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A B S T R A C T

The design of novel catalysts is an active field of chemical research,
crucial for approximately 90% of industrial chemical processes. More
efficient catalysts have the potential to decrease energy consumption,
increase reaction yields, and enable currently unfeasible reactions,
particularly those relevant to the green energy transition, such as
power-to-x processes and carbon capture. Historically, the discovery
of novel catalysts has been driven by trial and error and empirical
observations.

Since the advent of reliable computational chemistry tools, high-
throughput virtual screening and optimization algorithms, such as ge-
netic algorithms, have been used to explore defined chemical spaces
for promising catalysts. Relevant chemical constraints, such as stabil-
ity and synthesizability, can be considered through careful selection
of these chemical spaces. However, this approach does not facilitate
the de novo discovery of catalysts.

In this context, machine learning-based tools offer a promising av-
enue for discovering novel chemical motifs and molecules. The real-
world impact of these models on the design of efficient catalysts re-
mains to be seen, as there is often no attempt at computational or
experimental verification.

In the first part of this thesis, we present a method for the de novo
discovery of efficient catalysts, moving beyond predefined chemical
spaces using a graph-based genetic algorithm approach. We explicitly
incorporate relevant chemical constraints and verify the success of the
optimization computationally. Furthermore, we synthesize the cata-
lyst and experimentally confirm its superior performance. This work
represents a significant advancement towards more effective and ef-
ficient de novo catalyst design and its real-world application. Fur-
thermore, we extend the approach to handle transition metal-based
catalysts and show that we can efficiently find promising catalysts.

The second part of this thesis introduces an automated, fast, and
user-friendly workflow designed to predict the regioselectivity of cat-
alyzed C−H activations with directing groups. This workflow lever-
ages semi-empirical quantum mechanical calculations to provide ac-
curate predictions efficiently. By automating complex computational
tasks, this approach streamlines the process of determining regiose-
lectivity, making it accessible to researchers without extensive exper-
tise in computational chemistry.
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D A N S K R E S U M É

Design af nye katalysatorer er et aktivt forskningsområde indenfor
kemi og afgørende for cirka 90% af de kemiske processer i industrien.
Ved at skabe mere effektive katalysatorer kan man reducere energifor-
bruget, øge reaktionsudbyttet og gennemføre reaktioner der ikke tid-
ligere har været mulige. Dette er blandt andet særligt relevant for den
grønne omstilling, hvor ny og bedre kemi er væsentlig til power-to-
x og kulstoffangst. Historisk set har opdagelsen af nye katalysatorer
været drevet af “trial and error” og empiriske observation.

Men med pålidelige og avancerede kvantekemiske beregnings-
værktøjer kan vi nu udføre virtuelle undersøgelser i stor skala
og bruge optimeringsalgoritmer, såsom genetiske algoritmer, til
at udforske veldefinerede kemiske rum for lovende katalysatorer.
Desuden kan man tage højde for relevante kemiske problematikker
såsom stabilitet og syntetiserbarhed ved omhyggelig at udvælge det
kemiske rum. Denne tilgang letter dog ikke opdagelsen af helt nye
katalysatorer også kaldet ‘de novo design’.

I denne sammenhæng tilbyder maskinlæringsbaserede værktøjer
en mere lovende vej til opdagelsen af nye kemiske strukturer og mo-
lekyler. Disse modellers indflydelse på den virkelige verden er dog
stadig ikke klarlagt, da der ofte ikke fremvises nogen beregningsmæs-
sig eller eksperimentel verification.

I første del af denne PhD afhandling præsenteres en metode til de
novo design af effektive katalysatorer, som kan finde molekyler uden-
for det foruddefinerede kemiske rum ved hjælp af en graf-baseret
genetisk algoritme. Vi har inkorporeret et udvalg af metoder til at
tackle de førnævnte kemiske problematikker og verificerer optime-
ringens succes ved brug af kvantekemiske beregninger. Desuden har
vi syntetiseret en nyopdaget katalysator og eksperimentelt bekræf-
tet dens overlegne ydeevne. Dette arbejde repræsenterer et betydeligt
fremskridt hen imod en mere effektiv opdagelse nye katalysatorer
med anvendelse i den virkelige verden. Desuden udvides tilgangen
til at kunne håndtere katalysatorer baseret på overgangsmetaller og
viser, at vi også her effektivt kan finde nye lovende katalysatorer.

Anden del af denne PhD afhandling introducerer en automatiseret,
hurtig og brugervenlig metode til at forudsige regioselektiviteten af
katalyseret C−H-aktiveringer med styregrupper. Denne metode be-
nytter semi-empiriske kvantekemiske beregninger til effektivt at give
præcise forudsigelser. Ved at automatisere komplekse beregningsop-
gaver, strømlines processen til at bestemme regioselektivitet, hvilket
gør metoden tilgængeligt for forskere uden omfattende erfaring.
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1
G E N E R A L I N T R O D U C T I O N

Catalysts are essential in modern chemistry, playing a crucial role
in accelerating chemical reactions. They are vital in numerous indus-
tries, such as pharmaceuticals, agriculture, and both fossil and re-
newable energy sectors. By enabling the efficient production of fuels,
chemicals, and medicines, catalysts propel technological and indus-
trial progress.

For catalysts to be effective, they must exhibit high activity and
selectivity. Activity refers to a catalyst’s ability to increase the rate of
a chemical reaction. A highly active catalyst can significantly reduce
the energy barrier for a reaction, allowing it to proceed more quickly
and efficiently.

Selectivity, on the other hand, pertains to a catalyst’s ability to
direct a reaction to yield a specific product among multiple possible
outcomes. High selectivity ensures that the desired product is
obtained with minimal by-products, which is particularly important
in the pharmaceutical industry, where high yields in multi-step
reactions are crucial. Selective catalysts also reduce the need for
extensive purification steps, thereby lowering production costs and
minimizing waste.

This thesis is structured into two main parts, each focusing on a
different critical aspect of catalyst design using computational tech-
niques.

The objective of Part i is to develop and apply generative models to
optimize catalysts with regard to their activity and also showcase the
real-world impact of computational de novo generation of catalysts.
We optimize the catalytic activity of an organic catalyst in Paper 1 and
experimentally verify its superior performance. Paper 4 combines this
approach with a reaction network exploration approach, which con-
stitutes the end-to-end de novo discovery of efficient organic catalysts.
In Paper 2, we turn our attention to transition metal (TM)-based cata-
lysts and provide a workflow for the generation and optimization of
TM-based catalysts, focusing on the Suzuki reaction.

In Part ii, we focus on selectivity in catalysed reactions, specifically
in the context of C−H activation reactions, with the aim of devel-
oping a computational model for regioselectivity prediction. C−H
activations and functionalizations have seen a substantial rise in pop-
ularity also due to their importance in late-stage functionalization,
essential for modifying complex molecules in pharmaceutical devel-
opment and other applications. We present a workflow for predicting
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2 general introduction

the regioselectivity of catalysed and directed C−H activation reac-
tions. By integrating hierarchical quantum mechanical calculations,
we offer tools to accurately predict the most probable sites for ac-
tivation on a substrate. This facilitates the design of novel catalytic
systems and the planning of selective reactions.



Part I

G E N E T I C A L G O R I T H M S F O R C ATA LY S T
D E S I G N





2
I N T R O D U C T I O N

Catalysis is a cornerstone of modern chemistry, playing a crucial
role in the production of approximately 90% of all chemical com-
pounds.[1–3] It underpins a vast array of industrial applications,
demonstrating its significant impact on sectors ranging from energy
to healthcare. In petroleum chemistry, catalysts are vital in refining
oil and transforming petroleum into useful materials, including
polymers, which are indispensable in numerous everyday products.
In fertilizer production, catalysts enable the synthesis of ammonia, a
key component of nitrogen-based fertilizers that sustain agricultural
productivity worldwide. Additionally, the development of catalysts
plays a central role in emerging technologies, such as green hydrogen
production, which promises to revolutionize energy systems with
cleaner alternatives. Carbon capture and utilization technologies
also rely on advanced catalysis to efficiently remove carbon dioxide
from the atmosphere, converting it into valuable chemicals, thereby
addressing environmental challenges. In the pharmaceutical industry,
catalysts enable selective reactions that yield specific compounds,
accelerating drug development processes to deliver innovative
pharmaceutical solutions.

Historically, the discovery and development of catalytic systems
have often relied on trial and error, where chemists experimented
with different chemicals to identify effective catalysts.[4] Systematic
experimental screening of catalyst libraries has also played a signif-
icant role in identifying promising candidates.[5] Rational design,
guided by empirical observations and chemical intuition, has some-
times provided a more focused approach to developing new cata-
lysts.[6] However, the advent of computational tools has profoundly
transformed the field, enabling scientists to probe the mechanisms
of catalytic reactions at the atomic level. This computational insight
allows for the rational optimization of catalyst structures to enhance
performance.[7] In addition, virtual screening of extensive libraries
containing potential catalysts through computational models has ac-
celerated the discovery process. More recently, the field has seen
rapid advancements in the de novo design of entirely new catalysts
using computational chemistry, machine learning (ML) and genera-
tive models.[8–15] This approach enables new possibilities in innova-
tive catalyst design.

Despite these advances, many homogeneous catalytic systems cur-
rently in use still have major limitations. They often require high tem-
peratures, specific (and sometimes toxic) solvents, and expensive or

5



6 introduction

harmful transition metals (TMs). These systems also frequently exhibit
low turnover rates, require inert atmospheres to operate, and lack sta-
bility during storage.

In stark contrast, nature has evolved enzymes, which are highly se-
lective and productive catalysts. These biological systems function ef-
ficiently under mild conditions of ambient temperature and pressure,
using safe and environmentally friendly solvent. Enzymes have been
perfected over countless iterations through the combinatorial process
of mutations and natural selection, achieving catalytic efficiency and
specificity unmatched by many synthetic catalysts. The design and
engineering of synthetic catalysts that emulate these natural systems’
efficiency and selectivity offer the potential to revolutionize catalysis
across multiple industries.



3
C ATA LY S T O P T I M I Z AT I O N

3.1 introduction

In the work presented in this chapter, we take inspiration from nature
and develop an automated workflow that emulates nature’s process
of evolution. The evolutionary process is guided using quantum
mechanical (QM) methods to calculate catalytic activity and steer the
optimization process towards molecules with high activity.

Optimizing catalysts is a multifaceted task since various proper-
ties can or must be optimized simultaneously to meet specific needs.
One key property is activity, which refers to the catalyst’s ability to
increase the rate of a chemical reaction. Improving activity involves
making the catalyst more efficient so that smaller amounts are needed
to achieve the desired reaction rate, leading to cost savings and more
sustainable processes.

Another critical property is selectivity, the catalyst’s ability to
favour the production of a specific product over others. This is partic-
ularly crucial in reactions where multiple pathways and products are
possible. Enhancing selectivity can minimize by-product formation,
reduce the need for costly and wasteful purification steps, and
increase the overall yield of the desired product.

Generality is also important, as a general catalyst can facilitate
a wide range of reactions, making it highly versatile and valuable
across different chemical syntheses. Enhancing a catalyst’s generality
can broaden its applications, reducing the need to develop and use
multiple specific catalysts. This often involves designing catalysts that
are robust under various chemical conditions and substrates.

Stability refers to the catalyst’s ability to remain effective over time,
either while storing it, or while using it in potentially harsh chemi-
cal environments. Increasing stability is essential for processes that
require long reaction times or continuous operations.

Furthermore, the cost is a critical factor, especially for large-scale
industrial processes. Reducing the cost involves not only minimizing
the amount of expensive materials, such as precious metals, used in
the catalyst but also designing catalysts that can be easily regener-
ated and have long lifespans. Economic considerations also include
the ease of catalyst preparation and the feasibility of recovering and
recycling the catalyst.

Optimizing these properties often involves a trade-off. For exam-
ple, enhancing stability might come at the expense of activity. Thus,

7



8 catalyst optimization

the challenge is to achieve an optimal balance that suits the specific
application. In our works presented in this thesis, we have focused
on optimizing the catalyst’s activity while aiming to maintain
synthesizability and, therefore, economically attractive catalysts.
Other works in the field focused on optimizing enantioselectivity or
generality using various computational approaches.[12, 16]

Recent advancements in ML have introduced a variety of gen-
erative models for molecular design, ranging from 1D models
using simplified molecular-input line-entry system (SMILES) or
self-referencing embedded strings (SELFIES) representations to 2D
graph-based models and 3D models that act on point clouds.
However, many of these ML-based works lack experimental or
computational validation of the generated structures, which makes
assessing their impact on real-world applications difficult.[15] This
might be due to a neglect of relevant chemical constraints such as
chemical stability or synthesizability.[17] Another potential limitation
of ML-based models for de novo molecular generation is their
tendency to produce molecules that resemble those in their training
data, exploiting existing structural motifs but failing to explore
new regions of chemical space. This issue becomes particularly
pronounced when the available training data is limited.

An alternative approach to exploring chemical space is through
the use of genetic algorithms (GAs), which have been widely used for
catalyst design.[8–12, 18]

In these works, novel compounds are designed by recombination
of fragments. The fragments are often extracted from experimental
databases of known compounds and can be recombined by certain
user-defined rules. These enumerated search spaces encompass be-
tween several thousands to billions of compounds.[8, 11] The stability
and, to some degree, the synthesizability of the resulting molecules
can be controlled by carefully selecting the fragments and (re-)com-
bination rules. GAs have been shown to efficiently search vast spaces
containing several billion compounds and rediscover the best-per-
forming solutions by evaluating as little as 5% of the total space.[19]
However, even in spaces containing over 100 billion compounds, it’s
possible that molecules with the desired target properties do not ex-
ist.[19] Additionally, selecting specific fragments from experimental
databases inherently biases the exploratory process toward already
considered regions of chemical space.

To overcome these limitations, an unrestricted and free search
through chemical space using graph-based GAs can uncover previ-
ously unconsidered novel chemical motifs. A detailed description
of graph-based GAs is presented in Section 3.2. This approach can
provide potentially viable solutions in scenarios where enumerated
spaces fail to yield results, opening new avenues for molecular
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discovery.

The following chapter will showcase our work using unconstrained
GAs for catalyst design. In Paper 1, we develop a workflow for the op-
timization of an organic catalyst for the Morita-Baylis-Hillman (MBH)
reaction. We establish that novel, synthesizable and efficient catalysts
can be discovered using an unrestricted graph-based GA. Then, in Pa-
per 2, we turn our attention to the class of TM-based catalysts and
extend the workflow to also handle such complexes.

In the following sections, the fundamentals of GAs for molecular
optimization are outlined, as well as two models that were used to
calculate the catalytic activity.

3.2 genetic algorithms

GAs are a class of optimization algorithms inspired by the principles
of natural selection and genetics. They offer a robust search mecha-
nism for finding optimal or near-optimal solutions to complex prob-
lems. GAs mimic the process of natural evolution, harnessing biolog-
ical principles like inheritance, crossover, mutation and selection to
evolve a population of potential solutions toward better solutions
over successive generations. They belong to the family of evolution-
ary algorithms and are widely used in optimization problems where
the search space is vast and not differentiable.

The core components of GAs mirror biological concepts, and their
roles in the algorithm are as follows:

individual/chromosome Represents a potential solution to the
optimization problem.

population A set of individuals.

scoring function Measures the quality of individuals, directing
the evolutionary process towards optimal solutions.

selection A method to choose individuals for reproduction, based
on their score.

crossover A method of merging parts of two parent chromosomes
to produce offspring, thereby introducing genetic diversity.

mutation A random modification of genes within a chromosome
to introduce new genetic structures, helping to avoid premature
convergence.

Most commonly in the context of molecular optimization, a chro-
mosome represents a list of molecular fragments combined with each
other or with a scaffold, selected from a predefined set of 10 to 100

fragments.[8, 11, 19] Despite the limited number of fragments, the
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combinatorial potential allows for the definition of chemical spaces
containing millions to billions of possibilities. GAs have proven highly
effective at navigating these extensive spaces and can identify near-
optimal solutions while evaluating less than 5% of the total search
space.[19]

Notably, a graph-based GA approach stands out as one of a few
GAs that allows for the exploration of chemical space beyond enu-
merated libraries. In the work presented in Paper 1 and Paper 2 we
build upon the graph-based GA approach developed by Brown et
al. [20] and Jensen [21]. Here, the chromosomes are represented as
molecular graphs, and the reproduction operators directly manipu-
late these graphs, as shown in Figure 3.1. The crossover operation in-

Figure 3.1: Reproduction rules for graph-based GAs on molecular graphs

volves cutting two molecular graphs at random points - either at ring
or non-ring bonds - and recombining a fragment from each to form a
new molecular graph. The mutation operation modifies a molecular
graph by adding, removing, or altering a node (atom) or edge (bond).
This allows for the complete exploration of chemical space since all
molecules can be formed by sequentially applying these operators. In
practice, bridged compounds or extensively fused systems are diffi-
cult to obtain due to the implemented recombination rules. Yet, this
represents an unconstrained approach since it goes far beyond the
screening of enumerated libraries.

A significant challenge with this approach is the proposed
molecules’ validity, stability and synthesizability. We address this



3.3 calculating catalytic activity 11

issue as each molecule’s validity is confirmed using RDKit’s sani-
tization protocol, while stability and synthesizability are assessed
using empirical measures.[22] Herefore, we utilize the synthetic
accessibility (SA)-score, developed by Ertl and Schuffenhauer [23],
which quantifies the similarity of a molecule to known stable and
synthesizable molecules based on the frequency of radial fingerprints
in a precompiled database and incorporates a structural penalty for
complex molecules like bridged or spiro compounds.

As we show in Paper 1, this approach is sufficient to steer the GA

towards stable and synthesizable molecules.

3.3 calculating catalytic activity

Catalytic activity is influenced by many factors, such as the reaction
conditions, the substrate and the structure of the catalyst. Quantify-
ing a catalyst’s performance using a computational approach is not
straightforward as it relies on several assumptions. These assump-
tions must be validated by comparison with experimental data, such
as experimental rate constants. Often, computational models fail to
calculate accurate experimental values, but they can still be used to
qualitatively assess the performance of one catalyst against another
catalyst since trends in energies and activities are often accurately
captured.

In the work presented in this chapter, we have used two such mod-
els, which will be detailed in the following.

3.3.1 Rate-determining step

Computational chemistry methods are pivotal for calculating the reac-
tion profiles of chemical reactions. In it, the energies of all stationary
points along the reaction pathway are contained. Under kinetic con-
trol, an effective catalyst should minimize activation barriers through-
out the reaction coordinate. A single activation barrier substantially
higher than others typically identifies a reaction’s rate-determining
step (RDS). Given that the reaction rate is exponentially dependent
on the energy difference between the reactants and the transition
state (TS), even minor changes in this energy difference yield a sig-
nificant change in reaction rate. Therefore, the calculated activation
barrier can be used as a highly sensitive measure of a catalyst’s activ-
ity in reaction.

This method proves effective in Paper 1 where we calculate the ac-
tivation barrier of the RDS in the MBH reaction. We show that it is
sufficient only to consider the difference in electronic energy calcu-
lated with an implicit solvent model to rank the catalysts accurately
based on their activity.
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Notably, this reaction’s RDS step does not involve bond formation
or breaking with the catalyst but instead a remote proton transfer
between the substrate and a solvent molecule. This is important, since
the activation barrier for the initial attack of the catalyst on to the
substrate and the release of the product tend to naturally compete
with each other in a catalytic cycle. This means that lowering the
barrier for the reaction step where the bond between the catalyst and
the product is broken tends to increase the barrier for the reaction
step in which a bond is formed between the catalyst and the reactant.

In these cases, more sophisticated models might be necessary,
which take into account the energetics of several reaction steps with
potentially competing barriers.

3.3.2 Vulcano Plots

Volcano plots are such tools that relate the catalytic activity to the
energetics of the whole catalytic cycle. Originally designed for het-
erogeneous catalysis, they were later adapted for homogeneous sys-
tems.[24–26] They are so named because their shape resembles a vol-
cano, where the catalytic activity (y-axis) is shown in relation to the
interaction strength between the catalyst and a specific reaction inter-
mediate (x-axis).

Figure 3.2: Construction of volcano plots: Starting from a series of reaction
profiles for different catalysts (left), linear energy scaling relation-
ships (LESRs) are established between the different relative inter-
mediate energies (middle). Based on these, a volcano plot is con-
structed where the best-performing catalysts appear at the peak
of the volcano (right).

Here, we focus on thermodynamic volcano plots, which only con-
sider the relative energies of reaction intermediates (local minima on
the potential energy surface).

To construct a volcano plot, one first must calculate all interme-
diates along the catalytic cycle for a series of different catalysts, as
shown in Figure 3.2. Secondly, linear energy scaling relationships
(LESRs) are established between the different reaction intermediates.
One intermediate whose energy has the best correlation with the
other energies is chosen as the descriptor intermediate. Lastly, the
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LESRs are used to construct the volcano plot, where the relative en-
ergy of the descriptor intermediate is on the x-axis, and the nega-
tive of the reaction energy of the RDS is shown on the y-axis. In this
model, the RDS is the reaction step with the highest reaction energy.
The lower the reaction energy for any particular reaction step, the
less favourable any reverse reaction will be. Therefore, a catalytic cy-
cle in which all reaction steps are equally exergonic will be the most
efficient. Those catalysts will be located at the top of the volcano plot.

Since a volcano plot is based on LESRs, the accuracy of these is
crucial to the predictive performance of the volcano plot. Wodrich et
al. [26] have shown for exemplary systems that scaling relations hold
for catalysts upon a change in oxidation or spin state and ligation.
Yet, it is possible that other reaction pathways become preferred upon
drastic changes to the catalyst, which would invalidate the LESRs.

In Paper 2, we utilize the volcano plot established by Meyer et al.
[27], which only considers the electronic energies of the intermediates
in the catalytic cycle. This allows us to evaluate a catalysis activity by
only calculating a single energy difference.
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3.4 organic catalyst

In this section, we present our work on optimizing the structure of
an organic homogeneous catalyst for the MBH reaction. We use the
graph-based GA, as introduced in Section 3.2, and calculate the cat-
alytic activity using the activation barrier of the RDS as described in
Section 3.3.1.

3.4.1 Summary of key findings

In this study, we employ a genetic algorithm to discover novel homo-
geneous catalysts for the MBH reaction. We calculate the catalytic ac-
tivity using semiempirical and quantum mechanical (SQM/QM) meth-
ods and leverage these calculations for the de-novo generation and
optimization of novel, efficient catalysts. Following computational
evaluation, we experimentally validate one such catalyst, demonstrat-
ing that it outperforms existing benchmarks.

First, we establish a strong correlation between the experimentally
observed reaction rates and Gibbs activation energies calculated via
density functional theory (DFT). To accelerate the evaluation process,
we leverage the semiempirical extended tight binding (xTB) method to
compute approximate electronic activation energies, based on approx-
imate TS structures. This enables us to assess catalyst performance
rapidly and accurately, as shown by a strong linear correlation be-
tween the exact DFT and approximate semiempirical quantum me-
chanical (SQM) activation energies. We execute a series of GA runs,
using this SQM-based approach as a scoring function. This allows us
to explore a vast chemical space, ultimately generating 448 unique
catalyst candidates.

These candidates are subsequently filtered based on their exact ac-
tivation energies computed at the GFN2-xTB level.[28] To further re-
fine the list, we employ retrosynthetic analysis using the Manifold
program to identify catalysts that can be synthesized easily, narrow-
ing the selection to 132 candidates that can be synthesized in a single
step.[29]

From this refined pool, we select two catalysts for experimental
validation, prioritizing those with readily available building blocks
from commercial vendors. We then calculate the full reaction profiles
for these catalysts using DFT, confirming their superior catalytic effi-
ciency for the MBH reaction compared to a commonly used catalyst.

Our collaborators synthesized the selected molecules and were able
to isolate one of them (M19) with good yield. The other one (M10)
could not be purified. Subsequently, they measured the conversion
rates for the MBH reaction using a frequently used catalyst as a ref-
erence and the new catalyst (M19). From these measurements, we
calculate the rate constants and expected conversions. The results re-



3.4 organic catalyst 15

veal that the newly discovered catalyst is 7.8 times more proficient in
catalyzing this reaction than the previous benchmark catalyst.
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Abstract: We present a de novo discovery of an efficient
catalyst of the Morita–Baylis–Hillman (MBH) reaction
by searching chemical space for molecules that lower the
estimated barrier of the rate-determining step using a
genetic algorithm (GA) starting from randomly selected
tertiary amines. We identify 435 candidates, virtually all
of which contain an azetidine N as the catalytically
active site, which is discovered by the GA. Two
molecules are selected for further study based on their
predicted synthetic accessibility and have predicted rate-
determining barriers that are lower than that of a known
catalyst. Azetidines have not been used as catalysts for
the MBH reaction. One suggested azetidine is success-
fully synthesized and showed an eightfold increase in
activity over a commonly used catalyst. We believe this
is the first experimentally verified de novo discovery of
an efficient catalyst using a generative model.

Introduction

Homogeneous catalysts have transformed synthetic organic
chemistry and many of the most popular chemical reactions
require a catalyst, and catalyst discovery is one of the “holy
grails” of computational chemistry.[1–5] Quantum chemistry
(QM) has become an important aid in elucidating catalytic
mechanisms and experimental mechanistic studies fre-
quently include a modelling component. QM calculations
can also be used to test ideas for new catalysts that arise
from these mechanistic insights.[6] While quantitative pre-
dictions of reaction rates and yields are difficult, the QM
calculations often serve as a “sanity check” for new ideas
based on chemical understanding.

Another approach to computational catalyst discovery
has focused on quantitative structureactivity relationships
(QSAR) of organometallic catalysts (which represent the
majority of homogeneous catalysts). In the original ap-
proach, pioneered by Tolman in the 1970s, observed
structural features of the catalysts and chemical features of
the ligands are correlated with the observed catalytic
activity.[7] These QSAR models were then used to guide the
discovery of new catalysts. As QM method became more
powerful the observed features were augmented or replaced
with QM-predicted features.[8]

With the advent of machine learning (ML) the QM and
QSAR approaches are starting to merge. While the tradi-
tional QSARs had to be constructed based on expert
chemical knowledge, ML models can learn these QSARs
given enough data. Sufficient experimental reactivity data
can be obtained for some reactions using high throughput
techniques but in many cases, the catalytic activity is
estimated using QM.[9,10] A typical state-of-the-art computa-
tional organometallic catalyst discovery study involves
libraries of 104–106 catalyst candidates constructed using
predefined metals and ligands.[11, 12] The activity is then
calculated using QM for a small subset [O(103)] exploiting a
linear free energy relation between energies of key inter-
mediates in the catalytic mechanism and the reaction rate.
This data is then used to train an ML model that is then
used to predict the reactivity of the entire library and the
most interesting candidates are selected for further QM
calculations. In some cases the process is repeated, i.e. the
new QM data is used to update the ML model and the
library is re-screened.[12] Another option is to use search
algorithms, such as genetic algorithms (GAs), rather than
evaluating the entire library.[13–16] The efficiency of these
search algorithms also allows for the use of QM, rather than
ML, for reactivity.[13,16] However, all studies so far have
focused on screening user-defined libraries of catalysts.[11–17]

While experimental verification of catalysts predicted using
these computational approaches are rare, Das et al. have
recently successfully identified a frustrated Lewis pair
catalyst for direct hydrogenation of CO2.

[17]

As noted by Poree and Schoenebeck: “Computationally
driven evolution of catalysts is an exciting prospect because
it would allow us to break free of the limitations of our ideas
and preconceptions.”[4] However, it is not clear that this
prospect can be achieved by screening userdefined libraries.
In this paper, we present a de novo discovery of a new
tertiary amine catalyst for the methanol-mediated Morita–
Baylis–Hillman (MBH) reaction using GA searches of the
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entire chemical space of tertiary amines, with synthetic
accessibility as the only constraint. The GA searches
discover that azetidines are likely to be potent catalysts
despite the fact that this moiety is not in the starting
population of most of the searches. One of the molecules
was successfully synthesized and is indeed more active than
DABCO with an eight-fold increase in the rate-constant
corresponding to a roughly 1 kcalmol� 1 lower barrier, in
good agreement with the predictions.

The Morita–Baylis–Hillman (MBH) reaction of methyl
acrylate (MA) with p-nitrobenzaldehyde (pNBA) catalysed
by tertiary amines in methanol is chosen as the model
reaction. We focus on the mechanism as outlined in Figure 1
which is supported by experimental and computational
studies.[18, 19] The rate-limiting step of the reaction is the
proton transfer between intermediate 2 and 3 which is aided
by a methanol molecule, the corresponding transition state
(TS3) is shown in Figure 1 highlighted in grey.

Results and Discussion

We start by demonstrating that the level of theory used in
this study can predict relative standard activation free
energies (ΔGo,�) that are in good agreement with experi-
ments. The relative standard activation free energy is
calculated as the difference in Gibbs free energy of TS3 and
the reactants at the B3LYP-D3/6–31+G(d,p)(SMD)
level.[20–23] Here, for each catalyst, 50 conformers of TS3 are
embedded using a template as described in the Supporting
Information (section S1.2) and an RMSD pruning cutoff of
0.1 Å is used before each conformer undergoes a con-
strained GFN2-xTB optimisation where the atoms corre-

sponding to the template are fixed.[24] Furthermore, 50
conformers of the catalyst on its own are created and the
same RMSD threshold is used for pruning and the retained
conformers undergo GFN2-xTB optimisation. The lowest
energy conformer of TS3 and the catalyst on its own are
further optimised using Gaussian16 at the B3LYP-D3/6–31
+G(d,p)(SMD) level of theory to the respective transition
state or minimum.[25] The transition states are characterised
by one imaginary frequency along the reaction coordinate
corresponding to the abstraction of a proton from the
tertiary carbon by a methoxy fragment.

The resulting ΔGo,� values show strong linear correla-
tions (Pearson’s correlation coefficient= � 0.99) with the
logarithm of the experimentally measured reaction rate
constants for six MBH reactions catalysed by quinuclidine-
based catalysts (Figure S3).[26] Therefore, this level of theory
is used as a computationally accessible measurement of the
catalytic potential of other tertiary amine-based catalysts for
the MBH reaction.

Next, we benchmark the performance of three barrier
scoring functions on a set of 100 molecules sampled from a
GA run over a range of ts_scoring energies of � 40 to
20 kcal mol� 1. The relative standard activation free energy is
calculated for 52 of the molecules, for the other 48
molecules either the structure of TS3, the catalyst or both
could not be successfully located (42, 9 and 3 times
respectively).

Figure 2 shows a strong linear correlation between the
ts_scoring energy and ΔGo,� with a Pearson correlation
coefficient of 0.96. In the GA, the scoring function is used to
rank the molecules and their fitness is derived from their
rank within the population. The Spearman rank correlation
coefficient of 0.98 indicates that the molecules are success-

Figure 1. Mechanism of the MBH reaction with the rate-limiting step and the corresponding transition state highlighted in grey. The Gibbs free
energy of the reaction between MA and pNBA (as specific example of ArCHO) catalysed by DABCO in methanol as calculated with CCSD(T)/
CBS1//B3LYP-D3(SMD) is shown in the bottom right.[18]
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fully ranked according to their ΔGo,� by the ts_scoring
function.

The performance and timings of the inter_scoring and
path_scoring functions are discussed in the Supporting
Information section S1.2. Due to the high rank correlation,
low computational cost and robustness, the ts_scoring
function is used in the GA going forward.

Five GA runs are performed with different starting
populations of 100 molecules taken randomly from a subset
of tertiary amines of the ZINC database.[27] Figure 3 shows

the evolution of the ts-score (which includes a synthesiz-
ability penalty and is further described in Supporting
Information section S1.1) of the best-performing molecule
in the population over 100 generations for five separate GA
runs.

In each run, the score drops drastically by up to 10 points
in the first four generations. This jump can be largely
attributed to the increase of the SA score component of the
overall score to 1 [see Supporting Information Eq. (S2)]. In
the subsequent generations, the overall score of the best-
performing individuals decreases in smaller steps which are
driven by a decrease in the calculated activation energy.

The best-performing molecule from the three runs with
the lowest final score is shown in Figure 3 on the right. All
three molecules have an azetidine moiety where they bind
to the reactant. The azetidine moiety is present in one of the
runs starting populations but does not survive after the first
evolutionary step. Instead, the azetidine ring is rediscovered
by the GA (via crossover and mutation operations) as a
catalytic motif and virtually outcompetes all other motives
as 498 out of the final 500 molecules from five runs contain
the azetidine moiety. The first time a molecule containing
an azetidine ring performs best in the population is marked
with a black cross in Figure 3. Although the azetidine ring is
discovered as a preferable binding motive within 25 gen-
erations, substantial improvement of more than 5 points are
archived by the GA over the following 75 generations.

In order to create different structures and generate new
ideas for potential catalysts, we perform an additional GA
search where we remove any azetidine-containing molecules
from the populations. This search yields molecules with ts-
scores as low as � 139 after 100 generations and the eighth
bestperforming molecules in the final population are shown
in the Supporting Information Figure S5. The molecules
contain pyrrolidine or piperidine moieties or a tertiary
amine with two methyl groups as preferred binding motifs.

The five GA searches result in a total of 448 unique
molecules and the goal is now to select a handful of

Figure 2. Correlation between the relative standard activation free
energy (B3LYP-D3/6–31+G(d,p)(SMD)) and the activation energy
calculated using the ts_scoring function for 52 molecules

Figure 3. Evolution of the ts-scoring score over 100 generations of the best performing molecule in five separate runs. The molecules on the right
correspond to the best performing molecule in the final population of the three runs with the lowest final score.
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molecules for which the entire reaction mechanism is
computed at the DFT level and, if promising, for exper-
imental validation. Figure 4A shows the distribution of ts_
scoring energies for the 448 unique molecules. Next, for 435
out of 448 molecules, the structure of the true transition
state TS3 at the GFN2-xTB level is successfully located and
the activation energy is calculated as the difference in
electronic energy of TS3 and the reactants. A histogram of
the calculated activation energies is shown in Figure 4B. The
activation energy for all 435 molecules is significantly lower
than that of DABCO (� 37.4 kcalmol� 1), which is a known
catalyst.

Next, the retrosynthesis tool Manifold is used to
determine the minimum number of synthetic steps required
to synthesise each molecule from commercially available
building blocks.[28] The minimum number of steps is
evaluated for synthetic routes involving molecular starting
blocks from selected catalogues (generic, molport, emole-
cules, mcule) with a maximum lead time of 2 weeks. The
histogram of the minimum number of synthetic steps is
shown in Figure 4C. A number of 132 molecules can be
synthesised in one step from commercially available building
blocks and a subset is shown in the Supporting Information
Figure S4.

Based on the availability of reactants from certain
vendors two molecules, M10 and M19 from Figure S4, are
selected for further potential synthesis. However, before
commencing synthesis we computed the entire reaction path
at the B3LYP-D3/6–31+G(d,p)(SMD) level of theory for
both molecules, as described next, and compare them to that
for DABCO. To locate the relevant structure, a template
structure of the intermediates or transition states from Liu
et al. is used, the present catalyst is exchanged for the one
that is to be evaluated and 50 conformers of the new catalyst
are embedded.[18] The minimum energy conformer is found
from GFN2-xTB constrained optimisations and the structure
undergoes further optimisation at the B3LYP-D3/6–31+

G(d,p)(SMD) level. The transition states TS1, TS2, TS3 and
TS4 as well as intermediates 1, 2, 3 are located using
Gaussian16. From the transition states, IRC calculations are
performed to confirm that the transition state connects the
relevant reactants, intermediates or the product. The Gibbs

free energy of each structure is calculated as described in
the Supporting Information section S1.3 and the relative
Gibbs free energy profile for the MBH reaction catalysed by
DABCO (grey), M10 (blue) and M19 (orange) is shown in
Figure 5. Both M10 and M19 show lower activation energies
from the reactants to TS3 of 19.5 and 18.8 kcalmol� 1

compared to 21.2 kcalmol� 1 for DABCO. This is in agree-
ment with the previous calculations of the activation energy
associated with TS3 at the GFN2-xTB level. Furthermore,
the reaction catalysed by M19 shows a lower TS3 barrier
than the one with M10 which is expected from the previous
calculations. All transition states and intermediate structures
from the reaction catalysed with M10 have lower relative
Gibbs free energies than the corresponding structures from
the reaction catalysed with DABCO. From this thermody-
namical point of view, one can expect the molecule M10 to
perform better as a catalyst than DABCO. The intermedi-
ates and transition states besides TS3 for the reaction with
M19 are approximately 2–3 kcalmol� 1 higher in relative
Gibbs free energy than the corresponding structures from
the reaction catalysed by DABCO. Although the reaction
energy from the reactants to TS1 is with 15.2 kcalmol� 1

approximately 3 kcalmol� 1 higher than the one of the
reaction with M10 one can still expect M19 to catalyse the
MBH reaction effectively since the overall activation energy
from the reactants to the highest energy transition state
along the reaction path is lower than the one of the reaction
catalysed by DABCO.

Visual inspection of the transition state structure of TS3
with the catalyst M19 reveals that the catalyst is forming a
hydrogen-bond-like interaction between the secondary
amine moiety of the catalyst and the hydroxyl moiety of the
reactant as shown in Figure 6. When the secondary amine
moiety of the catalyst is replaced with a CH2 group the
activation energy increases by 2.83 kcalmol� 1 since no
stabilising interaction can be formed. Furthermore, the T-
shaped interaction between the two aromatic rings stabilizes
the transition state further.

Both M10 and M19 were synthesized, however, M10
proved hard to purify. Catalyst M19 was subjected to
experimental validation. This compound was successfully
synthesised and purified as described in the Supporting

Figure 4. A) Histogram of the electronic activation energy as calculated by the ts_scoring function for 448 molecules from 5 GA runs, B) electronic
energy difference between TS3 and the reactants at the GFN2-xTB level for 435 molecules, C) Minimum number of synthetic steps from available
building blocks as predicted by Manifold.
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Information section S5. The MBH reaction between MA
and pNBA in d4-methanol is followed by 1H NMR spectro-
scopic measurements and the performance of M19 as
catalyst is evaluated by comparing conversion and reaction
rate to reference experiments using DABCO as catalyst.

Figure 7 shows stacked 1H NMR spectra taken over the
course of the reaction with the atoms in the reactant (MA)
and product coloured like their corresponding signal. The
concentration of MA is calculated based on the decrease of
the signal at 5.87 ppm (purple). The concentration of the
product at time t is calculated as [P]t= [MA]0� [MA]t with
[MA]0 as the starting concentration of MA and [MA]t as the
concentration of MA at time t. The concentration of pNBA
was calculated as [pNBA]t= [pNBA]0� [P]t.

The percent conversion to the product over reaction
time is shown in Figure 8 with the reaction using DABCO
as catalyst in grey and M19 in orange. As described in the
Supporting Information section S6.2, the rate constants k
are obtained by fitting to data points within the first 1.5 h of

the reaction due to the incorporating of deuterium into the
α-position of MA over the course of the reaction as
described by Plata and Singleton which can be seen in the
Supporting Information Figure S9.[19] The α-deuteriated MA
is expected to yield the product significantly slower due to
the kinetic isotope effect and the involvement of this atom
in the rate-determining step of the reaction in TS3. The
predicted conversion can be calculated using Equation (S5)
and is shown as dashed lines in Figure 8. The corresponding
third-order rate constant k (v=k[MA] [pNBA] [Catalyst]) is
k=0.00010 M� 2 s� 1 for DABCO and k= 0.00078 M� 2 s� 1 for
M19. The rate constant for the reaction with DABCO as
catalyst is in reasonable agreement with the rate constant
obtained using the same kinetic analysis of the 1H NMR
spectroscopic measurements kindly provided by Prof. Sin-
gleton.

A comparison of the rate constants for the reaction using
M19 and DABCO shows that the rate constant for the
reaction with M19 is 7.8 times larger than the one for the
reaction with DABCO. From the Eyring equation, we
calculate that the Gibbs energy of activation at 22 °C is
1.12 kcalmol� 1 lower for the reaction with M19 than for the
reaction with DABCO. This agrees well with the previously
calculated value of 2.40 kcal mol� 1.

Furthermore, 54 % conversion could be reached after 7 h
reaction time using M19 as catalyst compared to 16 % using
DABCO in deuterated solvent. As shown by Plata and
Singleton, significantly higher conversion is reached in
undeuterated solvent which would follow the predicted
conversion in Figure 8 yielding 48 % and 87 % conversion
after 24 h for the reaction with DABCO and M19,
respectively.[19]

To further prove that M19 is an excellent catalyst and
the importance of the azetidine ring, we tested the diamine
shown in Figure 9. This diamine was completely unable to
function as a catalyst when using reaction conditions similar
to those used for catalyst M19. The only observed reaction
was a small amount of transesterification of methyl acrylate.
This experiment further proved the importance of the

Figure 5. Gibbs free energy profile of the MBH reaction with three different catalysts: DABCO in grey, M10 in blue and M19 in orange.

Figure 6. Structure of TS3 with non-covalent interaction (dashed purple
line) between the catalyst M19 and the hydroxyl moiety of the reactant
and the two aromatic ring systems.
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structure of the catalyst being key to its functionality for the
MBH reaction. The 1H NMR spectra recorded for this
experiment can be found in the Supporting Information
Figures S21 and S22.

Conclusion

We present a de novo discovery of an efficient catalyst of
the alcohol-mediated Morita–Baylis–Hillman (MBH) reac-
tion by searching chemical space using a genetic algorithm
(GA) starting from randomly selected tertiary amines. The
GA searches for molecules that lower the estimated barrier
of the rate-determining step, where the barrier is estimated
by the semiempirical GFN2-xTB method using a model
geometry of the transition state region. The barrier estimate
is augmented by a function that rewards synthetic accessi-
bility. We performed five independent GA searches, each
for 100 generations with a population size of 100, which
resulted in 448 unique molecules, for which we were able to
locate 435 true transition states at the GFN2-xTB level of
theory. The predicted activation energies of all 435 mole-
cules were all lower than that of DABCO, which is a
popular catalyst of the MBH reaction. Virtually all (498/500)
of the molecules contain an azetidine N as the catalytically

active site, which is discovered by the GA since it is not
found in the initial population in four of the five runs (and
in that run, it is discarded early only to be rediscovered as
the search progresses). In addition, many of the GA
searches also introduce an azetidine substituent with a
hydrogen bond donor that helps to stabilize the transition
state and thus lower the barrier. This demonstrates the
power of free exploration of chemical space compared to
more constrained fragment-based approaches.

Next, we predict retrosynthetic paths for the 435
molecules using the Manifold software package and select
the 135 molecules which can be made in only one step from
commercially available building blocks. From these 135
molecules, we select two (M10 and M19) for further study,
based on building block availability and cost. For these two
molecules, we compute the entire free energy reaction
profile at the DFT level and show that their rate-determin-
ing barriers are 1.7 and 2.4 kcalmol� 1 lower than that of
DABCO. The molecule with the lowest barrier (M19) has
higher barriers for the other steps compared to DABCO,
but none of the barriers are competitive with the rate-
determining barrier and is predicted to outperform DAB-
CO.

Finally, the performance of M19 as a catalyst for the
MBH reaction was tested experimentally and it is shown

Figure 7. Section of stacked 1H-NMR spectra (500 MHz, CD3OD) from a mixture of 4-nitrobenzaldehyde, methyl acrylate, and DABCO in a
1:0.94:0.3 ratio with initial 4-nitrobenzaldehyde concentration of 0.578 M, measured approximately every 20 minutes for 11 hours and 40 minutes.
The first spectrum starts from the bottom. In methyl acrylate, the α-proton (orange) disappears as product is formed and is exchanged for a
deuterium in parallel. The blue and purple peaks change from a doublet to a singlet as product is formed, and the blue peak overlaps with 1 of 3
protons in the product. The three labelled protons in the product could not be distinguished and could hence correspond to peaks marked by any
of the three colours (red, blue and green) in the spectrum.
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that it outperforms DABCO with significantly faster reac-
tion times and a reaction rate constant that is 7.8 times
larger. The observed difference in rate constants is consis-
tent with the calculated difference in activation energy
between DABCO and M19 which highlights the accuracy of
the here chosen computational approach.

We believe this is the first experimentally verified de
novo discovery of an efficient catalyst using a generative
model. Our study shows that generative models indeed can
discover new chemistry with a minimum of empirical input,
as long as the molecular property of interest (the fitness)
can be computed accurately. It is important for experimental
validation that synthetic accessibility is accounted for, both
in the search process and in the final selection. Our fitness
function presupposes that the rate-determining step is
known. The de novo discovery of catalysts for new reactions
would thus involve the de novo prediction of catalytic
reaction mechanisms, which is an area we, and others, are
currently working on.[29–31]

Supporting Information

The data and code are available at https://sid.erda.dk/share-
link/hGBkdGdCy7 and https://github.com/jensengroup/
mbh_catalyst_ga respectively.
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Supporting Information

S1. Computational Methodology
S1.1. Genetic Algorithm

A graph-based genetic algorithm (GA) is used to obtain tertiary amines that induce a low activation
barrier (the energy difference between TS3 and the reactants) in the MBH reaction and hence a
low score (further details on the scoring function in the next section).[1] The GA is run for 100
generations with a population size of 100, the starting population is chosen randomly from a subset
of tertiary amines from the ZINC database.[2] New individuals are created with a 50:50 chance either
by mutation or crossover operations performed on molecules from the previous generation. The
molecular sites for crossover and mutations are selected at random and thus offer a free exploration
of chemical space. Individuals are selected for mutation/crossover operations with a probability
proportional to their rank within the population (rank selection). Here, individuals are ranked in
descending order based on their score (low score to high rank) and their probability for selection
is calculated following Baker et al. with a selective pressure (SP) of 1.5.[3]

pi =
1

N

✓
2 � SP + 2 · (SP � 1) · ri � 1

N � 1

◆
(S1)

Here, pi is the probability for the selection of individual i, ri is the rank of individual i and N is the
number of individuals in the population. Individuals with low scores will have a high probability of
being selected for mutation/crossover operations. After the mutation/crossover operation, the new
individual has to contain one tertiary amine and has to have more than 5 but less than 14±6 heavy
atoms, otherwise, it is discarded. Duplicates are removed after 100 new individuals are generated
and the 100 best-performing individuals from the current and the previous generation advance to
the next generation.

Generative models such as GAs are known to generate molecules with unstable bonds and
highly complex structures.[4,5] Here, the score from the scoring function is modified by a synthetic
accessibility measurement to steer the GA towards molecules with high catalytic activity and which
are also synthesisable. The SA score as defined by Ertl and Schuffenhauer is used in connection
with a modified Gaussian function as proposed by Brown et al. with the parameters µ = 2.230044
and � = 0.6526308 as proposed by Gao and Coley.[4–6] This way molecules which are deemed easy
to synthesise are assigned a value of up to 1 and molecules that are hard to synthesise a value of 0.
The final score used in the GA is then obtained as the product of the electronic activation energy
minus 100 and the modified SA score.

Scorei =
⇣
�E‡

Ai � 100
⌘

· exp

 
� (max (SAi, µ) � µ)

2

2�2

!
(S2)

Subtracting 100 from the activation energy ensures that all scores are negative as the calculated
electronic activation energy typically ranges between -40 and 20 kcal · mol�1. Without subtraction
from the activation energy, most molecules in a randomly selected starting population will have
a positive activation energy which would then be multiplied with the modified SA score ranging
between 0 and 1 to give the final score which then would often be positive. This score could be
easily minimised by generating molecules that are not synthesisable, therefore giving a modified
SA score of 0 which again gives an overall score of 0. Hence, the GA could get trapped in an area
of chemical space with low synthesisability and scores close to 0. With the subtraction, virtually
all overall scores will be negative and the only way to minimise the score further is to increase the
modified SA score while simultaneously decreasing the activation barrier.

S1.2. Scoring Functions

Three scoring functions are developed to estimate the activation energy (called scoring energy in
the following) of the MBH reaction with a tertiary amine as catalyst. Each function takes the
molecular graph of the catalyst as an input and returns the scoring energy for the MBH reaction
with that catalyst.

The ts_scoring function calculates the difference in electronic energy between the TS of the
rate-limiting step (TS3) and the reactants (MA, pNBA, methanol, catalyst) using GFN2-xTB and

S1
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the GBSA solvent model for methanol (ts-scoring energy).[7,8] Instead of performing an exhaustive
diastereomeric and conformational search for the lowest energy TS structure, a template structure
of TS3 taken from Liu et al. is used.[9] The catalyst present in the template is replaced with the
catalyst that is to be evaluated and 10 conformers of the catalyst are generated using ETKDG as
implemented in RDKit.[10,11] Only conformers that differ by at least 0.5 Å in root-mean-square
deviation (RMSD) on the heavy atoms from each other are retained. Each conformer is then opti-
mised in methanol using GFN2-xTB and the GBSA solvent model while keeping the atoms of the
template fixed at their respective position and the lowest energy conformer is retained. Moreover,
10 conformers of the catalyst on its own are generated, the same RMSD pruning is applied and
each conformer is optimised in methanol. The activation energy is then calculated as the difference
between the electronic energy of the approximated TS and the sum of electronic energies of the
catalyst, pNBA, MA and methanol (�E‡

A = ETS � (Ecatalyst + EMA + EpNBA + EMeOH)).

Figure S1. Correlation between the Gibbs energy of ac-
tivation and the activation energy calculated using the
inter_scoring function for 48 molecules

Figure S2. Correlation between the Gibbs energy of ac-
tivation and the activation energy calculated using the
path_scoring function for 50 molecules

The inter_scoring function follows a similar approach as the ts_scoring function, but here
the difference in electronic energy between intermediate 2 and the reactants is calculated (inter-
mediate-scoring energy). A template structure of intermediate 2 from Liu et al. is used and the
present catalyst is replaced with the catalyst that is to be evaluated.[9] Ten conformers of the
catalyst are generated while keeping the atoms of the template fixed to their respective position
in the reference structure of intermediate 2. After RMSD pruning, each conformer undergoes
optimisation in methanol and the lowest energy conformer is retained. The lowest energy con-
former of the catalyst on its own is obtained as previously described and the activation energy is
calculated as the difference between the electronic energy of intermediate 2 and the sum of elec-
tronic energies of the catalyst, pNBA and MA (�E‡

A = EIntermediate�(Ecatalyst + EMA + EpNBA)).

The correlation between �G�,‡ and the inter_scoring energy is comparably strong with a
Pearson correlation coefficient of 0.95, see Figure S1. Again, the Spearman correlation coefficient
of 0.97 is high and shows that the molecules can be successfully ranked according to their �G�,‡

by the inter_scoring function. For four out of the 52 molecules, the intermediate-scoring energy
could not be calculated since the catalyst reacts with the oxygen-atom of the carbonyl-moiety of
intermediate 2. The reaction mechanism as studied by Liu et al. relies on this moiety in the
rate-determining step and all molecules that react with the carbonyl-moiety are deemed ineffective
catalysts and are assigned an overall score of 0.[9]

The path_scoring function calculates the difference between TS3 and the reactants similar to
the ts_scoring. Here, instead of using the template for TS3, the structure is obtained as the
maximum energy structure along the reaction path as approximated by the RMSD-PP method

S2
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(path-scoring energy).[12] The reaction path is created for the abstraction of the proton by a
methoxy moiety from a tertiary carbon atom which corresponds to TS3. To generate the reac-
tion path, a template structure of the structure before proton abstraction is used, the present
catalyst is replaced with the one that is to be evaluated and 10 conformers of the new catalyst
are generated. After RMSD pruning all retained conformers undergo geometry optimisation in
methanol and the lowest energy structure is retained. The structure of the catalyst is cut off the
intermediate and attached to a template of an intermediate after TS3 (intermediate 10) to ensure
that the RMSD between the structure before and after the TS is as small as possible with the
catalyst being the same conformer and having the same orientation. The so-obtained structure
of intermediate 3 is optimised in methanol. The reaction path method as implemented in xTB
(version 6.4.1) with kpush = 0.003, kpull = �0.02 and ↵ = 1.6 is used to obtain an approximate
transition state structure as the structure with the highest energy along the reaction path.[12]
10 conformers of the catalyst on its own are generated, and after RMSD pruning the conformers
undergo geometry optimisation in methanol and the lowest energy conformer is retained. The
activation energy is then obtained as the difference between the electronic energy of the approxi-
mated transition state and the sum of electronic energies of the catalyst, pNBA, MA and methanol
(�E‡

A = ETS � (Ecatalyst + EMA + EpNBA + EMeOH)).

With the path_scoring function the activation energy could be calculated for 50 out of 52
molecules and the path-scoring energy is shown against �G�,‡ in Figure S2. Here, the calculation
of the path-scoring energy failed for two molecules because the pre-optimisation does not converge
to the correct intermediate. Again, a strong linear correlation between the path-scoring energy
and �G�,‡ is shown in Figure S2 with a Pearson correlation coefficient of 0.94 and a Spearman
rank correlation coefficient of 0.97.

On average, evaluating the score of a single molecule with the ts_scoring, inter_scoring or
path_scoring function on a single core of an Intel® Xeon® E5-2643 v3 (3.4 GHz) takes 149±98
s, 178±158 s or 221±158 s respectively. Overall, the energies obtained from all three scoring func-
tions show strong correlation with the Gibbs energy of activation for different molecules over a
wide range of activation energies, but the ts_scoring function is the fastest and most robust and
is thus used going forward.

S1.3. DFT Calculations and Retrosynthetic Analysis

The best-performing molecules from separate GA runs are selected for further calculations of
the electronic activation energy at the GFN2-xTB and B3LYP-D3/6-31+G(d,p)(SMD) level of
theory.[13–16] First, the activation energy from the reactants to the true transition state (TS3) is
calculated. The transition state optimiser in Gaussian16 is used with GFN2-xTB(methanol/GBSA)
for the energy/gradient calculations.[17] The retrosynthesis tool Manifold is used to obtain the min-
imum number of synthetic steps to yield the desired product from commercially available build-
ing blocks.[18] The maximum lead time is set to 2 weeks and the catalogues ’generic’, ’molport’,
’emolecules’ and ’mcule’ are selected to search for building blocks.

For a few selected molecules, all relevant transition states and intermediates along the reaction
path are located and harmonic frequencies calculated using Gaussian16, the B3LYP-D3 functional
with the 6-31+G(d,p) basis set and the SMD solvent model for methanol. The Gibbs free energy
is calculated with a standard state of 1 M for all solutes and 24.9 M for methanol. Further-
more, vibrational frequencies below 20 cm�1 are raised to 20 cm�1 before calculating vibrational
contributions to the enthalpy and entropy following the approach of Ribeiro et al.[19]

S2. Correlation between experimental rate constants and calculated
activation energies
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Figure S3. Correlation between the logarithm of the relative rate constant for the MBH reaction (values from Aggarwal
et al.[20]) and the calculated Gibbs energy of activation (B3LYP-D3/6-31+G(d,p)(methanol/SMD)) for six quinuclidine-
based catalysts

S3. Molecules obtained from GA runs

S4. GA run with azetidine filter
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Figure S4. Molecules that can be synthesised in one step from building blocks and which induce low activation energies
in the MBH reaction

Figure S5. Top 8 molecules found by the GA when the azetidine filter is applied
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S5. Synthesis of M19
Starting materials are commercially available and were used without further purification. Methanol
used as solvent was HPLC grade and was used without any purification or drying. Chromatographic
purification was performed using silica gel (Flash column: 40–63 µm) and likewise, thin layer chro-
matography analysis (TLC) using aluminium sheets coated with silica gel containing a fluorescent
indicator. NMR spectroscopic data were recorded at 500 MHz for 1H-NMR and 126 MHz for
13C NMR using a Bruker instrument equipped with a cryoprobe. Solvent references are: deuter-
ated methanol (CD3OD, 1H-NMR: � = 3.31 ppm, 13C NMR: � = 40.00 ppm). 13C-APT-NMR
spectra were phased so negative signals correspond to an uneven number of protons on a carbon
atom and positive signals correspond to zero or an even number of protons on a carbon atom. The
instrument used for HRMS was a Bruker Solarix XR 7T ESI/MALDI-FT-ICR-MS instrument run
in ESI-mode. Calibration was external using NaTFA cluster ions. Data processing was done using
Bruker DataAnalysis version 5.0 SR1.

(1-Methylazetidin-3-yl)methanamine (100 µL, 85.6 mg, 0.85 mmol) was dissolved in methanol
(20 mL) in a 50 mL round-bottomed flask. Benzaldehyde (91 µL, 0.90 mmol) was added, and the
reaction mixture was heated to reflux. After 1 hour of refluxing, NaBH4 (70.6 mg, 1.87 mmol) was
added, and refluxing was continued for 1 hour. Another portion of NaBH4 (79.8 mg, 2.10 mmol)
was added and refluxing continued for another 30 minutes. The heating was stopped, and the
reaction mixture was cooled to room temperature, and CH2Cl2 (30 mL) was added. The mixture
was washed with water (50 mL), and the aqueous phase was extracted with CH2Cl2 (3 x 50mL) and
the combined organic phases concentrated in vacuo. Purification by flash column chromatography
(SiO2, 49%/49%/2% of CH2Cl2/Heptane/Et3N) furnished M19 (114 mg, 70%) as a clear oil. 1H-
NMR (500 MHz, CD3OD) � 7.36–7.28 (m, 4H), 7.28–7.21 (m, 1H), 3.73 (s, 2H), 3.51-3.43 (m, 2H),
2.96 (dd, J=8.1 Hz, 6.9 Hz, 2H), 2.74 (d, J=7.4 Hz, 2H), 2.62 (hept, J=7.1 Hz, 1H), 2.31 (s, 3H).
13C NMR (126 MHz, MeOD) � 140.54, 129.53, 129.48, 128.22, 61.41, 54.48, 53.43, 45.68, 31.25.
HRMS (ESI) m/z = 191.15440 [M+H+], calc. for [C12H19N2

+]: 191.15428.

S6. Kinetics
S6.1. NMR Spectroscopic Measurements

The NMR spectroscopic kinetic measurements were performed by first making two stock solutions
of DABCO (412.5 mg in 1 mL CD3OD, concentration: 3.68 M) and 4-nitrobenzaldehyde (183.4 mg
in 2 mL CD3OD, concentration: 0.607 M). 4-Nitrobenzaldehyde was difficult to get into solution,
and it was required to sonicate for a couple of minutes combined with waiting for 24 hours to allow
equilibration of the reaction between the aldehyde and methanol to form the more soluble hemiac-
etal. To the 4-nitrobenzaldehyde solution, cyclohexane (22 µL) was added as an internal standard.
To an NMR tube, the 4-nitrobenzaldehyde solution (0.572 mL), the DABCO solution (28.3 µL) and
methyl acrylate (29.5 µL) were mixed, which gave a ratio of 1:0.94:0.3 (4-nitrobenzaldehyde/methyl
acrylate/DABCO) and concentrations of 0.578 M, 0.543 M, and 0.173 M, respectively. The NMR
tube was given a quick shake and measured at regular intervals. The internal standard (cyclo-
hexane) could be used as a reference integral in each measurement, and the concentration of each
species could be calculated.

During the experiment, a couple of side reactions took place and an overview of the products of
the side reactions is shown below in Figure S6.
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Figure S6. Deuterated reactants, intermediates and product

Figure S7. Proposed mechanism for deuterium exchange at ↵-C on methyl acrylate

Figure S8. Proposed mechanism of CD3OD incorporation in methyl acrylate with DABCO as a catalyst. Using amine
M19 would result in an even faster incorporation of CD3OD

All side reactions yield deuterated analogues of reactants, intermediates or the MBH product.
As described in section 2, the signal corresponding to one of the �-protons of MA was used to
determine the concentration of MA and to follow the course of the reaction. This �-proton is
present in all side-products of MA and its chemical shift is barely affected by deuteration of MA,
only a change from doublet to singlet is observed. Therefore, all loss in intensity of the signal
corresponding to this �-proton can be attributed to conversion of MA to the MBH product.

The catalyst takes part in all those side reactions and the actual concentration of catalyst that
is available for the MBH reaction is lower than assumed. In Figure S9, one can see that both side
reactions, the incorporation of deuterium into the ↵-position of MA and the transesterification
with deuterated methanol, are considerably faster using M19 than using DABCO. However, this
does not necessarily mean that the concentration of M19 that is available for the MBH reaction
is lower than that of DABCO, since that depends on the relative life-times of the intermediates.

Figure S9. Left: percentage of deuterium incorporation of methyl acrylate in the ↵-position over time. Right: percentage
of transesterification of methyl acrylate with CD3OD over time calculated from the free MeOH generated with this side
reaction.
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S6.2. Calculation of Reaction Rates

The rate of the catalysed MBH reaction of MA with pNBA following the mechanism outlined in Fig-
ure 1 is described by the pseudo-second-order rate law in Eq. S3, following Plata and Singleton.[21]

v =
d [P]

dt
= k · [MA] [pNBA] [Catalyst]

= k0 · [MA] [pNBA]
(S3)

The integrated rate law is shown in Eq. S4 with the following variables and values:

[pNBA]0 = Starting Concentration of pNBA = 0.578 M
[MA]0 = Starting Concentration of MA = 0.543 M

[Catalyst] = Concentration of DABCO/M19 = 0.173 M/0.149 M
[P] = Concentration of Product

k0t =
1

[pNBA]0 � [MA]0
· ln

✓
([pNBA]0 � [P]) [MA]0
([MA]0 � [P]) [pNBA]0

◆
= y (S4)

The constant k0 can be obtained from a linear fit to the right-hand side of Eq. S4 against the
reaction time which is shown in Figure S10 (y vs. t). Following Plata and Singleton, the expression
y = k0 · t is fitted only to the first four data points since the incorporation of deuterium into the
↵-position of MA over the course of the reaction decreases the reaction rate.[21]

Figure S10. Fitting of constants k0 to y (Eq. S4) with concentrations obtained from 1H-NMR spectroscopic measure-
ments. Data for DABCO are shown in grey, data for M19 in orange. The constants k0 are obtained as the slope of a
linear fit to the first four data points.

The so-obtained constants k0 can be concerted into reaction rate constants by dividing it by
[Catalyst] and converting from hours to seconds:

k0 (DABCO) = 0.37487 M�1h�1

k (DABCO) = 0.00010 M�2s�1

k0 (M19) = 2.79874 M�1h�1

k (M19) = 0.00078 M�2s�1

With the constants k0 the concentration of the product ([P]) at any time t can be obtained using
Eq. S5 which was used to calculate the expected conversion to the product in Figure 8.

[P] =
[pNBA]0 [MA]0 (exp([pNBA]0 k0t) � exp([MA]0 k0t))

[pNBA]0 · exp([pNBA]0 k0t) � [MA]0 · exp([MA]0 k0t)
(S5)
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3.4.3 Summary and Outlook

In this study, we demonstrated how GAs can effectively optimize the
catalytic activity of molecules for specific reactions, using the well-
documented MBH reaction as our model. This reaction was chosen
due to its comprehensive exploration through both experimental and
computational methods. However, a significant challenge arises when
the mechanism of a reaction is not yet known, which is a more com-
mon scenario and requires not only optimizing but also identifying
potential catalysts and their mechanisms.

In Paper 4, we address this challenge by employing an automated
molecular meta-dynamics approach to explore the reaction network
of the MBH reaction. Starting with a set of 11 diverse molecular tem-
plates, Rasmussen [30] explored the corresponding reaction networks,
identified the catalytic cycle, selected a promising molecular template
as a potential catalyst and located the RDS and corresponding TS. Uti-
lizing this TS structure as a template in our GA’s scoring function, we
replicated the experiments from Paper 1 with identical parameters
and initial populations. The results were consistent, revealing simi-
lar molecules and reidentifying azetidine moieties as advantageous
structural motifs.

These findings underscore that the discovery of a novel catalyst
does not rely on prior knowledge of the reaction mechanism or tem-
plate structures from known catalysts, which marks a true de novo
discovery. This breakthrough paves the way for the discovery of cata-
lysts for reactions that are currently impractical or require harsh con-
ditions, significantly broadening the scope of catalytic science and
potential applications. This constitutes true de-novo discovery since
no prior knowledge of the reaction mechanism is required.

Since the majority of homogeneous catalysts are TM-based, our next
challenge is to extend the here presented workflow to those com-
plexes, which we will show in Paper 2.
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In the following section, we present our work on discovering novel
ligands for catalysts based on the TMs Palladium, Copper and Silver.
We use a fragment-based and graph-based GA approach and calcu-
late the catalytic activity based on intermediate reaction energies for
comparison to a volcano plot, as introduced in Section 3.2. We choose
this metric for direct comparison with previous work done by Meyer
et al. [27] and Schilter et al. [15]. We showcase how QM calculations in
connection with GAs can be used efficiently to search through large
enumerated spaces and generate novel ligands beyond them. This
approach calculates the descriptor of the catalytic activity from first
principle instead of relying on ML models to relate a featurized repre-
sentation to an intermediate reaction energy. We expect this approach
to be more robust and give reliable values for novel, out-of-domain
catalysts. This feat is especially important for the de novo discovery
presented here.

3.5.1 Motivation for Paper 2

Encouraged by our previous achievements in utilizing GAs to uncover
novel organic catalysts, we aimed to expand this approach to include
the discovery of TM-based catalysts. Given that the majority of homo-
geneous catalysts involve TMs, developing a workflow for the de novo
generation of such catalysts represents a substantial advancement. To
this end, we chose the Suzuki reaction as a test case to develop a
workflow that optimizes the ligands of a TM-based catalyst. Tradition-
ally, the design of TM-based catalysts has depended on predefined
ligand libraries. Recombination of a set of less than 300 unique lig-
ands can enumerate a vast space of up to billions of compounds.[8,
19] GAs have been successfully used to navigate through these vir-
tual spaces. However, these predefined spaces limit the potential for
discovering entirely new chemistry that would potentially allow for
efficient catalysts based on cheaper or less toxic TMs.

3.5.2 Summary of key findings and discussion

We have demonstrated that GAs can be integrated with DFT for evalu-
ations through efficient parallelization, offering a cost-effective alter-
native to high-throughput screening in predefined spaces by using a
fragment-based GA. Next, we used a graph-based GA workflow that
goes beyond traditional enumerated libraries. It includes automatic
assembly, coordinate generation, and a hierarchical QM workflow that
facilitates the calculation of a thermodynamic descriptor of the cat-
alytic cycle. This methodology is expected to be more robust than
ML-based approaches for exploring new areas of chemical space, as
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it bases scoring on first principles rather than ML correlations. With
this workflow, compute-intensive scoring processes can be applied to
TM-based catalysts. Furthermore, we show how a graph-based GA tra-
verses chemical space and generates ligands with new coordination
modes that improve the catalyst’s activity measure.

We utilize a SA measure developed for drug-like molecules to as-
sess ligand’s stability and synthesizability, which considerably con-
strains the exploration to a somewhat drug-like subset of chemical
space. Additionally, this approach does not give insight into whether
the resulting TM complex will be stable or synthesizable. Further de-
velopment of this workflow requires the assessment of stability and
synthesizability of TM-based complexes.

One way of addressing this challenge is to calculate how similar
a complex and its fragments are to complexes that are known to be
synthesizable. While the Cambridge Structural Database holds coor-
dinates and connectivity information of several thousand TM-based
complexes, no bond orders are assigned, which makes such an analy-
sis difficult. Our group is currently working on assigning bond orders
to those complexes. Upon completion, the resulting dataset contain-
ing molecular graphs, including bond orders of TM-based complexes,
can be analysed, and a statistical model created that calculates the
similarity of novel complexes to known complexes. We anticipate that
such a development will facilitate the efficient exploration of chemical
space relevant for TM-based catalysis.

Looking ahead, we envision using the here presented workflow to
comprehensively explore the reaction profile of a Suzuki reaction, in-
tegrating all relevant activation barrier heights into our scoring. This
approach would move us away from relying solely on LESRs, incorpo-
rating actual kinetics instead of thermodynamic descriptors.
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This study introduces a novel approach for the unrestricted
de novo design of transition metal catalysts, leveraging the
power of genetic algorithms (GAs) and density functional
theory (DFT) calculations. By focusing on the Suzuki re-
action, known for its significance in forming carbon-carbon
bonds, we demonstrate the effectiveness of fragment-based
and graph-based genetic algorithms in identifying novel lig-
ands for palladium-based catalytic systems. Our research
highlights the capability of these algorithms to generate lig-
ands with desired thermodynamic properties, moving be-
yond the restriction of enumerated chemical libraries. Lim-
itations in the applicability of machine learning models are
overcome by calculating thermodynamic properties from
first principle. The inclusion of synthetic accessibility scores
further refines the search, steering it towards more practi-
cally feasible ligands. Through the examination of both pal-
ladium and alternative transition metal catalysts like cop-
per and silver, our findings reveal the algorithms’ ability to
uncover unique catalyst structures within the target energy
range, offering insights into the electronic and steric effects
necessary for effective catalysis. This work not only proves
the potential of genetic algorithms in the cost-effective and
scalable discovery of new catalysts but also sets the stage
for future exploration beyond predefined chemical spaces,
enhancing the toolkit available for catalyst design.

1. Introduction
Catalysis plays a crucial role in synthetic chemistry and is
fundamentally dependent on the formulation of catalysts
that are both efficient and selective. A reaction of critical
importance in this domain is the Suzuki coupling because
of its ability to synthesize carbon-carbon bonds via the cou-
pling of organohalides with boronic acids.[1, 2] The perfor-
mance and specificity of this reaction are largely influenced
by the ligand selection in palladium (Pd)-based catalytic
systems.[3]

The traditional approaches to ligand discovery have been
characterized by intensive experimental screening processes
that are both time-intensive and demand significant re-
sources.[4–6] Computational methodologies for identifying
efficient catalysts have evolved, predominantly involving
the screening of extensive enumerated libraries, typically
ranging from 103−5 catalysts.[7] These virtual screenings
are executed through (semi-empirical) quantum mechan-
ics (QM) calculations which limits the size of the screen
library due to the computational cost.[8, 9] In response to
this challenge, researchers have turned to machine learning

(ML) models, trained on pre-existing data, to screen more
extensive libraries, which may include up to 106 catalysts or
more.[10–12] While ML models have proven valuable within
their trained domains, their efficacy often diminishes when
applied to scenarios outside their original scope, particu-
larly in the context of true de novo generation. Another
approach to limit computational cost is to employ search
algorithms aimed at efficient navigation of chemical space,
such as genetic algorithms (GAs). However, a notable limi-
tation of these methods is their tendency to restrict searches
to predefined chemical spaces, often encompassing around
105−7 catalysts.[13–18]

Recently, our research has introduced the de novo design
of a highly efficient organic homogeneous catalyst, specif-
ically devised for the Morita–Baylis–Hillman reaction.[19]
Utilizing a genetic algorithm, we explored the unrestricted
chemical space of tertiary amines, signifying a shift from tra-
ditional screening methods and restricted chemical spaces.

Following that, Strandgaard et al. [20] have shown the
computational de novo design of fragments of ligands for
the Schrock catalysts which extends the unrestricted ge-
netic algorithm search to parts of inorganic homogeneous
catalysts.

In this study we expands this concept to demonstrate the
de novo design of whole ligands for transition metal cata-
lysts at the example of the Suzuki reaction. While ML
models trained on pre-existing data have proven effective
in high-throughput screening, their use for unrestricted de
novo design is challenging since their predictive performance
on truly out of domain samples deteriorates. Another ap-
proach, relying on the correlation between geometric de-
scriptors such as bond-lengths, cone angles or sterimol pa-
rameters and the thermodynamics of the catalytic sytem has
been shown to be effective, yet it appears challening when
moving beyond only one binding motif.[18, 21, 22] There-
fore, we evaluate the performance of a catalysts by calcu-
lation of DFT level thermodynamic descriptors, instead of
using ML models or (semi-empirical) QM calculated geo-
metric descriptors. This distinctive approach expands the
domain of our de novo design, allowing for the exploration
of chemical space beyond the confines of ML model training
or QSAR correlations.

2. Computational Methodology
We use a genetic algorithm (GA) to discover promising cata-
lyst candidates for the Suzuki reaction. In the GA, the gene
is represented as a list of two molecular fragments which are
the ligands of the Suzuki catalyst. Two different GAs are
used which differ only in their reproduction rules.

1
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Figure 1. A: Catalytic cycle of the Suzuki reaction with key intermediates 1 and 2, B: Workflow to calcualte ∆E for a catalyst: 1. for ligands
with multiple potential binding site, all constitutional isomers are generated and their structures optimized with GFN2-xTB. 10 conformers
of the lowest energy constitutional isomer are then optimized with GFN2-xTB and the lowest energy structure is further optimized at the
DFT level in step 2. The atoms corresponding to the reactant (R1-X) are removed and the structure is optimized in step 3. ∆E is then
obtained as the difference in electronic energy at the DFT level.

In the fragment-based GA (FBGA), a crossover operation
means that one ligand is exchanged for another ligand from
another catalyst. The mutation operation exchanges one
of the two ligands with another selected randomly from a
pre-defined list of ligands.

The graph-based genetic algorithm (GBGA) utilizes the
crossover and mutation operations as implemented by
Jensen [23]. During a crossover operation, the graph of
one of the ligands is cut at random points and recombined
with a fragment of a molecular graph from another individ-
ual. The mutation operations act directly on the molecular
graph, adding, changing or removing atom(-type) or con-
nectivity. Newly generated ligands are considered valid if
they contain at least one molecular pattern that is con-
sidered to be a potential coordination site for the ligand.
These patterns are phosphines, amines, carbenes are car-
bonyls. When more than one potential coordination site
is detected, all possible constitutional conformers of the
ligand attached to a Pd-containing reference catalyst are
generated and 25 conformers of each are embedded and
optimized at the GFN2-xTB level of theory.[24] The coor-
dination site with the highest binding energy is then chosen
as the coordination site for that ligand.

All GAs are run with a population size of 25 for up to
50 generations. The mutation rate is set to 50 % which
means that with a 50:50 chance either a crossover or muta-
tion operation is chosen for the reproduction. Ligands with
as many as 30 heavy atoms and/or 5 rotatable bonds are
allowed. The starting population is created from combina-
tions of ligands from a pre-defined list containing 91 differ-
ent amines, phosphines, N-heterocyclic carbenes, pyridines
and CO taken from Meyer et al. [7].

For both GAs, the fitness of each individual depends on
the difference in electronic energy of intermediate 2 and 1,
see Figure 1. As Meyer et al. [7] established using linear-
energy scaling relationships following an approach by Busch
et al. [25] and Wodrich et al. [26], the optimal difference
in electronic energy (∆E) between the two intermediates is
in the range of -32.1 and −23.0 kcalmol−1 at the B3LYP-
D3BJ/def2-TZVP//B3LYP-D3BJ/3-21 level.[27–34] We
calculate ∆E at the B3LYP-D3BJ/def2-TZVP//B3LYP-

D3BJ/3-21 level and convert it to a score between 0 and 1
using a Gaussian function centered around −27.55 kcalmol−1

(µ1) and a standard deviation (σ1) of 6.00 kcalmol−1, cho-
sen empirically, see Equation 1. Therefore, the closer the
calculated ∆E is to the target value of −27.55 kcalmol−1

the closer the score is to 1.0.
To calculate ∆E for a molecule, 10 conformers of inter-

mediate 2 are embedded using ETKDG as implemented in
a slightly modified version of RDKit based on 2023.03.2, see
subsection S1, and an RMSD pruning threshold of 0.25Å is
applied.[35, 36] The retained conformers are optimized at
the GFN2-xTB level of theory.[24] The lowest energy con-
former is further optimized at the B3LYP-D3BJ/3-21 level
and its single point energy is calculated as the B3LYP-
D3BJ/def2-TZVP level using ORCA 5.0.4.[37] The frag-
ments R1-X (HC−−CH2) and X (Br) are removed from the
optimized structure to obtain a structure of intermediate 1
which undergoes optimization and single point calculation
at the B3LYP-D3BJ/def2-TZVP//B3LYP-D3BJ/3-21 level
of theory. ∆E is then obtained as the difference in elec-
tronic energy between intermediate 2 and intermediate 1
and R1-X.

In the FBGA, the final score of individual i is equal to
the first factor in Equation 1 which only depends on ∆Ei.
In the GBGA, this score is multiplied with a modified syn-
thetic accessibility (SA) score, which also ranges from 0.0
to 1.0 as shown in Equation 1. Here, the modified SA score
is the mean of the two SA scores of the ligands which are
calculated as described by Ertl and Schuffenhauer [38] and
further modified using a modified Gaussian function as pro-
posed by Brown et al. with the parameters µ2 = 2.230044
and σ2 = 0.6526308 as used by Gao and Coley.[39, 40]
Therefore, the final score in both GAs ranges from 0.0 to
1.0.

Scorei = exp

(− (∆Ei − µ1)
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We choose to calculate the overall score as the product of
the two normalised objectives, the energy-dependent term
and the synthesizability penalty so that an optimal solution
can only be found when both objectives are satisfied since
we are not interested in high synthesizable molecules that
do not perform well as catalysts or molecules that are calcu-
lated to perform well as catalysts but are not synthesizable
or show uncommon structural motifs. This is achieved by
using the product as shown in Equation 1, compared to, for
example, a sum of the two terms.

Based on the rank ri of each individual in each popu-
lation (N = population size), a normalized fitness value is
calculated using Equation 2 from Baker [41] with a selec-
tion pressure (SP) of 1.5. Individuals are selected for repro-
duction with a frequency proportional to their normalized
fitness value.

pi =
1

N

(
2− SP + 2 · (SP − 1) · ri − 1

N − 1

)
(2)

3. Results and Discussion

3.1. Fragment-based GA
Firstly, we assess the ability of a fragment-based GA to lo-
cate catalysts based on Pd within the defined ∆E range.
The starting population is comprised of 25 molecules that

Figure 2. Evolution of the score (blue) and energy difference (red) of
the best-performing individual of an FBGA run over 10 generations.
The target range of the energy difference is shown as a red-shaded
area.

all have a calculated ∆E below −42.00 kcalmol−1 (∆E far
below target value). Subsequently, the GA explores if com-
binations of the present ligands can yield molecules with
∆E values closer to the target of −27.55 kcalmol−1 and
adds new ligands from the full list of available ligands via
mutation operations. The evolution of the best-performing
molecule over 10 generations is shown in Figure 2. The
score of the best-performing individual quickly increases
from 0.04 to 0.99 within two generations. Closer inspection
of the GA run reveals that the molecule is created by two
successive mutation operations as shown in Figure 3. After
four generations the best-performing molecule has a calcu-
lated energy difference of −27.33 kcalmol−1 which yields a
score of 1.00. Over the next six generations, more molecules
are found with a score of 1.00 and after ten generations
all 25 molecules have a calculated energy difference in the
target range as defined by Meyer et al. [7]. Here, we per-
formed 2 · 25 · 10 = 500 DFT optimization (two for each
catalyst, 25 catalysts for 10 generations) to locate a total of
134 unique catalysts within the target range. Meyer et al.

Figure 3. Evolution of the best-performing individual of an FBGA
run after two generations

[7] were able to identify 265 unique Pd catalysts that are
predicted to have an energy difference in the target range
using an ML model to exhaustively screen the same library
we search with this GA. Their ML model was trained on a
total of 7054 molecules out of which 2595 contained Pd. If
they restricted themselves to only Pd-containing catalysts
and were able to obtain a model performing similarly on
Pd-containing catalysts, they would have been able to find
265 catalysts while doing 2 ·2595 = 5190 DFT optimization
(two for each molecule). This highlights how GAs can be
used in connection with DFT for scoring to search a large
pre-defined library of ligands with comparably little com-
putational cost.

3.2. Graph-based GA
Next, we aim to discover novel ligands for Pd-containing
catalysts for the Suzuki reaction and not just recombine
pre-defined ligands. From the same starting population,
a GBGA without synthetic accessibility constraint is run

Figure 4. Evolution of the score (blue) and energy difference (red)
of the best-performing individual of a GBGA run over 25 generations.
The target range of the energy difference is shown as a red-shaded
area.

3
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for 20 generations. Here, the best-performing individual is
created by subsequent crossover and mutation operations
on the molecular graph of the ligands.

Since only parts of one ligand are changed in the GBGA
instead of the whole ligand as in the FBGA, evolution
of molecular structures happens in smaller steps through
chemical space. This allows the discovery of novel struc-
tures. The score of the best-performing individual increases
drastically over the first four generations and the calcu-
lated energy difference increases from −42.8 kcalmol−1 to
−27.1 kcalmol−1, as shown in Figure 4. Over the following
16 generations, the energy difference of the best-performing
molecule decreases slightly to −27.59 kcalmol−1 which
corresponds to a score of 1.00. After 20 generations, all
molecules in the population have a calculated energy differ-
ence within the target range and the four best-performing
individuals are shown in Figure 5. The ligands coordinate
to the transition metal via phosphine or pyridine derivative
sites and possess up to five hetero atoms. Although no

Figure 5. Best-performing individuals of the GBGA after 25 gener-
ations. The calculated energy difference is shown to the right of the
structure.

synthetic accessibility constraint was applied, some pur-
chasable ligands such as 2-fluoropyridine were discovered
by the GA.[42] On the other hand, for many of the ligands
containing highly fluorinated phosphines, no synthetic route
can be found with the retrosynthesis software Manifold.[43]

We predict the binding site of each ligand as the site with
the highest binding energy when coordinating as a mon-
odentate ligand. This might not be a reasonable assumption
for one of the ligands of the fourth molecule shown in Fig-
ure 5 which might coordinate as an N,N-bidentate ligand.
One could perform more automated xTB calculations con-
sidering other coordination modes than simple monodentate
coordination to verify this in the GA. This way the coor-
dination site and mode could be identified by the highest
binding energy across all sites and modes.

Here, we defer this additional consideration to verification
and evaluation steps that are necessary after the molecular
optimization, along with a more extensive conformational
search, location of transition states and calculation of acti-
vation barriers, extensive retrosynthetic analysis and calcu-
lation of full catalytic cycles.

3.3. Graph-based GA with SA
To address this short-coming, a GBGA is started again from
the same starting population with a synthetic accessibility
constraint to the score as described in section 2 which stears
the search into an area of chemical space that is deemed to
be more accessible. Virtually all molecules of the initial
population are deemed to be synthetically inaccessible by
the modified SA score, as shown in Figure 6. This is not
surprising since it was developed for drug-like molecules.
Within ten generations, the GA discovers new ligands that

Figure 6. Evolution of the score (blue), energy difference (red)
and modified SA score (green) of the best-performing individual of
a GBGA run over 40 generations. The target range of the energy
difference is shown as a red-shaded area.

are deemed to have moderate synthetic accessibility as well
as an energy difference within the desired target range.
Here, a trade-off has to be made between the two compo-
nents of the score, the energy difference and the modified SA
score. Although molecules with modified SA scores of 1.00
are found after seven generations, the modified SA score
of the best-performing molecule decreases again to 0.6 after
ten generations since the energy difference of the molecule is
closer to the target value of −27.55 kcalmol−1 which yields
an increase to the overall score of 0.2. On the other hand,
after 26 generations, the best-performing molecule has a
less favorable energy difference than the best-performing
molecule in the previous generation but this is compensated
for by a higher modified SA score which yields an overall in-

Figure 7. Best-performing individuals of the GBGA with synthetic
accessibility constraint after 40 generations. The calculated energy
difference is shown to the right of the structure.
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Figure 8. Distribution of the functional groups via which the ligands bind to the transition metal from a GBGA run with synthetic accessibility
constraint for the initial population (blue), after 20 generations (yellow) and for the final population (red).

creased score of 0.1. After 30 generations, molecules with
energy differences close to the target and near-perfect syn-
thetic accessibility score are located.

The best-performing individuals from the final popula-
tion are shown in Figure 7. All molecules possess one ligand
coordinating via a nitrile group to the transition metal and
another one coordinating via a carbonyl group or the nitro-
gen atom of a pyridine derivative. All six unique ligands
are purchasable building blocks via Sigma-Aldrich and/or
Mcule.[44] Figure 8 shows a bar chart of the different co-
ordination sites of the discovered catalysts at different evo-
lutionary steps. In the initial population of the GA, which
was selected to have low ∆E values, N-heterocyclic carbenes
(NHCs) are the most common coordination sites followed
by pyridine derivatives and phosphines. Neither NHCs nor
phosphines are found as binding sites after 20 generations
of the GA. This could be partially due to a low modified
SA score for phosphines and NHCs. Instead more pyri-
dine derivatives are found and nitriles are discovered as
a favourable coordination site. After 40 generations, even
more ligands coordinating via nitrile groups are found while
the number of ligands containing pyridine derivatives as
binding sites decreases. Instead, ligands that coordinate via
a carbonyl group are preferred. This shows, that the GA
actually traverses chemical space since the final population
contains mainly coordination sites that are not present in
the starting population and not just interpolated between
chemical structures present in the starting population.

Schilter et al. [45] developed a variational-autoencoder
trained on the dataset from Meyer et al. [7] and were able
to discover novel catalysts with favourable energy differ-
ences by optimizing in a learned latent space. They show
that the distribution of coordination sites for the generated
molecules follows the distribution of the training data. This
indicates, that they find novel ligands by interpolating in the
latent space, but do not discover novel binding motifs in a
different area of chemical space than what their training
data contains.

3.4. Graph-based GA for Cu- and
Ag-based Catalysts

With a GBGA, it is straightforward to discover novel cat-
alysts utilizing other transition metals than Pd. Here, we
show the generation of novel ligands for Cu- and Ag-based
catalysts with a favourable thermodynamic profile for the
Suzuki reaction. This appears to be a challenging task since
Meyer et al. [7] were only able to find 20 and 0 catalysts
in the desired energy range via screening of 18062 catalyst
candidates, respectively. Furthermore, when calculating
the actual energy difference at the B3LYP-D3BJ/def2-
TZVP//B3LYP-D3BJ/3-21 level of theory, we could only
confirm 6 out of 20 Cu-based catalysts with ∆E values
within -32.1 and −23.0 kcalmol−1. The evolution of the
score, calculated energy difference and the modified SA
score of the best Cu-based catalysts over 40 generations
are shown in Figure 9. The calculated ∆Es of the best
catalysts in the early generations are considerably higher
(>15 kcalmol−1) than the desired target range which yields
low overall scores in the first six generations. After seven
generations, a catalyst with a calculated ∆E in the target
range is identified. In the following 33 generations more
catalysts within the target range and varying modified SA
scores are discovered by tradeoff between the two objec-

Figure 9. Evolution of the score (blue), energy difference (red) and
modified SA score (green) of the best-performing individual of a
GBGA run with Cu-containing catalysts over 40 generations. The
target range of the energy difference is shown as a red-shaded area.
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tives. Overall, 112 unique catalysts within the target range
were discovered by evaluating 1000 catalysts with DFT, a
subset is shown in Figure 10.

Figure 10. Best-performing individuals of the GBGA with synthetic
accessibility constraint for Cu-based catalysts after 40 generations.
The calculated energy difference is shown to the right of the struc-
ture.

For the generation of Ag-based catalysts, no synthetic ac-
cessibility constraint was applied since preliminary experi-
ments proved the generation of catalysts with both high
SA scores and ∆E values in the target range too challeng-
ing. We therefore show how the GBGA is used to generate
structural motifs that yield catalysts within the desired ∆E
range. Analysis of the generated structures yields insight
into electronic and steric effets that would be necessary for
Ag-based catalysts.

68 catalysts with ∆E values in the target range could
be identified over 40 generations. Figure 11 shows the evo-
lution of the score (blue) and the calculated ∆E (red) of
the best catalyst over 40 generations. This task appears to

Figure 11. Evolution of the score (blue) and the energy difference
(red) of the best-performing individual of a GBGA run with Ag-
containing catalysts over 40 generations. The target range of the
energy difference is shown as a red-shaded area.

be more challenging than previous ones, since it takes 22
generations without SA constraint until a catalyst with ∆E
in the target range is discovered. The final catalyst candi-
dates are all anionic which appears to stabilize the reactant
in intermediate 2. Figure 12 shows the structure of the best-
performing catalyst candidate with the interaction between
the ligand and reactant in blue. This can be seen as an
example of what the structure of the ligand would need to
look like in order for the catalyst to fall within the target
energy range. The unusual structure with a deprotonated

Figure 12. Lewis structure of the best-performing catalyst candidate
from GA run containing Silver. The favourable interaction between
one ligand and a reactant is shown as a blue dashed line.

NHC is not expected to be a stable complex and could most
likely not be synthesised. Yet, the structure could be useful
for further optimization while considering the need for non-
covalent interactions between the ligand and the reactant.

4. Conclusion
In conclusion, the results of our study demonstrate the ef-
fectiveness of fragment-based genetic algorithms (FBGAs)
and, especially, graph-based genetic algorithms (GBGAs)
in the search for novel ligands for catalysts in the Suzuki
reaction. The FBGA successfully evolved a population of
molecules over 10 generations, yielding 134 unique catalysts
with ∆E values within the target range. Our study demon-
strates that GAs, requiring on the order of 500 evaluations
or less, are effective in directly identifying competitive cat-
alysts using DFT without the need for constructing a Ma-
chine Learning (ML) model.

The GBGA, without synthetic accessibility (SA) con-
straints, explored chemical space by iteratively applying
crossover and mutation operations on ligand molecular
graphs. The resulting ligands exhibited a diverse range
of coordination sites, emphasizing the capability of GAs
to discover novel structures. With SA constraints incor-
porated in the latter part of the study, the GA navigated
towards ligands with improved synthetic accessibility while
maintaining a ∆E within the target range. The final popu-
lation of ligands, identified after 40 generations, showcased
diverse binding motifs and confirmed the GA’s ability to
discover ligands with desirable properties for catalysis.

Furthermore, the application of GBGAs to explore lig-
ands for Cu- and Ag-based catalysts in the Suzuki reaction
revealed their potential to generate novel structures for dif-
ferent transition metals. Despite the challenges associated
with the limited number of previously identified Cu-based
catalysts, the GA successfully discovered 112 unique Cu-
based catalysts within the desired ∆E range, demonstrat-
ing the versatility of the GA approach for exploring novel
catalytic systems.

Generation of Ag-based catalysts with favourable ther-
mondynamic profiles showed that the GBGA can discover
structural motifs that yield catalysts within the target ∆E
range without regard for stability or synthsizability. These
structural motifs can yield insights for molecular discovery
of further ligands.

Comparisons with existing machine learning (ML) mod-
els highlight the complementarity of GA methods, as GAs
traverse chemical space, discovering ligands with coordina-
tion sites not present in the initial population. This is in
contrast to ML models that interpolate within a learned la-
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tent space but may struggle to explore entirely new binding
motifs.

As with all generative models, the real-life performance
of structures generated by this molecular optimization ap-
proach is limited by the applicability of the used scoring
function or property prediction model. Here, we optimize
the DFT-calculated energy of one specific reaction step in
one well-defined catalytic cycle. To assess the real-world
performance of a generated catalyst, an extensive compu-
tational strategy should be applied to assess the underlying
assumptions.

The proposed catalyst structure should first be evalu-
ated through an extensive conformational search covering
all possible coordination modes and sites, potentially utiliz-
ing CREST for this purpose [46]. Subsequently, the cata-
lyst’s stability can be assessed using methods like the (meta-
)dynamics approach outlined by Grimme et al. [47]. Also,
the dominant oxidation state of the metal center needs to be
considered. Next, the applicability of the linear energy scal-
ing relation must be validated for the generated molecules
by calculating all reaction intermediates. Additionally, it is
crucial to locate the transition states throughout the cat-
alytic cycle and compute their associated activation bar-
riers, thereby avoiding reliance on linear correlations be-
tween intermediate energies and actual activation barriers.
Finally, the entire reaction network of the reaction system
should be investigated to identify any competing side reac-
tions, similar to the work of Rasmussen et al. [48].

In summary, our study underscores the potential of ge-
netic algorithms as powerful tools for ligand discovery in
catalysis, showcasing their ability to efficiently navigate
chemical space, discover novel structures, and generate
ligands with desirable properties while minimizing compu-
tational costs.

Finally, the employed synthetic accessibility (SA) score in
this study is observed to impose penalties on frequently uti-
lized ligands, including phosphines and carbenes, redirect-
ing the exploration towards drug-like chemical space. To
achieve a more comprehensive exploration of the relevant
chemical space, ongoing research in our group is dedicated
to developing synthetic accessibility measures tailored for
homogeneous inorganic catalysts.

5. Data availability
All code and data can be found at github.com/jensengroup/
tmcat-design.
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Supplementary Material

S1. Modifications to RDKit
All catalysts studied here are represented in RDKit as a molecule with a central transition metal atom to which two ligands
bind with a dative bond each. The hybridization of the atoms from which the dative bonds start is determined incorrectly
in RDKit ≤ 2023.03.2. The hybridization of an atom is determined by its number of bonds, lonepairs and radicals. When
a dative bond starts from an atom, the sum of bonds, lonepairs and radicals is calculated wrong since the lonepair/radicals
are the same electrons that are part of the dative bond. To account for this overcounting, we reduce the number of lonepairs
by one or the number of radicals by two if a dative bond starts from an atom which has lonepairs or radicals, respectively.

The hybridization of an atom is used in the embedding process to determine ideal angles between atoms. The angle
between atoms determines what lower and upper distance bounds are set in the bounds matrix Therefore, a wrong higher
hybridization (SP3D instead of SP2) can lead to too small ideal angles (109.5 ◦ instead of 120.0 ◦) and to too large distance
bounds. In the default implementation of RDKit, the atoms from which the dative bond starts are deemed to be higher
hybridized than they are, for example, the carbon atom of a carbene which forms a dative bond to a transition metal is
deemed to be SP3D hybridized, whereas one would consider the atom SP2 hybridized. This results in distorted geometries,
especially around atoms such as the carbon atom of a carbene or a nitrogen atom of a pyridine which should be considered
SP2 hybridized. The distortions are considerable such that an optimization using GFN2-xTB often does not yield an
undistorted conformer and/or yields a conformer with a different bonding pattern than expected.

S1
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4
D I S C U S S I O N A N D O U T L O O K

In this chapter, we showed how GAs can be used effectively to op-
timize homogeneous catalysts. We combined the optimization with
a reaction network exploration approach in Paper 4, which consti-
tutes an end-to-end workflow that can generate novel catalysts for a
specific reaction without extensive prior knowledge of the reaction
mechanism. As Corin Wagen notes in his blog post:

It’s difficult to underscore how groundbreaking this
result is; as the authors dryly note, “We believe this
is the first experimentally verified de novo discovery
of an efficient catalyst using a generative model.” On
the spectrum discussed above, this is getting pretty
close to “oracle.”

- Corin Wagen
Blog post from 21.02.2023

An "oracle" in this context refers to a hypothetical computational
system capable of answering key questions like:

• "What is a good catalyst for this reaction?"

• "What are the best reaction conditions for this reaction?"

• "How can I increase the yield for this reaction?"

Such an oracle would not only compute specific quantities but also
generate innovative ideas and solutions. While we are far from the
point of developing a general-purpose oracle with such capabilities,
progressing towards this goal requires several critical elements.

Firstly, the accuracy of our computational models depends on high-
quality experimental data to validate our approaches. This includes
kinetic studies on various catalysts, substrates, and reaction condi-
tions to ensure that our calculated catalytic activity measure aligns
with experimental outcomes.

Secondly, we need accurate, robust and fast QM methods for cal-
culating relative energies. While the SQM-based xTB methods have
proven accurate for closed-shell organic molecules in the MBH re-
action, their efficacy for TM-based complexes has been less reliable.
For example, with square planar Pd2+-complexes, we have observed
discrepancies in ligand coordination preferences compared to those
predicted at the DFT level.

DFT itself may also fall short in accurately modelling open-shell
systems and those with multi-reference characters. These challenges
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48 discussion and outlook

might be tackled using (∆)-ML approaches, although their application
is limited to specific domains.[31] Additionally, modelling solvent ef-
fects using implicit models may prove inadequate, particularly for
reactions involving zwitterionic intermediates.

While our developed workflow has been successfully applied to a
specific reaction, ongoing research aims to expand on this foundation.
Other research groups are exploring applications such as optimizing
the structure of molecular tweezers for sucrose detection or enhanc-
ing (ballistic) conduction through molecular junctions based on our
provided codebase.[32, 33] Moreover, our own group is leveraging the
developed code to propose catalysts for the conversion of nitrogen to
ammonia and for carbon capture, both critical areas for a sustainable
and green future.[34–36]

It is our hope that the work presented here will inspire further
research using these developed workflows to innovate and solve var-
ious chemical challenges.



Part II

A U T O M AT E D R E G I O S E L E C T I V I T Y
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5
I N T R O D U C T I O N

As we have shown in Chapter 3, the computational optimization of a
catalyst’s activity is a challenging, yet achievable task. In this chapter,
we investigate the selectivity of a catalytic system, which is another
relevant property. A highly selective reaction yields only one relevant
product which increases atom economy and decreases the need for
extensive purification steps afterwards.

Some of the most selective reactions known to us can be found
in nature. Enzymes are highly efficient and selective catalysts, achiev-
ing their remarkable selectivity through molecular recognition. In this
process, a functional group of the substrate interacts with the enzyme,
aligning the enzyme’s active site with a specific location on the sub-
strate where the reaction subsequently occurs. These interactions in-
volve both attractive forces, such as hydrogen bonds, aromatic stack-
ing, and ion pairing, and repulsive forces, including steric hindrance
and specific shape matching.

Among synthetic catalysts, those based on transition metals (TMs)
are often the most efficient and widely used. Their selectivity is typ-
ically adjusted by modifying their ligands; for instance, bulkier lig-
ands tend to favour reactions at less sterically hindered sites on the
substrate. However, this approach does not achieve the high level of
selectivity seen in enzymatic reactions.

Particularly in C−H activation and functionalization reactions, the
use of directing groups (DGs) has proven highly effective in control-
ling regioselectivity. Similar to molecular recognition, a functional
group on the substrate coordinates to the catalyst, positioning it near
the intended reaction site. Traditionally, the DG is located close to
the reaction site, but several studies have explored the activation of
remote sites using DGs, as demonstrated in works by Achar et al.
[37] and others.[38, 39] This cutting-edge research holds the potential
to enable chemists to design increasingly selective catalyst/substrate
systems, enhancing atom economy and reducing chemical waste.
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6
P R E D I C T I N G R E G I O S E L E C I T I V I T Y

Predicting the regioselectivity of chemical reactions is a difficult but
equally important task. Accurate predictions of where chemical trans-
formations occur are essential for efficiently designing novel and com-
plex molecules such as pharmaceuticals and agrochemicals. Several
reactivity trends are known for various reactions; for example, the for-
mation of a stable radical on an SP3 carbon atom follows the reactivity
trend tertiary > secondary > primary, which can be used to assess re-
gioselectivity. While these rules are useful, their application to larger
and more complex molecules is difficult. Here, computational mod-
els can give insight into the reactivity trends of specific substrates.
A plethora of different computational approaches focusing on spe-
cific reaction mechanisms are available. Previously, Kromann et al.
[40] developed RegioSQM, which predicts the regioselectivity of elec-
trophilic aromatic substitution reactions. Ree, Göller, and Jensen [41]
developed an automated workflow to predict the regioselectivity of
the Heck reaction. The regioselectivity of nucleophilic aromatic sub-
stitutions can be predicted following a workflow by Liljenberg et al.
[42].

In this context, we introduce an automated workflow to predict the
regioselectivity of directed C−H activations via the concerted metala-
tion deprotonation (CMD) reaction mechanism. This provides a struc-
tured approach to predicting where reactions will occur, which can
enhance the synthesis planning process.

Previous works by Tomberg et al. [43] and Cao et al. [44] to pre-
dict the regioselectivity of this reaction either lack generalizability or
require a high-performance computing (HPC) cluster to obtain predic-
tions due to the high computational cost. Here, we aim to present a
user-friendly, efficient and accurate semiempirical quantum mechani-
cal (SQM) workflow that yields prediction within seconds to minutes
on laptops. The use of DGs for the selective C−H activation and func-
tionalization has seen a significant increase in popularity over the
last decades, as shown in Figure 6.1. Increased understanding of the
mechanism has helped to extend the reaction’s scope to more sub-
strates, DGs and remote activation sites. We hope that the here pre-
sented fast and user-friendly workflow for regioselectivity prediction
will be useful to chemists with and without computational expertise.
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Figure 6.1: Number of scientific publications per year found on Google
Scholar with the search term "directed ch functionalization ac-
tivation"

6.1 c−h activation via concerted metallation depro-
tonation

There are several possible and potentially competing reaction mech-
anisms for C−H activation, influenced by factors such as the nature
of the metal, the steric and electronic effects of the ligands, and the
acidity of the C−H bond. When DGs are present in the substrate and
late TM catalysts with chelating bases are utilized, the CMD mecha-
nism becomes viable, often yielding high regioselectivity. Lafrance et
al. [45] and Gorelsky, Lapointe, and Fagnou [46] suggested the CMD

mechanism as the most plausible one for the C−H activation using
Pd-based catalysts with chelating bases. Here, several moieties work
together to form the C−Pd bond in a concerted mechanism, as shown
in Figure 6.2. The DG coordinates via a heteroatom to the TM centre of

Figure 6.2: Reaction mechanism for the formation of a carbon-TM bond via
the CMD mechanism

the catalyst, which brings the catalyst close to a specific C−H bond.
The TM atom coordinates to the carbon atom of the C−H bond, which
increases the acidity of the proton. The acetate moiety of the catalyst
then abstracts the proton to form acetic acid, and the C−Pd bond is



6.2 this work 55

formed. Upon C-H activation, a plethora of chemical transformations
is possible to form new C-C and C-heteroatom bonds.

6.2 this work

Here, we present a fully automated workflow to predict the regiose-
lectivity of Pd(OAc)

2
catalyzed C−H activations involving directing

groups. A simplified molecular-input line-entry system (SMILES) rep-
resentation of the substrate must be provided as input. The workflow
identifies all possible reaction sites, creates molecular graph represen-
tations of the relevant catalyst-substrate complexes, generates several
conformers and performs SQM calculations to identify the most likely
reaction site. The workflow is accessible via an interactive command
line interface or a web-based GUI in which the substrate can be drawn
as a Lewis structure and predictions can run within seconds to min-
utes on laptops. Furthermore, the workflow can be deployed on a
HPC cluster and the user can interact with it via an API to allow for
even faster prediction for several substrates in parallel.

We evaluate the predictive workflow’s performance on datasets
curated from experimental data and achieve an accuracy of ∼ 80%.
While we first only consider ortho-activation, we later extend the
workflow to also consider activation on remote sites in the substrate.
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The mild and selective functionalization of carbon-hydrogen (C−H) bonds remains a pivotal chal-
lenge in organic synthesis, crucial for developing complex molecular architectures in pharmaceuti-
cals, polymers, and agrochemicals. Despite advancements in directing group (DG) methodologies
and computational approaches, predicting accurate regioselectivity in C−H activation poses signif-
icant difficulties due to the diversity and complexity of organic compounds. This study introduces
a novel quantum mechanics-based computational workflow tailored for the regioselective prediction
of C−H activation in the presence of directing groups. Utilizing (semi-empirical) quantum calcula-
tions hierarchically, the workflow efficiently predicts outcomes by considering concerted metallation
deprotonation mechanisms mediated by common catalysts like Pd(OAc)2. Our methodology not
only identifies potential activation sites but also addresses the limitations of existing models by
including a broader range of directing groups and reaction conditions while maintaining moderate
computational cost. Validation against a comprehensive dataset reveals that the workflow achieves
high accuracy, significantly surpassing traditional models in both speed and predictive capability.
This development promises substantial advancements in the design of new synthetic routes, offer-
ing rapid and reliable regioselectivity predictions that are essential for accelerating innovation in
material science and medicinal chemistry.

1. Introduction
The activation and functionalization of carbon-hydrogen (C−H) bonds represent a fundamental challenge in
modern organic chemistry, particularly due to the inherent stability and prevalence of these bonds in organic
molecules. These bonds, which typically exhibit bond energies ranging from 90 to 110 kcal/mol, constitute the
majority of bonds in organic chemicals. Therefore, their selective functionalization is central for advancing the
synthesis of complex molecules like pharmaceuticals, polymers, or agrochemicals.[1–3]

Advancements in organometallic catalysis have facilitated significant progress in this area through C−H
activation, transforming these inert bonds into reactive carbon-transition metal (C-M) bonds. Subsequent
transformations of these complexes enable the formation of an array of new functional groups, such as carbon-
carbon and carbon-heteroatom bonds, underpinning a plethora of synthetic applications.

Nevertheless, the high prevalence of C–H bonds in organic compounds presents a substantial challenge in
achieving site-specific functionalization. A principal strategy to circumvent this challenge leverages directing
groups (DGs) within the substrate, which coordinate to the metal centre of the catalyst, thereby dictating the
site of C−H activation. Common DGs include unsaturated heteroatoms and alkenyl groups, which have proven
effective in guiding the regioselectivity of these reactions.[4]

Mechanistic studies with PdOAc2 as catalyst support the following mechanism of C−H activation, called
Concerted metal deprotonation (CMD).[5–7] In a concerted mechanism, the Pd atom of the catalyst forms a
sigma bond to an aromatic carbon, which increases the acidity of the adjacent proton. This allows for the
simultaneous abstraction of this proton by a carboxylate ligand. A directing group facilitates this step as it
stabilizes the complex through coordination to the Pd atom, thereby lowering the reaction barrier. A depiction
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of the CMD step is shown in Figure 1. Upon C−H bond breaking, the Pd atom moves into the plane of the
aromatic ring, forming a palladacycle intermediate and carboxylic acid. The palladacycle intermediate can
undergo further (coupling) reactions and form a variety of products via reductive elimination.

In a computational study, the rate and regioselectivity controlling step was identified as the formation of the
palladacycle. The regioselectivity could be correctly predicted by calculation and comparison of the activation
barrier of this step by Davies et al. [8]. The reaction site for which the activation barrier is the lowest is predicted
to be the most probable one. Tomberg et al. [9] established that the regioselectivity could equally be predicted
by calculation and comparison of the relative energies of the proceeding palladacycle intermediate, as postulated
in the Bell–Evans–Polanyi principle.[10, 11] Focussing on the intermediates allows for easier automation of the
calculations since a minimum instead of a saddle point structure on the potential energy surface is located
which can be easiyly done using standard optimization algorithms. Tomberg et al. [9] introduced a hierarchy
of directing strength for 238 different ortho DGs, which can be used to rapidly predict the regioselectivity of
C−H activation in complex molecules. The 238 directing groups are extracted from 150 molecules, taken from
Chen et al. [4], for which reaction sites are known from experiments. For each directing group, the energy of
the palladaycle intermediate with H-abstraction at a specific site is calculated using DFT and compiled into
a hierarchical list for the determination of the reaction site with the lowest energy. Using the hierarchy, the
regioselectivity of C−H activations could be rationalized for the 150 molecules with remarkable accuracy. While
this approach performs well on this dataset, it doesn’t generalize well to other molecules that were not used to
extract DGs and precompute their relative directing strength. This is evidenced by our analysis using a dataset
curated from Reaxys, where a prediction for only two out of ten molecules could be obtained. This is due to
the specificity of the patterns, which only matched all potential C−H activation sites for two molecules. This
underscores the necessity for more robust and versatile predictive models that can adapt to the broad spectrum
of organic chemistry’s structural variability.

Cao et al. [12] developed an automated workflow that predicts the regioselectivity of C−H activations using
extensive DFT calculations on a HPC-cluster using up to 600 nodes each containing 16 Intel Xeon E5-2670
cores. They considered two possible reaction mechanisms, an electrophilic aromatic substitution and a proton
abstraction mechanism via concerted metallation deprotonation (CMD), where they calculated the relative
energies of the intermediates. Using their workflow, they were able to predict the regioselectivity for 18 tested
substrates correctly. The main limitation of this work is the computational cost and usability since several DFT
calculations need to be run on an HPC cluster in order to make a prediction.

In this study, we introduce a quantum mechanics-based computational workflow specifically developed to
predict regioselectivity in C−H functionalization reactions involving directing groups following the CMD mech-
anism. This workflow employs (semi-empirical) quantum calculations in a hierarchical way to predict regiose-
lective outcomes, delivering results within seconds to minutes. For substrates that are expected to follow the
electrophilic aromatic substitution mechanism, we refer the reader to the work done by Kromann et al. [13].
Using RegioSQM the regioselectivity of reactions following the electrophilic aromatic substitution mechanism
can be predicted within seconds to minuts using a web-interface or a python module.[14]

Similarly to previous works, we focus on the CMD step, the first and commonly the rate-determining step
in C−H activation, and consider the prototypical Pd(OAc)2 catalyst. Using a selective approach, we calculate
the relative energies of all relevant palladacycle intermediates at the QM level. We determine the relevant
reaction sites either by a set of SMART patterns or by screening all possible reaction sites using the Merck
molecular force field calculated ring strain energy, for details see subsection 3.3. This restriction allows us to to
rapidly predict the of regioselectivity for C−H-activations via the CMD mechanism within seconds to minutes
on standard consumer hardware. The workflow accommodates various directing groups (DGs) and reaction
conditions and can be extended to include not only ortho-activations, as detailed in section 3.

This development holds the potential to significantly accelerate the discovery and optimization of new syn-
thetic routes, thereby impacting material science and medicinal chemistry by facilitating the synthesis of novel
compounds with high precision and efficiency.

2. Computational Methodology
The predictive QM-based model calculates which potential reaction site it is most likely to react based on
its corresponding activation energy. The site with the lowest activation energy is expected to correspond
to the experimentally observed reaction site. Instead of locating the structure of the transition state, the
preceding palladacycle intermediate structure is generated and optimized, as shown in Figure 1. Following the
Bell–Evans–Polanyi principle, the relative energy of the intermediate should correlate linearly with the energy
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Figure 1. Overview of the predictive workflow: For the shown substrate on the left, three unique activation sites are possible (labeled
Ha−c) with two directing groups, a pyridine (blue) and an oxime-ether (red). The latter has two potentially directing atoms, nitrogen
and oxygen. The transition state structures of the rate-determining concerted metallation deprotonation (CMD) step are shown in the
left column. In this work, we generate the structures of the proceeding palladacycle intermediate, shown in the right column. For each
structure, we perform a conformer search followed by a low level optimization (GFN1-xTB) followed by an optional higher level single-point
calculation (r2SCAN-3c). The lowest energy complex is selected and the corresponding reaction site is considered to be most likely to be
activated.

of the transition state.[10, 11] Using this approximation the generation and optimization of structures simplifies
greatly. In an automized workflow, all unique and possible combinations of C−H bonds and ortho-directing
groups (heteroatom with lone pair) in the substrate are found following this procedure:

1. All combinations of C−H bonds from sp2 hybridized C-atoms and directing groups (heteroatom with lone
pair) in the substrate, which are between 2 and 5 bonds apart from each other, are detected with SMART
patterns. These patterns are general enough to cover all directing groups that were encountered in the
literature sample from Chen et al. [4]

2. Next, we identify all relevant palladacycle complexes for the C−H activation using ortho-directing groups.
For each match, a complex with the substrate and Pd is formed, here the Pd atom is bonded to the
carbon atom of the reaction site and the hetero atom of the directing group, as shown in Figure 2. A 2D
embedding for the complex is generated with RDKit, here all atoms are within a plane, this embedding is
usually used only for depictions. We measure the internal bond angles between bonds of the ring involving
Pd, the heteroatom of the directing group, and the carbon atom of the reaction site in the 2D embedding.
If any angle deviates more than 10% from the ideal 2D angle of a ring with Natoms atoms, the match
is removed. The ideal angle is calculated as (Natoms−2)·180◦

Natoms
. This allows us to filter out complexes with

strained geometries, such as the one shown on the left in Figure 2, using a simple 2D approach.
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Figure 2. Example of a combination of C−H bond and DG that is discarded due to the angle constraint on the left and a combination
that is considered valid on the right

3. Duplicate matches are removed when the reaction site is symmetric. Symmetry equivalent sites are
determined by comparison of the canonical SMILES for the substrate with an explicit hydrogen atom
added to the corresponding reaction site. When two SMILES with an added explicit hydrogen at different
atom indices are identical, then the corresponding atoms are symmetry equivalent.

Figure 3. Example of combinations of C−H bonds and DGs that are considered identical due to symmetry of the C−H bond

4. Duplicates are removed when the directing group is symmetric. Again, symmetry equivalent atoms are
determined by comparison of SMILES strings, here a bond to a dummy atom is added to the heteroatom
of the directing group and the canonical SMILES representation is compared to all other SMILES with
an added dummy atom.

Figure 4. Example of combinations of C−H bonds and DGs that are considered identical due to symmetry of the DG

5. Duplicates are removed when the directing group has equivalent resonance forms, as shown in Figure 5.
The equivalent heteroatoms are detected using SMARTS patterns for nitro- and carboxylate-groups.

Figure 5. Example of combinations of C−H bonds and DGs that are considered identical due to resonance structures of the DG
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For the remaining combinations of C−H bonds and directing groups, the corresponding intermediate substrate-
Pd(OAc)-complex is generated. For each complex 3Nrot + 3 conformers are generated with ETKDG, here Nrot
is the number of rotatable bonds in the substrate.[15, 16] The conformers are clustered based on their RMSD
with a cutoff of 1.0 Å and the conformer corresponding to the centroid of each cluster is retained. The re-
maining conformers of each complex are optimized using GFN1-xTB in the implicit solvent model ALPB with
parameters for CH2Cl2.[17, 18]

After each optimization, the geometry of the complex is analyzed to determine whether the connectivity has
changed. The determination of connectivity to the transition metal of the complex is difficult to determine
using either a radial distance cutoff or a cutoff on the overlap population of a Hueckel calculation, as shown in
Figure 6.

Figure 6. Example of challenges when determining the connectivity from a point cloud of atoms of transition metal complexes

Using the implementation of xyz2mol in RDKit with the flag useHueckel=True determines that both oxygen
atoms of the acetate, as well as the adjacent carbon atom, are forming a bond towards the transition metal. In
contrast, no bonds between the acetate moiety and the transition metal are found when using the radial distance
cutoff, when one would expect the two oxygen atoms to be connected to the transition metal. Therefore, the
connectivity of the complex before and after optimization is compared only for bonds not involving the transition
metal. Instead, the geometry of the four atoms adjacent to the transition metal (the two oxygen atoms from
the acetate moiety, the carbon atom from the reaction site, and the hetero atom from the directing group) is
analyzed without regard for connectivity. All four atoms have to lie within a plane after the optimization for
the optimization to be considered successful. This is determined by calculating the angle between the normal
vectors of the plane spanned by Pd, the reaction site and the hetero atom of the directing group and the plane
spanned by Pd and the two oxygen atoms of the acetate moiety. This angle has to be below 5◦ for the atoms
to be considered to be within a plane.

Once all calculations for all conformers of all complexes are completed, the complex with the overall lowest
energy conformer is selected and its corresponding reaction site is considered the most likely to react. All
complexes that have conformers within a defined energy threshold of the overall lowest energy conformer are
considered to correspond to potential reaction sites, for this study, we choose a threshold of 1 kcal/mol.

When several complexes with conformers within the energy threshold are found and the corresponding reaction
site differs between the complexes, we allow the user to refine the prediction by running r2SCAN-3c single-point
calculations on the lowest energy conformer of each complex within the energy threshold using ORCA.[19, 20]
This allows us to refine the predicted binding sites at a higher level of theory when this is required.

3. Results
In the following, we tested our method on the dataset from Tomberg et al. [9] as well as on a new dataset that
was curated from Reaxys.[21]

In the evaluation, we consider the three categories "correct", "semi-correct" and "incorrect". When the
experimentally observed reaction site is the only reaction site that is predicted within the energy cutoff, the
prediction is considered correct. When the experimentally observed reaction site is not the only reaction site
that is predicted within the energy cutoff, the prediction is considered semi-correct, since we can’t distinguish
beyond what is considered the chemical accuracy. When the experimentally observed reaction site is not one of
the predicted sites, the prediction is considered incorrect.
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3.1. Dataset from Tomberg et al.
We consider 142 molecules with their experimentally determined reaction site from Tomberg et al. [9], which
were originally curated by Chen et al. [4]. We are excluding cyclization reactions for which the regioselectivity
is not only determined by the activation energy to form the palladacycle intermediate but also by which site is
accessible for the intramolecular cyclization.

Using the previously described workflow, we were able to predict the experimentally observed reaction site
with 78% accuracy over the whole dataset when using no energy threshold, meaning that only the reaction site
corresponding to the lowest energy complex is predicted to be the reaction centre. In Figure 7A, the predictions,
correct (green) or wrong (red), are shown as a stacked bar chart for molecules with different numbers of potential
reaction sites. The expected number of correct predictions and the 95% confidence interval of a model that
guesses one of the potential reaction sites is shown as a black cross.

Figure 7. A: Distribution of correct (green) and wrong (red) predictions for molecules with two to five potential reaction sites, evaluated
with an energy threshold of 0.0 kcal/mol. The numbers inside the bar plot correspond to the fraction of each label out of the total number
of predictions. The expected performance of the null model with a 95% confidence interval is shown as a black cross. B: Distribution
of correct (green), semi-correct (yellow), and wrong (red) predictions for the same molecules, evaluated with an energy threshold of
1.0 kcal/mol

For molecules with only two potential reaction sites, the null model is expected to correctly predict the
reaction site for 30 out of 60 molecules. Our QM-based workflow can predict the correct reaction site for 54 out
of 60 molecules with two potential reaction sites which corresponds to 90% correct predictions and lies outside
of the confidence interval of the null model. Similarly, for molecules with three and four potential reaction sites,
the QM workflow predicts between 73-67% of reaction sites correctly, when we would expect the null model to
guess the correct reaction site with an accuracy of 33% and 25%. Notably, the QM workflow predicts the correct
reaction site for only four out of seven molecules with five potential reaction sites, which corresponds to 57%
accuracy. The three molecules with five potential reaction sites and wrong predictions are shown in Figure 8
with the experimentally observed reaction site in green and the predicted reaction site marked by a blue circle.
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Figure 8. Molecules with five potential reaction sites that are predicted wrong by the QM workflow

For molecule 1, we can see in the original paper from Yeung et al. [22] that the reaction proceeding the C−H
activation is an intramolecular cyclization between the C-atom marked in green and the C-atom marked by a
blue circle. This reaction was originally not marked as a cyclization reaction, which is why we did not remove
it from the dataset. Nevertheless, upon inspection, our QM workflow correctly predicts the reaction site(s) of
the intramolecular cyclization as it predicts one of the two reaction sites for the C−H activation.

The reaction site of molecule 2 from Dong et al. [23] can not be predicted correctly as the experimentally
observed reaction site is 1.7 kcal/mol higher in energy than the predicted site at the r2SCAN-3c level. This
would correspond to a ten times higher rate-constant of the reaction leading to the other regioisomer at the
reaction temperature of 90◦C. Experimentally, it is observed that the regioselective C−H activation happens on
the more electron rich aromatic ring with the methoxy substituent as opposed to the one with the alkoxycarbonyl
group. The wrong prediction here might indicate that the Bell–Evans–Polanyi relationship does not hold in this
case and one would need to calculate the activation energy to the actual transition states.

Molecule 3 from Jiang et al. [24] is another intramolecular cyclization reaction which was not labelled as such.
For such reactions, the regioselectivity is not only determined by the activation energy for the rate-determining
step but also by the proximity of an intramolecular reaction partner, here the secondary amine.

From this in-depth analysis, we conclude that our QM workflow only predicted the wrong reaction site for
one out of these three molecules investigated as the other "incorrect" predictions are due to a problem with the
underlying dataset.

Since we don’t assume that the energies obtained at the r2SCAN-3c(CPCM)//GFN1-xTB(ALPB) level are
accurate enough to separate regioisomers which are close in energy, we consider all reaction sites that are within
an empirically chosen threshold of 1 kcal/mol of the lowest energy reaction site as potential reaction sites. When
more than one reaction site is within this threshold, we label the prediction as "semi-correct". Depending on
the use case, the user might want to proceed with optimizing the structures of the relevant complexes at a
higher level of theory or perform a transition state search to calculate the activation energy.

With this threshold, we obtain 70% correct, 14.5% semi-correct and 14.5% wrong predictions over the whole
dataset. For 6 out of 17 molecules, all possible reaction sites are predicted as reaction sites within the threshold
as shown in Figure S6. This means that these predictions do not yield any information, but for the other cases,
the prediction rules out other potential reaction sites.

3.2. Dataset curated from Reaxys
From a query in Reaxys (see SI, subsection S1), we selected 10 C−H activation reactions with Pd(OAc)2 as
catalyst and multiple directing groups and/or symmetry unqeuivalent reaction sites. Using our QM workflow,
we were able to predict the regioselectivity of 9 out of 10 molecules (semi-)correctly. Five reaction sites were
predicted to be within 1 kcal/mol of another possible reaction site in the reactant and were therefore classified
as semi-correct, meaning we can not predict with our model which of the two regioisomers will be the main
product of the reaction. Refinement using r2SCAN-3c single-point calculations did not yield more accurate
predictions.

The 10 molecules with their experimentally observed main reaction site in green and all predicted reaction
sites within a 1 kcal/mol threshold are shown in Figure 9.
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Figure 9. Predictions of reaction sites within a 1 kcal/mol threshold for 10 molecules are marked with a blue circle, and experimentally
observed reaction sites are highlighted by a green circle.

3.3. Beyond ortho-directing groups
The presented workflow can be used to include the influence of all directing groups, not only ortho-directing
groups. Here we extend the application of the workflow to a substrate with a meta-directing group. The
substrate was investigated by Achar et al. [25] and the reaction site was determined by the authors to be the H2

with a meta:other regioselectivity of up to 25:1 and a yield up to 85%. In order to extend our approach to meta-
/para- and remote-directing groups, we use a different approach to identify relevant palladacycle complexes as
in points 1. and 2. outlined in section 2. Instead of using SMARTs patterns to detect pairs of ortho-directing
groups and reaction sites, we detect all potential reaction sites by detecting all C−H bonds at sp2 hybridized
carbon atoms as well as all heteroatoms with lone pairs separately and remove symmetry equivalent sites. Then,
we obtain all potential pairs of C−H bonds and heteroatoms as the Cartesian product of the two sets. Next,
we filter out all pairs for which no reasonable 3D geometry can be generated. To determine whether or not a
pair of C−H bond and heteroatom can form a reasonable 3D geometry, we generate a 3D geometry of a dummy
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Figure 10. Substrate with six potential unique reaction sites for C−H functionalization. The experimentally determined reaction site is
marked by a green circle.

"palladacycle"-intermediate between the substrate and a CCl2 fragment using ETKDG. The CCl2 fragment is
used to mimic the Pd(OAc)2 catalyst, which can’t be used since the following step relies on the Merck molecular
force field (MMFF, version MMFF94s), which is not parameterized for transition metals like Pd.[26, 27] If the
embedding fails, the corresponding pair is removed. When a 3D geometry could be obtained, we optimized the
structure using the MMFF94s. Next, we calculate the sum of (out-of-plane) angle terms and torsion terms of
the MMFF94s forcefield for the optimized structure. The geometry is considered reasonable if the sum of the
angle and torsion terms is below a threshold of 10 kcal/mol. From here on, we proceed with the workflow as
described in section 2.

For the here considered substrate, this procedure reduces the number of complexes to optimize with GFN1-
xTB from 30 to 9, the complexes are shown in Figure S1. This procedure involves several force-field opti-
mizations, which increase the overall wall time by ≈ 10 seconds for the here shown substrate compared to the
previously reported approach. From here on, we follow the same procedure as for the ortho-directing groups
and correctly predict the reaction site H2, which is the only one within the 1 kcal/mol energy threshold at the
GFN1-xTB level.

4. Discussion
Our study demonstrates that the Quantum Mechanics (QM) workflow reliably predicts the reaction site as ob-
served experimentally with 70% correct predictions and 14.5% semi-correct predictions on the dataset provided
by Tomberg et al. [9]. Analysis of molecules where the reaction site was incorrectly predicted, particularly those
with five potential sites, revealed that there might be issues with the underlying data in some cases. When only
considering the lowest energy reaction site predicted by our workflow, we were able to achieve an accuracy of
78% on the same dataset. In contrast, a basic model making random guesses would achieve only 38% accuracy,
within a 95% confidence interval from 36 to 40%, underscoring our workflow’s superior performance.

Additionally, we applied the workflow to a new set of 10 molecules, achieving a 90% accuracy rate in predicting
C−H activation sites. We also explored the tool’s capability to predict regioselectivity in C−H activation with
various directing groups, not limited to ortho-directing groups. By identifying potential reaction site-directing
group pairs using an approach based on MMFF energies instead of simple SMARTS patterns, we illustrated
the workflow’s effectiveness with a case study from existing literature, accurately predicting the reaction site in
a meta-directing C−H activation scenario.

In this study, we rely on several key assumptions that we will outline below. Firstly, we focus exclusively
on the regioselective outcomes of reactions using the concerted metallation deprotonation (CMD) mechanism
between the catalyst and the substrate. It is important to note that this approach does not allow us to predict
the occurrence of the reaction, its yield, or confirm if the reaction might proceed via a different mechanism
influenced by the substrate, catalyst, and ligands.

Secondly, we assume that the reaction is controlled kinetically, where the activation energy required to form the
palladacycle intermediate determines the C−H activation regioselectivity. This assumption holds true primarily
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when the reaction is irreversible, and the formation of the intermediate is the rate-limiting step. While previous
studies support this assumption, it may not always apply universally across various substrates or catalysts.[8]

Thirdly, we consider the linear energy relationship between the intermediate and its preceding transition
state as per the Bell–Evans–Polanyi principle. However, this relationship may not provide sufficient accuracy
for making predictions when the energy difference between reaction sites is less than 1 kcal/mol. To enhance
the reliability of our predictions, ideally, we would automate the process of locating transition state structures.

To enable rapid predictions of C−H activation sites regioselectivity, ranging from seconds to minutes on
consumer hardware, we employ semi-empirical optimizations and, when necessary, DFT single-point calculations
to reduce computational costs. In our analysis using the dataset from Tomberg et al. [9], we recorded median
and mean prediction times of 2:02 minutes and 2:21 minutes, respectively, using four Intel Xeon E5-2643 v3 (3.4
GHz) CPUs. These times were significantly reduced to 22 and 34 seconds when exclusively using semi-empirical
optimizations. The workflow benefits from parallelized QM programs and routines, demonstrating nearly linear
reductions in wall time as the number of cores increases, tested up to 16 cores. However, for greater accuracy,
particularly at reaction sites with energy differences less than 1 kcal/mol, DFT optimizations are recommended,
as they may necessitate higher-level (re-)optimization for precise predictions.

The primary strength of the quantum mechanics (QM) workflow lies in its flexibility, which facilitates cus-
tomization through various means, such as simulating different solvent effects or examining the impact of
different catalysts and ligands, extending beyond Pd(OAc)2. Additionally, variations reaction conditions, like
conducting the reaction under acidic or basic environments, is possible by adjustments to the substrate-SMILES.
Protonation states of substrates can be predicted using either machine learning models[28] or QM calcula-
tions[29].

This developed workflow is designed to be accessible not only to computational chemists but also to those
without a computational background through multiple interfaces, including a command line interface, a web-
based user interface, an API, and a stand-alone Python module for integration into more complex systems. For
example, this workflow can be used in further molecular discovery and optimization to design specific directing
groups that can facilitate the functionalization of remote C−H bonds, like meta- or para-functionalization.
This can be done by using the workflow in the scoring function of a genetic algorithm, for example. Here,
the absolute directing strength towards a specific site can be used to score different directing groups to each
other and have the genetic algorithm design molecules that increase the directing strength of a directing group
towards a specific site.
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S1. Supporting Information

S1. Reaxys Query for C−H activation
The query on Reaxys consists of the following steps:

1. Seach for "C−H activation" which yields 553472 reactions

2. Filter by catalyst "Pd(OAc)2" which yields 705 reactions

3. Filter by reaction class "C-C bond formation" which yields 17 reactions

4. Selecting the one reaction that is actually a Pd-catalyzed C−H activation with a directing group and
search for similar reactions with criterion "wide" which yields 37105 reactions

5. Filter by catalyst "Pd(OAc)2" which yields 1955 reactions

6. Filter by reaction class "C-C bond formation" and the subcategories "Ar-H to Ar-CH2-", "ArH to Ar-
C(=)-", "ArH + -C(=)-X to Ar-C(=)-", "ArH + -C(=)-O- to Ar-C(=)-" and "ArH + -CH2-O- to Ar-
CH2-" which yields 330 reactions

7. Out of the 330 reactions we chose all examples that had several potential reaction sites and/or directing
groups which yields 10 reactions
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S2. All potential complexes considered for C−H activation of a specific substrate

Figure S1. All potential palladacylce intermediates for a substrate from Achar et al. [1]. Via screening of the MMFFs energy contribution
from the angle related terms, unreasonable combinations of C−H site and directing groups are discarded.
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S3. Correct regioselectivity prediction for the Dataset from Tomberg et al. [2]/Chen
et al. [3]

Figure S2. (1/4) Correct regioselectivity predictions for molecules from Tomberg et al. [2]/Chen et al. [3]. The predicted reaction site
is marked by a blue circle, the experimentally observed reaction site is highlighted with a green circle.
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Figure S3. (2/4) Correct regioselectivity predictions for molecules from Tomberg et al. [2]/Chen et al. [3]. The predicted reaction site
is marked by a blue circle, the experimentally observed reaction site is highlighted with a green circle.
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Figure S4. (3/4) Correct regioselectivity predictions for molecules from Tomberg et al. [2]/Chen et al. [3]. The predicted reaction site
is marked by a blue circle, the experimentally observed reaction site is highlighted with a green circle.
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Figure S5. (4/4) Correct regioselectivity predictions for molecules from Tomberg et al. [2]/Chen et al. [3]. The predicted reaction site
is marked by a blue circle, the experimentally observed reaction site is highlighted with a green circle.
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S4. Semi-correct regioselectivity prediction for the Dataset from Tomberg et al.
[2]/Chen et al. [3]

Figure S6. Semi-correct regioselectivity predictions for molecules from Tomberg et al. [2]/Chen et al. [3]. Predicted reaction sites are
marked by a blue circle, the experimentally observed reaction site is highlighted with a green circle.
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S5. Wrong regioselectivity prediction for the Dataset from Tomberg et al. [2]/Chen
et al. [3]

Figure S7. Wrong regioselectivity predictions for molecules from Tomberg et al. [2]/Chen et al. [3]. The predicted reaction site is marked
by a blue circle, the experimentally observed reaction site is highlighted with a green circle.
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S6. Web-based interface

Figure S8. Overview of the regioselectivity prediction user interface.
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Figure S9. Overview of the regioselectivity prediction using the web-based user interface
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7
D I S C U S S I O N A N D O U T L O O K

We have developed a user-friendly, fast, and accurate workflow to pre-
dict the regioselectivity of directed C−H activation reactions. Like all
machine learning (ML) or quantum mechanical (QM) prediction mod-
els, accurate results depend on posing the correct question. Specifi-
cally, our model determines the most likely site for C−H activation
on a substrate according to a given mechanism. It does not, however,
predict whether a reaction will occur or which reaction mechanism
will be followed when a substrate and catalyst are combined experi-
mentally. Instead, it identifies where a specific reaction is most likely
to take place. Although this limits certain applications, the workflow
holds significant potential for organic chemists, particularly when
used in conjunction with previously developed tools like RegioSQM
and other regioselectivity prediction models.

Looking ahead, we aim to create an integrated workflow that in-
puts a substrate and then labels and ranks potential reaction sites
according to specific mechanisms. This feature will be especially ben-
eficial for late-stage functionalization.

Take, for example, the pharmaceutical Clopidogrel, which reduces
the risk of blood clots and presents multiple potential reaction sites
on its SP2 and SP3 carbon atoms, as shown in Figure 7.1. Many reac-

Figure 7.1: Structure of the drug Clopidogrel with potential reaction sites la-
belled by potential reaction mechanisms, from Cernak et al. [47]

tion mechanisms and principles are available, requiring careful selec-
tion based on the desired reaction site. Identifying the most effective
method for modifying the existing molecular scaffold at a specific
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site is essential to achieve efficient conversion. This integrated ap-
proach will help streamline the decision-making process in complex
synthetic tasks, making it a valuable asset in organic synthesis.



8
G E N E R A L C O N C L U S I O N S A N D O U T L O O K

Throughout this thesis, I have explored the optimization of catalysts
using QM calculations and the prediction of regioselectivity in catal-
ysed reactions. The research presented has expanded our toolkit for
catalyst optimization, introducing innovative techniques for advanc-
ing catalyst design and predicting regioselective reaction outcomes.

One of the most significant achievements of this research was the
optimization of an organic catalyst, which led to an almost eight-
fold increase in reaction rates. Here, we explored chemical space be-
yond predefined fragment libraries, setting our approach apart from
conventional evolutionary strategies in catalyst design.[8–13] Our ex-
perimentally verified improvement exemplifies the practical utility of
computational models in real-world applications and highlights the
potential of computational approaches to enhance catalytic processes
substantially.

Despite these successes, several challenges remain in broadening
the applicability and accuracy of these computational tools. While
we have shown that computational methods can accurately repro-
duce experimental reactivity trends in a specific reaction, we are far
from having a general method for quantifying a catalyst’s activity.
This would ideally include automating the calculation of the reac-
tion profile of any arbitrary reaction and identifying relevant side
reactions. We have shown in Paper 4 that a network exploration ap-
proach can identify the relevant reaction mechanism and locate the
relevant transition states (TSs) for an organic catalytic system. Yet, this
approach has not been tested for TM-based catalysts, which might
present additional challenges with regard to the accuracy of the un-
derlying SQM method.

Furthermore, the incorporation of relevant chemical constraints
such as stability and synthesizability needs further consideration.
This aspect is particularly critical for TM-based catalysts, where the
practical synthesis of the designed catalysts remains a hurdle. We
have successfully used heuristics, which were originally developed
for drug-like molecules. More tailored solutions for catalysts, also
TM-based ones, will improve the chemical exploration process in
evolutionary algorithms.

Looking forward, the methodologies developed in this thesis lay
the groundwork for more sophisticated, automated workflows that
integrate both catalyst activity optimization and selectivity predic-
tion. I am optimistic that the continued refinement of these computa-
tional tools will not only deepen our understanding of catalytic pro-
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cesses but also lead to significant advancements in the efficiency and
sustainability of chemical production. The real-world impact of these
technologies has the potential to transform industries, streamline pro-
duction methods, and lead to the development of more effective and
environmentally friendly catalysts.

By embracing these challenges, continuing to innovate and taking
inspiration from nature, we can further the role of computational
chemistry in catalyst design and help push the boundaries of what is
possible in chemical synthesis and beyond.
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Catalysis

Toward De Novo Catalyst Discovery: Fast Identification of New
Catalyst Candidates for Alcohol-Mediated Morita–Baylis–Hillman
Reactions**

Maria H. Rasmussen,* Julius Seumer, and Jan H. Jensen*

Abstract: Recently we have demonstrated how a genetic algorithm (GA) starting from random tertiary amines can be
used to discover a new and efficient catalyst for the alcohol-mediated Morita–Baylis–Hillman (MBH) reaction. In
particular, the discovered catalyst was shown experimentally to be eight times more active than DABCO, commonly
used to catalyze the MBH reaction. This represents a breakthrough in using generative models for catalyst optimization.
However, the GA procedure, and hence discovery, relied on two important pieces of information; 1) the knowledge that
tertiary amines catalyze the reaction and 2) the mechanism and reaction profile for the catalyzed reaction, in particular
the transition state structure of the rate-determining step. Thus, truly de novo catalyst discovery must include these
steps. Here we present such a method for discovering catalyst candidates for a specific reaction while simultaneously
proposing a mechanism for the catalyzed reaction. We show that tertiary amines and phosphines are potential catalysts
for the MBH reaction by screening 11 molecular templates representing common functional groups. The method relies
on an automated reaction discovery workflow using meta-dynamics calculations. Combining this method for catalyst
candidate discovery with our GA-based catalyst optimization method results in an algorithm for truly de novo catalyst
discovery.

Introduction

The search for new catalysts is instrumental in addressing
some of humanities current challenges. The right catalyst in
principle holds the key to selective and sustainable produc-
tion of target molecules; an important task in all areas of
chemical research and industry. However, several factors
make catalyst discovery challenging, slow and expensive.
Detailed knowledge about the reaction network including
side reactions and solvent reactions is needed and these
steps still rely heavily on chemical intuition and experimen-
tation.

So far, the main contribution of computational chemistry
methods to catalyst discovery has been in establishing a
mechanism for catalytic cycles of known catalysts. Current
state of the art within computationally driven catalyst
discovery is generally focused on improving known catalysts
based on the catalytic mechanism. One approach is to screen
large libraries of molecules that are structurally similar to
the known catalyst. For example Nandy et al. combined

machine learning (ML) and density functional theory (DFT)
methods to screen a library of 16 million candidates for the
catalysis of the methane to methanol oxidation.[1] Another
recent example of computationally driven catalyst optimiza-
tion from Cramer et al. used mechanistic information of
three intertwined catalytic cycles for CO2 conversion to
formic acid, formaldehyde 1 and methanol to generate
theoretically founded rules for predicting catalytic activity
and selectivity.[2] The theoretical framework was used to
predict a catalyst that optimizes selectivity towards
formaldehyde, which was verified experimentally with an
81% yield. Das et al. mapped catalytic activity in CO2

hydrogenation to acid/base properties of frustrated Lewis
pairs to predict a specific combination of a Lewis acid and a
Lewis base from �4000 candidate pairs which was exper-
imentally verified to catalyze the reaction.[3]

An alternative to the screening approach is to use
generative models to propose new catalyst candidates. The
advantage of this approach is that one is not limited to
discovering catalyst candidates already present in a prede-
fined library. One such approach; a graph-based genetic
algorithm (GA), was recently employed by our group to
discover a new catalyst with a previously untested structural
motif for the alcohol-mediated Morita–Baylis–Hillman
(MBH) reaction.[4,5] The proposed catalyst candidate was
experimentally verified to be eight times more active than
1,4-diazabicyclo[2.2.2]octane (DABCO), a commonly used
catalyst for the reaction.[5]

Vital to these important findings is mechanistic insight
into the relevant catalytic cycle. Typically, these catalytic
cycles are generated by a combination of experimental
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work, expert knowledge and quantum chemical calculations,
making this step a laborious undertaking. Moreover, some-
one needs to actually have the idea of testing a specific
molecular moiety as a catalyst for a reaction. Thus, a method
for truly de novo catalyst discovery must also include a
solution for this part of the discovery process.

Since catalytic activity can be extracted from a reaction
network including the reactants and potential catalyst
candidate, many groups (including us) have worked to
develop methods for automated reaction discovery for the
generation and exploration of reaction networks.[6–18] This in
principle provides a way of discovering completely novel
catalysts for reactions with no prior knowledge of catalytic
activity.

Some proof-of-principle papers have been presented
using these methods to discover the mechanism of a catalytic
cycle. Specifically the cobalt-catalyzed alkene hydroformyla-
tion has been a popular example, since the system consists
of only 18 atoms.[8,10,19–22] A more widespread application of
these reaction discovery methods is mostly hindered by the
vast computational cost of freely growing several reaction
networks. In order to move from hypothesis-testing to
discovery, the methods need to be efficient enough that
screening of different potential catalyst candidates is
possible.

Our method for exploring reaction networks is based on
the meta-molecular dynamics (meta-MD) approach pro-
posed by Grimme.[23] As we have demonstrated previously,
an automated workflow that tracks the reactions occurring
during the meta-MD simulations can be used as an efficient
way of predicting which low-barrier (defined as <30 kcal/

mol) reactions are possible.[11,12] The combination of using a
method that focuses on low-barrier reactions while relying
on a fast semi-empirical quantum chemistry method (GFN2-
xTB)[24] means that we can grow reaction networks quite fast
even for larger molecular systems, making screening applica-
tions possible.

In this work, we present a method for discovering that a
certain catalyst-template such as a tertiary amine can be
used to catalyze a certain reaction such as the MBH
reaction. We build reaction networks for the reactants of the
MBH reaction with 11 different catalyst-templates and use
them to detect the presence/absence of catalytic activity. As
part of the method we also map out a proposed mechanism
for the catalyzed reaction. We demonstrate the method by
re-discovering tertiary amines and phosphines as catalysts
for the MBH reaction. From the found reaction profile we
extract a transition state (TS) template for the ratedetermin-
ing step. With the TS-template available, the genetic
algorithm (GA) applied by Seumer et al. can be used to
optimize the catalytic activity. This represents an end-to-end
approach for de novo catalyst discovery starting from no
prior knowledge about how a reaction can be catalyzed and
ending with a range of possible catalysts optimized for said
reaction (Figure 1).

Within drug discovery, two of the crucial steps are lead
identification and lead optimization. Lead identification is
the task of finding a compound that is active against a
specific drug target. Once a lead compound is identified,
lead optimization represents the process of making struc-
tural changes that improves activity and selectivity while
reducing toxicity and other unwanted side effects. The

Figure 1. Overview of the proposed method to discover new catalysts: (a) We grow a reaction network for each of the possible catalyst templates
(Ci) and look for catalytic activity in each reaction network. The reactant system (R) reacts with the catalyst template (Ci) with the possibility to
form several intermediates (Ii) before reaching a product (P) with the catalyst template regenerated. Potential side products (SP) are also identified.
Solvent (S) mediated hydrogen transfer reactions are also included in the procedure. (b) For catalyst templates exhibiting catalytic activity, we
extract the mechanism of the reaction and calculate the full reaction profile, considering possible side-reactions. (c) Finally the catalyst template
and reaction mechanism are used as input for a genetic algorithm optimization resulting in new catalyst candidates.
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analogy to catalyst discovery is clear and while current state-
of-the-art computationally driven catalyst discovery has
been focused on catalyst optimization (i.e. lead optimiza-
tion), this work represents a step forward in filling in the gap
for lead identification.

Results and Discussion

To test the meta-MD based reaction discovery method
described above we set out to rediscover tertiary amines and
phosphines as catalysts for the MBH reaction. The MBH
reaction is represented by the reaction of methyl acrylate
(MA) with p-nitrobenzaldehyde (pNBA) following Seumer
et al.[5] The task is then to find a catalyst template that can
catalyze the reaction between MA and pNBA.

In the Supporting Information (section S1) we describe
the iterative method based on meta-MD calculations used
for growing the reaction networks. In short we find possible
reactions by tracking bond changes during the meta-MD
runs. From the intermediates of these reactions, intermedi-
ates formed from solvent mediated proton transfer reactions
(tautomers) are added to the network. Note that in this
work we choose not to screen the found reactions based on
barriers but only reaction energies. These choices are
possible since the number of intermediates generated by our
reaction discovery procedure is low enough that we can
grow the reaction network quite a bit with screening based
only on reaction free energies (in this case three iterations
of step 1–4 in the Supporting Information, section S1) before
doing another iteration would become computationally
unfeasible (months on our local cluster). Subsequently we
can define the parts of the reaction networks found that
seem most interesting. In this case the application is to look
for potential catalysts, therefore we look for places in the
reaction network where the catalyst is regenerated. Mean-
while the reaction energy for the catalyzed reaction should
not be very endothermic, the threshold will depend on the
accuracy of the DFT method used for calculating the
reaction energies.

To demonstrate the rediscovery process, we initially
provide a list of eight possible catalyst templates (Round 1),
for which reaction networks with the reactants (MA and
pNBA) are grown following step 1–4 in the Supporting

Information (section S1). Based on an analysis of the most
promising reaction networks grown in Round 1, three new
possible catalyst templates are tested (Round 2).

We build reaction networks for eight possible templates
(Figure 2, Round 1) with a variety of functionality. In
particular, we include several different kinds of nucleophiles;
ethene (representing a double bond), hydroxide (nucleo-
phile and strong base), ammonia (nucleophile and weak
base) and phosphine. We also include entries that act as
acids; the hydronium ion (strong acid, conjugate base weak
nucleophile), hydrogen sulfide (weak acid, conjugate base
strong nucleophile) and formic acid (representing a carbox-
ylic acid). Formaldehyde is included as an example of an
electrophile.

In the first step of generating reaction networks for the
eight template structures in Figure 2, we include MA and
each of the catalyst templates in the meta-MD run. Before
doing another step of the reaction discovery workflow, we
add pNBA to the reaction mixture. Since we only consider
elementary reactions between two molecules, in case more
than two molecules are present in an intermediate, we only
search for reactions between the two largest molecules.
Note that in an application that is not rediscovery, one
would also grow reaction networks starting from pNBA+

catalyst template and later adding MA. This can be expected
to roughly increase the computational cost with a factor of
two.

The eight reaction networks vary a lot in size after three
iterations of the procedure. For formic acid (C8), the
network consists of only 14 intermediates (Figure S3a) while
for phosphine (C5) the network consists of 298 intermedi-
ates (Figure S3b). For some of the catalyst templates (C3,
C5 and C6), the inclusion of tautomers adds a vast number
of new intermediates; notice the number of yellow edges
(proton transfer reactions) for phosphine (Figure S3b).
Since we start the reaction discovery procedure for each
intermediate, more intermediates found means a higher
computational cost of growing the networks.

Of the eight catalyst templates tested, only the reaction
network for ammonia (C3) shows clear signs of catalytic
activity, defined by the presence of a node with the catalyst
regenerated and reaction free energy <10 kcal/mol. For the
remaining seven reaction networks, some show no inter-
mediate/product with the template regenerated (C2, C6 and

Figure 2. The 11 templates tested as potential starting points for catalyst optimization of the MBH reaction.
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C7) while some have 1–3 intermediates with the catalyst
regenerated but all with reaction Gibbs free energies
>10 kcal/mol (C1, C4, C5 and C8). Phosphine (C5) is thus
not recognized as a potential catalyst from the reaction
network grown after three iterations. Below, we will analyze
the behavior of phosphine in a bit more detail by comparing
with the reaction network found for ammonia.

For ammonia, the primary reaction path found with
meta-MD as the first step is nucleophilic attack at the β-
carbon of MA to form intermediate 13 (Figure 3a). Another
major reaction is transfer of a proton from ammonia to
oxygen simultaneously with the nucleophilic attack forming

intermediate 16. For phosphine, we see another primary
reaction path for the first step of meta-MD generated
products which is the addition of phoshine to the double
bond forming intermediate 12 (Figure 3b). While the second
most observed reaction is nucleophilic attack of phosphine
to the β-carbon of MA forming intermediate 25, the Gibbs
free energy at 27 kcal/mol is much higher and in fact very
close to our cutoff of 30 kcal/mol. In ammonia’s case we do
find the next step of the MBH reaction when reacting
intermediate 13 with pNBA forming intermediate 209.
However, when trying to optimize this intermediate at the
DFT level, we observe a proton transfer between nitrogen

Figure 3. Highlighted reaction paths towards the MBH product discussed in the manuscript for (a) C3: ammonia, (b) C5: phoshine, (c) C9: TMA
and (d) C11: TMP. The intermediate energies are Gibbs free energies relative to the individual reactant molecules at the B3LYP-D3/6-31+G(d,p)
level of theory following Seumer et al.[5] (details in the Supporting Information, section S1). Note that bold integers are merely intermediate labels.
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and oxygen forming intermediate 138 (Figure 3a). Inter-
mediate 430 is found within the same iteration as a tautomer
to intermediate 138. For phosphine on the other hand we
observe another intermediate where a five-membered ring is
formed from phosphor and oxygen binding (intermediate
151) which is possible due to phosphors ability to form 5
bonds. We do find the expected MBH intermediate (inter-
mediate 371) in the next meta-MD iteration and with it
intermediate 1752 from a proton transfer reaction which is
the equivalent to intermediate 430 for ammonia. Thus, the
reason we are not observing the MBH product for
phosphine is that the extra intermediate observed on the
path (intermediate 151) means that it would take another,
fourth, iteration of our reaction discovery method to get
there. In the Supporting Information (section S2) we
provide an analysis of the remaining reaction networks of
Round 1; in particular their similarities and deviations to the
path observed for ammonia.

Based on the initial analysis of reaction networks for the
eight potential catalyst candidates (Figure 2, red box)
ammonia is the most promising being the only candidate
that shows catalytic activity after three iterations of the
reaction discovery procedure. For both ammonia and

phosphine we see that the possibility of a proton transfer
from the nitrogen/phosphor atom creates a vast amount of
reaction channels (Figures S4 and S3b). A way of hindering
those reactions would be to exchange the hydrogens in
ammonia and phosphine with methyl groups forming
trimethylamine (TMA) and trimethylphosphine (TMP),
respectively. For completeness, we also try dimethyl sulfide
(DMS) formed by changing the hydrogens in hydrogen
sulfide to methyl groups. Thus, in the second round of
testing possible catalyst templates, we include TMA (C9),
DMS (C10) and TMP (C11) (Figure 2, Round 2).

Figure 4 shows the reaction network grown for TMA
(C9) after three iterations of the meta-MD procedure.
Importantly, the MBH reaction is discovered as a four-step
reaction (highlighted in green). From the initial reactant
system (TMA+MA, intermediate 76 in the reaction net-
work), the only elementary reaction found with meta-MD is
the attack of TMA on the β-carbon (resulting in intermedi-
ate 77), which is indeed the first step of the MBH reaction.
From this point we observe four different reaction paths, all
involving a nucleophilic attack of the enolate anion. Attack
at the carbonyl carbon of pNBA results in the second
intermediate of the MBH reaction (intermediate 166). For

Figure 4. The reaction network grown for TMA (C9). Red arrows represent reactions found with meta-MD, while orange arrows represent the
proton-transfer reactions described in step 2 (Supporting Information, section S1). The transparency of the red arrows indicate how many times a
reaction is found in the meta-MD simulations. A fully colored arrow is found at least 30 times. Only reactions found more than five times in the
meta-MD simulations are included in the network. The MBH reaction path found as part of the network is highlighted in green.
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the additional three elementary reactions originating at
intermediate 77, the enolate anion attacks at either a
benzene carbon ortho to the nitro group (intermediate 216)
or at an oxygen of the nitro group (intermediate 150 and
intermediate 176). The third step of the MBH reaction is
found as a proton-transfer reaction from intermediate 166
(generating intermediate 446) and from here on, the only
reaction found by the meta-MD approach is the final step of
the MBH reaction to form the product (intermediate 552).

TMP (C11), the phosphor-equivalent to TMA, generally
behaves similarly with key features of the reaction networks
being identical (Figure S5). Importantly, the MBH reaction
path is also identified; intermediate 74!intermediate 75!
intermediate 178!intermediate 456!intermediate 558. The
reaction network for (C10) indicates no sign of catalytic
activity.

For both TMA (Figure 3c) and TMP (Figure 3d) we find
only a single elementary reaction for MA+TMA/TMP
which is indeed the expected first step of the MBH
mechanism (intermediates 77 and 75, respectively). This is
contrary to what we observed for ammonia and phosphine,
where competing paths were found already from the first
step. Also, the intermediate free energies are significantly
lower for TMA/TMP. We generally find far fewer reaction
paths for TMA and TMP compared to ammonia and
phosphine resulting in the much simpler reaction networks
(Figures 4 and S5). For both TMA and TMP we find the
expected MBH mechanism (Figures 3c and 3d). Without
considering any barriers but solely based on Gibbs free
energies of the intermediates, we would expect TMA and
TMP to be better starting points for catalyst optimization.
Here, we focus on TMA as a starting point for catalyst
optimization using a genetic algorithm as done in Ref. [5].

Having obtained a possible catalyst template (TMA) and
reaction mechanism from the reaction networks grown, we
need to (1) validate the mechanism by calculating transition
states (TSs) for all steps in the proposed mechanism and

(2) consider the side-reactions suggested by the reaction
network. In particular, having obtained a barrier for the
rate-determining step in (1), we can evaluate competing
reactions on their barrier heights being higher/lower than
the rate-determining step.

Finding TSs for testing possible mechanisms (typically
suggested by experimental chemists) is an important part of
computational chemistry. While many promising methods
for automating this process have been proposed in the last
couple of decades,[26–30] much work regarding finding TSs is
still done manually. For a non-screening application like this
one, where a mechanism is proposed and a handful of TSs
need to be found, there would likely be some degree of
manual adjustment/evaluation. Numerous computational
studies have demonstrated this kind of work for the MBH
mechanism.[31–33] The TS-structures for the TMA catalytic
cycle (steps highlighted with a full green arrow in Figure 4)
are based on the TS-structures found by Liu et al.[32] The full
reaction profile, with the proton transfer from intermediate
166 to intermediate 446 conducted by methanol, is shown in
Figure 5. The energies and barriers for equivalent steps
using DABCO as the catalyst are shown for comparison. As
expected, TMA is calculated to be a worse catalyst than
DABCO. With a calculated activation energy 1.3 kcal/mol
higher than DABCO, the reaction catalyzed by TMA is
expected to be roughly 9 times slower. The catalyst
templates chosen need to be rather generic in order to
reduce the number of templates to be investigated by
growing their reaction networks. Therefore, we generally do
not expect to find good catalysts among the templates.
Rather, we hope to find a starting point for further
optimization.

The activation energy for TMA is found to be 23.4 kcal/
mol. Side reactions having activation energies that are lower
than or close to this value must thus be considered. This can
be done by incorporating knowledge of side reactions in the
scoring function of the genetic algorithm i.e. a given catalyst

Figure 5. Calculated reaction profile for the mechanism shown in Figure 3c for TMA and DABCO. The TS structures are optimized at the B3LYP/
6-31+G(d,p)/SMD(methanol) level of theory using Gaussian 16.[25]
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is optimized to both lower the activation energy for the
target reaction while simultaneously raising it for side
reactions.

From the reaction network of TMA, we see that any side
reaction needs to go through intermediate 150, 176, 216 or
553 (Figure 4). The primary path to intermediates 150, 176
and 216 originates from intermediate 77 while intermediate
553 is formed from intermediate 166 (Figure 6). We find
neither new meta-MD nor proton-transfer reactions from
intermediate 216—only the back-reaction to intermediate 77
is observed. With a Gibbs free energy 14 kcal/mol higher
than the reactants, the system will also not get stuck here
meaning that this side-reaction is deemed unimportant.
Both intermediates 150 and 176 have high Gibbs free
energies close to the activation energy of the MBH reaction;
23 and 20 kcal/mol, respectively. However, if the barriers are
low enough they could act as “gateways” to products with
lower reaction energies than the MBH product (Figure 4).
Thus we use a previously published method for finding TS
guess structures based on the same kind of biasing potentials
used in the meta-MD to find TSs for the reaction between
intermediates 77 and 150 and between intermediates 77 and
176.[11,12,23,29] For the 77!176 reaction we find a barrier of
29 kcal/mol. When searching for the 77!150 TS, we instead
find the TS for the 176!150 reaction with a barrier of
25 kcal/mol. Looking at intermediates 150 and 177, it makes
sense that the 77!150 goes through intermediate 176. Thus,
we expect a 29 kcal/mol barrier for getting to either
intermediates. Compared to a barrier of 23 kcal/mol for the
MBH reaction we do not deem these side-reactions
important and ignore them in the GA scoring function.
Finally, intermediate 553 has a Gibbs free energy 24 kcal/
mol higher than the reactant system. Since the intermediate
Gibbs free energy is already higher than the MBH activation
energy, this side-reaction is also deemed unimportant.

In this case, no side-reactions of the network are deemed
important and we score the catalyst solely based on the
reactant to TS3 GFN2-xTB electronic energy barrier as
done in the original study.[5] The five GA searches done by
Seumer et al. are now repeated with the same starting
populations (100 generations, a population size of 100 and a
mutation rate of 50%, details can be found in Ref [5]). The
only difference is, that while the original study scored the
catalysts based on a GFN2-xTB TS template from a known
catalyst (DABCO) we score the catalysts based on a GFN2-
xTB TS template from the simple and generic catalyst
template, TMA. As the GA optimization has several
stochastic elements, we do not expect to find the exact same
final populations. However, molecules containing an azeti-
dine ring are still dominating the final populations and in
fact 20 of the catalysts are present in both this and the
original study (Figure S6). In fact the similarity between the
final populations (evaluated by the average Tanimoto
similarity for Morgan extended-connectivity fingerprints
with diameter 4 and length 1024)[34] between the five GA
runs of Seumer et al.[5] (0.34�0.04) is statistically identical
to the average similarity of the final populations from the
DABCO and TMA template, respectively (0.29�0.05). We
calculate the TS and barrier for the rate-determining step
(TS3) for three of them (m5, m6 and M10) at the DFT level
and find an activation energy �2 kcal/mol lower than
DABCO (�20 kcal/mol vs. 22.1 kcal/mol) for all of them.
The reductions are similar to what was found by Seumer
et al. for the two molecules calculated at the DFT level (1.7
and 2.4 kcal/mol).[5] For M10 we compute barriers for the
remaining steps in the reaction path and confirm that TS3
still corresponds to the rate-determining step (Figure 7).
This shows that the GA catalyst optimization procedure
proposed by Seumer et al. is not dependent on the
availability of an already known catalyst (e.g. DABCO).

Figure 6. Possibly relevant side reactions extracted from the TMA reaction network in Figure 4.
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Rather, one can get to catalysts performing equally well on
the DFT level starting from a bad catalyst (e.g. TMA).

Conclusion

Full de novo catalyst discovery requires both automated
lead identification and optimization. We have previously
shown that the latter step can be done efficiently using a
graph-based genetic algorithm, given the TS structure of the
rate determining step in the mechanism.[5] Here, we present
a method for the first step.

We use the meta-MD method developed by Grimme to
automatically determine reaction networks for possible
catalyst candidates.[11,23,29] From the reaction networks we
extract the presence/absence of catalytic activity as well as a
mechanism for the catalytic cycle. We find that the TS of the
rate determining step for the found catalyst candidate can
be used for catalyst optimization (lead optimization). None
of these steps are specific to the MBH reaction and the
method should be applicable to a wide range of reaction
types.

We demonstrate the method by using it to rediscover
tertiary amines and phosphines as catalysts for the MBH
reaction. Building reaction networks for 11 possible catalysts
candidates representing different functional groups (amines,
phosphines, sulfides, alkenes, acids, bases and carbonyl
groups), tertiary amines and phosphines clearly stand out as
the most promising catalyst candidates. Furthermore, the
reaction networks are used to extract information about
possible side reactions; in this case we identified no relevant
sidereactions that are competitive with the desired catalytic
mechanism. The tertiary amine template, TMA, identified
by the screening of possible catalyst candidates is used as a

starting point for the GA proposed by Seumer et al. and we
found that the optimized catalyst candidates performed
similarly to the experimentally validated M10 catalyst
suggested by Seumer et al. at the B3LYP/6-31+G(d,p) level
of theory with methanol modelled as a continuum solvent
using the SMD model.[5]

A method for catalyst candidate identification requires
that screening of possible candidates is practically possible,
meaning that growing the reaction networks must be fast.
We achieve this by focusing on screening intermediate
Gibbs free energies rather than searching for TSs. Further-
more, the meta-MD simulations are performed at the fast
semi-empirical level of theory GFN2-xTB.[24]

The combination of this method for catalyst candidate
discovery with the GA-based catalyst optimization method
by Seumer et al. results in an algorithm for truly de novo
catalyst discovery.

We note that the MBH catalytic cycle is in many ways an
ideal case for the proposed method. First of all, the family of
molecules catalyzing the reaction (tertiary amines and
phosphines) is quite simple in terms of functionality. One
can easily imagine reactions requiring a much more
complicated functionality of the catalyst. This affects the
size and nature of the library of possible catalyst candidates,
we need to test. It is very likely that some kind of iterative
procedure in terms of updating the library will be necessary
to implement in order to find something good enough that
the genetic algorithm can take over. Second, this catalytic
cycle is relatively simple (four steps in the mechanism) and
no additives, acids, bases etc. is needed. Clearly, testing
several conditions for each catalyst template will increase
the cost significantly. However, the cost is unlikely to
become prohibitive and even several of months of comput-

Figure 7. Calculated reaction profile for the MBH mechanism for TMA, DABCO and m10. The TSs are optimized at the B3LYP/6-31+G(d,p)/
SMD(methanol) level of theory using Gaussian 16.[25]
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ing is an acceptable investment of effort for discovering a
novel catalyst candidate.

Another thing to note is that organometallic catalysts
are very important in the field of catalysis. How this method
works for transition metal compounds is an important yet
still unanswered question that we will continue working on
providing an answer for.

Thus while this method by no means represents the final
word for method development within de novo catalyst
discovery, it is an important step in the right direction.
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