i,k) was found as: 

ci i,k =  ̅i,k  1.96   i,k (13) 

Where  ̅i,k is the mean of state i at time k and   i,k the corresponding standard deviation, based on 
the training NOC data. 

 

Figure 7 Control charts for states (xk) of NOC batches 5 and 29 (not identified) and non-NOC batches 
45 and 74. 

In Figure 7 it is seen that while the NOC test batches fall within the 95% CI for all four states at all 
times, the two non-NOC batches clearly break one or more of the limits right from the start. In an 
industrial setting this information would be available to operators already after a few minutes and 
if desired a corrective action (e.g. dosing extra base to the vessel) could be taken once sufficient 
confidence is there. It can however also be noticed in Figure 7 that the non-NOC batches slowly 
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converges towards NOC behavior (this is especially the case for states 1 and 2). This reflects that 
the same chemistry is present in all batches in spite of the different starting conditions. 

4.4 Endpoint prediction 
It was shown in the theory section how the state space model in combination with the Kalman 
filter was able to capture the process dynamics and predict the system output ahead in time. Here 
endpoint predictions will be compared to a dedicated method such as PLS. The endpoint was in 
this case taken to be the average PARAFAC scores for k = 85 to k = 89 for the three analytes 
(riboflavin, lumiflavin and lumichrome). During the training phase a 5 latent variable model was 
found optimal for the PLS. In order to assess the fit the Root Mean Square of Prediction (RMSEP) 
found at selected time step was computed, the results are presented in Table 1. 

Table 1 RMSEP at selected time steps for endpoint prediction by the state space/Kalman method and 
the PLS method. 

RMSEP   Kalman/PLS k = 3 k = 20 k = 40 k = 60 

NOC batches (N = 11) 
Riboflavin 
Lumiflavin 
Lumichrome 

 
142 / 144 
66 / 76 
42 / 29 

 
138 / 88 
62 / 44 
41 / 21 

 
112 / 66 
48 / 37 
38 / 19 

 
125 / 38 
50 / 27 
45 / 18 

Non-NOC batches (N = 13) 
Riboflavin 
Lumiflavin 
Lumichrome 

 
339 / 135 
127 / 77 
94 / 55 

 
287 / 111 
101 / 44 
86 / 57 

 
164 / 70  
55 / 45 
49 / 45 

 
124 / 28 
44 / 31 
42 / 32 

 

Table 1 shows how the dedicated PLS method is better at estimating the endpoint. It is worth 
noticing that the PLS predictions improves dramatically going from k = 3 to k = 20 steps. This is of 
course a result of the shorter prediction horizon but also corresponds to the knowledge from 
literature that approximately 10% of the batch history (in this case k ≈ 9) should be known before 
reliable results are to be obtained.  

Figure 8 gives a closer assessment of the riboflavin predictions for two selected batches in the form 
of a control chart of the endpoint predictions: NOC batch 29 (Figure 8A) and the non-NOC batch 
45 (Figure 8B). As process target the mean of the NOC training data is given together with 95% CI 
(found by equation 13), plus the actual endpoint of the batch. 
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Figure 8 Control charts for endpoint prediction. A: NOC batch 29, B: non-NOC batch 74, C: NOC batch 
29 with 20 times reduced process noise covariance matrix Q for Kalman filter, D: non-NOC batch 74 
with reduced Q. 

While both PLS and the Kalman predictions are close to the actual endpoint already from the 
beginning for the NOC batch, more data points are needed for the non-NOC before accurate 
endpoint predictions can be made. Figure 8A and 8B also illustrates that fairly noisy (or jerky) 
endpoint predictions are obtained by the Kalman method for this particular NOC batch. This is 
the result of the choice of process- and measurement noise covariance matrix (Q and R). A sub-
optimal estimate of Q was applied in this paper based on theory not explicitly on training 
experience, and it is known that the estimates of Q are pessimistic [16]. It would therefore be 
possible to adjust the filter to suppress this noise by tuning the ration between Q and R. This 
adjustment in SPC is normally based on validation performance indicators of the control charts 
ones in use. One illustration is given in Figure 8C and 8D where a twenty times reduction of Q is 
used. This comes however with the price of trusting the model more and therefore with the risk of 
delays in capturing deviating behavior in a statistical monitoring situation. 

5 Conclusions 
In this paper it was shown how a combination of state space models and Kalman filters can serve 
as a versatile tool in batch process modeling and monitoring. The proposed method was able to 
capture and model the dynamics of a batch process. The method was also shown to be adaptable 
to new non-NOC conditions. The method allowed for dynamic control charting of initial condition 
estimates, current system-states as well as predictions of process variable future trajectories. For 
endpoint prediction a dedicated method based on Partial Least Squares was found to produce 
slightly better predictions.  
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Abstract 
This paper presents how previous knowledge on reaction kinetics may be incorporated during PARAFAC 
modelling; this is done by constraining the scores of the PARAFAC solution to follow exponential 
decay/growth. The method is illustrated by fitting 3-way and 4-way constrained PARAFAC models on a 
dataset of EEM-fluorescence. The 3-way analysis showed that chemically meaningful scores and loadings 
could be obtained together with kinetic parameters of the individual batch. The 3-way analysis was not able 
to clearly differentiate between batches recorded under normal operating condition and batches recorded 
under deviating conditions, the method was however able to detect drift in the data. The 4-way analysis 
showed how comparable loadings and score trajectories were obtained when compared to the 3-way 
analysis. The drift in data was for this analysis not as evident as for the 3-way analysis, the method was 
however better at capturing the batch to batch variation in the form of differences between NOC and non-
NOC batches. A larger computational effort was required for the 3-way analysis than for the 4-way analysis, 
the two methods should however in the authors’ opinion not be seen as competing but rather as 
complementing methods that may provide answers to different types of questions. 

 

Keywords:  PARAFAC, constraints, process monitoring, grey-box models 
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1 Introduction 
 

The food- and pharmaceutical-industry is under an ever increasing demand for reduction in energy use, 
optimal production planning, product consistency and efficient utilization of raw materials. Several papers 
[1,2] have shown how successful implementation of process surveillance (e.g. via spectroscopy) and 
process models may bring these goals closer to reality. Different categories of models are available each 
with advantages and drawbacks, and depending on the objective of modelling and the available process 
information and knowledge one or the other should be chosen. Three levels or stages of process 
understanding can be distinguished: 

1. The physics and chemistry governing the process is well known (e.g. we know that the process can 
be described by a first order differential equation with known coefficients) 

2. The physics and chemistry governing the process is partially known (e.g. we understand how the 
process can be described by a first order differential equation, but we don’t know the coefficients) 

3. Only limited knowledge is available on the physics and chemistry governing the process (e.g. we 
can observe the input and the outputs of the system, but don’t know how they are connected from 
a causal point of view). 

In the case of level 1 understanding so-called white-box modelling can be performed. It consists of process 
models based on mechanistic or first principles (e.g Newtonian laws of physics). Unfortunately this is often 
not the case, especially in food processing, and only limited knowledge on the physics and chemistry is 
available (leaning towards level 3). This leads to the need of System Identification (SI) tools; so-called black-
box methods that allow modelling of processes (or systems) based only on observations of system inputs 
and outputs. An appealing feature of many of the SI-tools is that they allow implementation of a priori 
knowledge on the system, i.e. the intermediate knowledge level 2, where some process understanding is 
available. This is - for obvious reasons - known as grey-box modelling [3-7]. In this paper we will describe 
how prior knowledge on reaction kinetics may be incorporated during modelling of spectroscopic data. It is 
an example of how grey-box modelling may be applied in Multivariate Statistical Process Control (MSPC) 
were the estimated parameters of the kinetic profiles serve as indicator variables for batch performance. 
PARAllel FACtor analysis (PARAFAC) [8,9] is the method used for decomposing the multi-linear N-way 
tensors resulting from measurements recorded over batch-time. The model is known to be well suited for 
excitation-emission (EEM) fluorescence spectroscopy measurement data [10]. This paper illustrates how 
grey-box based MSPC modelling may be achieve by imposing functional constraints during PARAFAC 
modelling on a set of EEM fluorescence spectroscopy data.  
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2 Material and Methods 
 

2.1 Data-set 
Riboflavin (vitamin B2) is bright yellow and can in solution be quantified by means of EEM fluorescence 
spectroscopy [2,11,12]. The vitamin is relatively heat stabile but may, depending on pH, be hydrolysed into 
lumichrome and lumiflavin when light is present. Lumichrome formation is favored at neutral or acid pH 
while lumiflavin formation is favored under basic conditions [13]. The data-set studied in this paper 
originates from a model system of riboflavin where EEM fluorescence spectroscopy is applied to monitor 
the breakdown. The data-set consists of 62 batches that were measured over 8 days. Each batch is 
measured for approximately 60 minutes, corresponding to 63 equally spaced measurement time points. 
The spectra were recorded using a BioView EEM fluorescence process spectrometer (DELTA Danish 
Electronics, Light & Acoustics, Hørsholm, Denmark). The spectrometers uses a combination of 15 excitation 
filters (λex; equidistantly spaced from 270 to 550 nm) and 15 emission filters (λem; equidistantly spaced from 
310 to 590 nm). The data can thus be seen as one 4-way tensor (size: 63  15  15  62,  time   excitation  
 emission   batch) or as 62 individual 3-way  tensors (size: 63  15  15,  time   excitation   emission) 38 
of the batches were recorded under Normal Operating Conditions, the remaining 18 were manipulated to 
yield process conditions different from the NOC (e.g changing pH, adding extra tablet material, dimming 
the light etc.). Part of this data-set was previously presented by Thygesen & van den Berg [2], we referrer to 
this paper for further information on experimental setup and design. 

2.2 Algorithms 
PARAFAC modelling was done using the PLS_toolbox (Eigenvector Research Inc., Wenatchee, WA, USA) in 
MATLAB R2010b (The Mathworks Inc., Natick, MA, USA); example Matlab code to apply functional 
constraints in the PLS_toolbox surrounding is presented in the appendix. All other computations were 
performed in MATLAB using in-house routines.  
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3 Theory 

3.1 Grey-box models 
Thygesen & van den Berg  [2] have previously shown how 3-way four component PARAFAC models on the 
Riboflavin data-set provided chemically meaningful results. The paper showed emission and excitation 
PARAFAC loadings that corresponded to the pure spectra of riboflavin, lumichrome, lumiflavin and a fourth 
unknown component that was stable/unchanged during batch reaction. The (unconstrained) scores 
obtained seemed to follow an exponential decay/growth for the three chemicals of interest. The present 
paper will present how this observation may be incorporated during PARAFAC modelling by constraining 
the PARAFAC scores to follow this exponential decay/growth. The scores are thus constrained to follow 
Equation 3-1. 

  

Equation 3-1 

 

Where a(t) is the score value at time point t, k the reaction rate constant, Δt a parameter responsible for 
shifting the point of maximum inflection, and β1 plus β 2 parameters that determines the starting intensity 
and end-point off-set of the curve. 

 

3.2 PARAFAC 
PARAFAC [8,9] is a method for decomposing N-way tensors X. The method applies to tensors with three or 
more modes, hence the general term N-way. For simplicity is PARAFAC in this theory section is explained 
for N=3 (i.e. X (size I × J × K)). The individual element in X (size I × J × K) is for an R-component PARAFAC 
model defined by [14]: 

 

Equation 3-2 

This can in matrix notation be written as: 

Equation 3-3 

where the individual slab of X (Xk with the size I × J) is approximated by A (I × R), the matrix with the 
collected first mode scores, BT the matrix containing the second mode loadings, and Dk the third mode 
loadings. The third mode loadings (or c-vectors) are collected in C (K × R), the k’th column of this matrix is 
used as the diagonal in the diagonal matrix Dk [14]. 

Most PARAFAC algorithms are based on an Alternating Least Squares (ALS) approach [15]. The ALS 
algorithms works by splitting the parameters that are to be estimated into sets, one set for each mode in 
the original tensor X. ALS then estimates one set of parameters (one mode in the tensor) in a least squares 
sense given (initial) estimates of the remaining sets by isolating this mode by rearranging Equation 3-3. The 

       ∑                   
 

   
                  

 

Xk = ADkBT + Ek 

 ( )    
      (  (    ))     
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updated estimates are then used to find the next isolated set, and iteration over all the sets (or modes) is 
continued until convergence [15]. In case of the PARAFAC model in Equation 3-2 or 3-3, an ALS algorithm 
would therefore iterate over the following steps: estimate A given initial estimates of B and C, then 
estimate B given C and the updated estimate of A, and finally C given the updated A and B, then go back to 
A, etc. until convergence. The ALS concept may readily be extended with functional constraints, not 
essentially different from other constraints such as non-negativity or unimodality [5,6,10,16]. In our 
implementation, if a functional constraint is applied in the A-mode for each of the R different score vectors, 
Equation 3-1 is fitted by non-linear least squares on these scores [17]. This will result in a set of four model 
parameters - k, Δt β1 and β 2 – for each of the R kinetic score profile. The fitted score-values, estimated from 
these model parameters - updated to more closely follow the expected kinetic profiles - now substitute the 
estimates from the PARAFAC-ALS estimation. The updated A-matrix is then used to estimate B and C, and 
this extended ALS process continues until convergence. 

4 Results and Discussion 

4.1 3-way PARAFAC 
The data was arranged as single batch run 3-way tensors of size 63  15  15, (time  excitation   
emission), and one PARAFAC model was made for each batch. Functional constrains were implied column-
wise in the first mode, meaning that the first three PARAFAC components were forced to follow Equation 
3-1 while the fourth component – corresponding to a unknown chemical not changing during reaction – 
was unconstraint. Based on the spectral profiles presented in previous work [2] the following combination 
of constrains were used for the 3-way model: 

 Mode 1 (Scores): Column-wise functional constrains for component 1-3 following Equation 3-1 
 Mode 2 (Excitation wavelengths): all components non-negative 
 Mode 3 (Emission wavelengths): all components unimodality and non-negativity constraints 

To increase computational speed an initial model was fitted on a single batch without functional constraints 
(first batch in the series). The scores and loadings obtained from this initial model were used as initial 
values for the subsequent PARAFAC models. Figure 4-1 presents the obtained scores and loadings. 
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Figure 4-1 Scores, excitation and emission loadings (left to right) from 62 individual 3-way PARAFAC models 
 

Several observations may be done in Figure 4-1. The different batches have different score trajectories, the 
overall pattern of the scores seem however to follow the same kinetic trend: the first component 
decreases, while the second and third component grows, and the fourth component is (as expected) 
constant over batch time. The batch to batch variation in both wavelength loadings (centre and right frame 
in Figure 4-1) is however very small, indicating that the constrained four component PARAFAC model is 
suitable for the data set. 

As was mentioned in the introduction the kinetic parameters of Equation 3-1 are estimated inside our 
PARAFAC ALS algorithm. The reaction rate constant k is together with the time-shift constant Δt speculated 
to be the parameters of main interest for this process, shown Figure 4-2 for the three reaction paths. 

 

Figure 4-2 reaction rate constant (k-value) and time shift constant (Δt) 
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Figure 4-2 illustrates that the batch to batch variation (the difference between NOC and non-NOC) is not 
clearly captured in the presented kinetic constants. Some of the non-NOC batches are deviating from the 
bulk (e.g. Δt for component 1 and 3), but overall is no clear separation between the groups is seen. It is 
however from previous work on the data known that some of the manipulations done on the non-NOC 
batches yielded process data close to normal, it is therefore not surprising that some overlapping of groups 
are seen. A clear trend in the data is may nevertheless be observed in Figure 4-2, the k-value is 
systematically decreasing for the first component over the batches just as it is increasing over the batches 
for the second and third component, suggesting the Riboflavin breakdown reaction speed and formation of 
the breakdown products lumiflavin and lumichrome decreases over time for the 63 batch runs since a 
smaller numerical value of the k-value corresponds to a slower reaction rate. Likewise the time delay Δt 
seems to increase systematically with batch no. for component 1 and 3, also indicating wear on the process 
equipment since a larger value of Δt results in a later inflection point which in turn again results in a 
delayed reaction. 

 

4.2 4 way 
For 4-way PARAFAC analysis, the data were arranged as one 4-way tensor (size: 68  15  15  68,  time   
excitation   emission   batch),  the wavelength modes were constrained to be non-negative and unimodel 
(as in the 3-way analysis) while the fourth mode (the batch mode) was left unconstrained. The PARAFAC 
algorithm was again initialized with unconstrained models to increase the computational speed. Figure 4-3 
presents the scores and loadings of the corresponding model together with the two central kinetic 
parameters of Equation 3-1 k and Δt. 

 

Figure 4-3 Scores, loadings and kinetic parameters of 4-way PARAFAC 
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The 4-way PARAFAC are one set of common scores/reaction profiles, common excitation and emission 
loadings and set of parameters obtained for all the 68 batches which can be considered contributions of 
each batch on the set of common components. For the kinetic parameters the reaction rate constant k is 
presented together with the time-shift constant Δt. The k-value shows (not surprisingly) that the first 
component is decreasing  while the other two components are increasing.  It may further be observed that 
the two increasing components have very similar k-values which at a first glance seems surprisingly since 
the second component is growing at an apparently faster rate than the third. This is however an effect of 
the initial off-set and the end-value of the score trajectory, the larger off-set of the second component 
when compared to the third, means that the effect of the k-value is less obvious. The effect of Δt may be 
seen if the point where score trajectories flattens out is assessed. The third component, which has the 
smallest Δt-value, flattens out already around t=40 while the first component, which has the largest Δt, 
only barely reaches the point where score trajectories flattens out. 

When Figure 4-1 is compared to Figure 4-3 many of the same patterns are recognizable. The overall score 
trajectory is similar for both figures just and the wavelength loadings are highly comparable. One important 
note should be made when comparing the 3-way and 4-way analysis: the 3-way analysis requires 
computation of a PARAFAC model for each batch, while the 4-way analysis requires computation of a single 
model. In turn means that the 3-way analysis is much more computational demanding, adding further to 
this is the fact that the 3-way model on average required approx. 400 iterations, while the 4-way only 
required 170 in spite of the larger dataset, it could be speculated that this difference in computations is an 
indication that the batch data are indeed 4-way. 

The batch to batch variation is captured in the fourth mode loadings. These loadings are however less easily 
interpreted; the values of the batch mode loading may be seen as batch scores, indicating that the fourth 
mode loading should be inspected if investigation of batch to batch variation is present. The squared 
Mahalanobis distance of the fourth mode loading could be used to assess the batch to batch variation 
within the model. Figure 4-4 presents a plot of the squared Mahalonobis distance.  
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Figure 4-4 Malahanobis distance of batch mode loading, NOC batches in blue, non-NOC in red 
 

In Figure 4-4 it may be observed that the NOC batches are close to the model centre. A few non-NOC 
batches are situated together with the NOC close to the model centre reflecting that some of the 
manipulations done on the non-NOC batches yielded batches close to normal. Other NOC-batches are 
clearly deviating with a large distance from the model centre. 

5 Conclusions 
This paper presented how previous knowledge on reaction kinetics may be incorporated during PARAFAC 
modelling; the presented work is thus an example of how so-called grey-box modelling may be done. A 
dataset of EEM-fluorescence data was presented, the dataset could both be modelled by 3-way and 4-way 
PARAFAC. The 3-way analysis showed that chemically meaningful scores and loadings could be obtained 
together with kinetic parameters of the individual batch. The 3-way analysis was not able to differentiate 
clearly between batches recorded under normal operating condition and batches recorded under deviating 
conditions, the method was however able to detect drift in the data. The 4-way analysis showed how 
comparable loadings and score trajectories were obtained when compared to the 3-way analysis. The drift 
in data was for this analysis not as evident as for the 3-way analysis, the method was however better at 
capturing the batch to batch variation in the form of differences between NOC and non-NOC batches. A 
larger computational effort was required for the 3-way analysis than for the 4-way analysis, the two 
methods should however in the authors’ opinion not be seen as competing but rather as complementing 
methods that may provide answers to different types of questions. 
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6 Appendix 
Two different m.-files are need for imposing functional constraints during PARAFAC modelling: One that 
defines / evaluates the function and one for imposing the PARAFAC constraints. The function expfunc 
returns the values of an exponential function with the parameters param at a series of datapoints (beta), 
outputs are squared residuals (error) and the evaluated values (newbeta): 

function [error,newbeta]=expfunc(param,beta) 
% function [error,newbeta]=expfunc(beta,param) 
% 111208 JT 
% exponential function to be evaluated of form c=c0/(1-exp(-k*t))+c1 
% 
  
id = [1:length(beta)]'; % Vector where exponential should be evaluated 
idnew=-param(2)*(id-param(3)); % Time shift and multiply with reaction const. 
newbeta = (param(1)./(1+exp(idnew)))+param(4); %Evaluate id-vector 
error = sum( (beta(:) - newbeta(:)).^2); % Find sum of squared residuals 
  
end 
 
The following m.-code is an example of how the functional constraints may be imposed 

 
load data; % Load data 
op = parafac('options'); % Define options-structure to be used during modelling 
  
% Needs to be defined 
NumberFactors=4;    % Number of PARAFAC components 
 
ModeToFix = 1;      % Constraint should be on scores (i.e. first mode) 
 
ToFix = [1 2 3];    % This constraint is for the first, second and third...   

% column, first three components should be constrained,...  
% fourth is unconstrained 

  
options=op.constraints{ModeToFix}; % Second options-structure for defining 

% constraints  
options.type='columnwise'; % Constraints are columnwise 
options.functional=cell(NumberFactors,1); % Cell for defining functional const. 
  
% Form cell with column constraints, set cell to 0 if unconstrained, 20 if 
% functional constraint 
 
options.columnconstraints=cell(0,1,NumberFactors);  
for i=1:NumberFactors 
    if any(ToFix==i) 
        options.columnconstraints{i}=20; 
    else 
        options.columnconstraints{i}=0; 
    end 
end 
  
% Form matrix with initial guesses of parameters 
parMatrix(1,:)=[-3000 0.1 15 4000]; %Initial guesses for comp no. 1 
parMatrix(2,:)=[-1000 -0.1 15 1500]; %Initial guesses for comp no. 2 
parMatrix(3,:)=[-1000 -0.1 20 800]; %Initial guesses for comp no. 3 
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for i=1:length(ToFix) 
    % Provide function handle 
    options.functional{ToFix(i)}.functionhandle = @expfunc;  
    % Define starting parameters 
    options.functional{ToFix(i)}.parameters = parMatrix(i,:); 
    options.functional{ToFix(i)}.additional=[]; % no additional input 
end 
op.constraints{ModeToFix}=options; % Use the defined constrains in options array 
  
% Ready go! 
m=parafac(data,NumberFactors,op); 
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