
Master Thesis

University of Bremen, Alfred Wegener Insitute

February 2023

Sea Ice Modelling in Python

Jan Philipp Gärtner

jan.gaertner@awi.de

Supervisor:

Dr. Martin Losch

Examiner:

Prof. Thomas Jung

Prof. Markus Jochum

1 Abstract

Sea ice has a significant impact on the exchange of heat and momentum between ocean

and atmosphere. For modelling the ocean in higher latitudes it is therefore important that

the development of sea ice is included in the model. Climate models are usually written in

Fortran due to their legacy and the good computational performance of Fortran. While

this has computational benefits, there are also some downsides to using Fortran when

compared to using Python code. The first one is its lower popularity among scientists

who are not or just starting to work in climate modeling which makes it more difficult

and time consuming to start researching with Fortran based models. The second one

is it being a low-level language and as such more cumbersome to read, maintain, and

develop than the high-level language Python. Häfner et al. (2018) presented the Python

based ocean model Veros (https://veros.readthedocs.io/en/latest/) that is a

translation of the Fortran backend of the ocean model PyOM2 (https://wiki.cen.uni

-hamburg.de/ifm/TO/pyOM2). By using the Python library JAX (Bradbury et al., 2018)

the performance of Veros was comparable to the original Fortran model (Häfner et al.,

2021). Veros does not yet include a sea ice component and is thus not suited for modeling

the ocean in higher latitudes. This work presents a model that is a Fortran to Python

translation of the sea ice component of the MITgcm (Marshall et al. (1997), Losch et al.

(2010), https://github.com/MITgcm/MITgcm, https://mitgcm.org/documentation/).

The goal is to couple it to Veros to extend its range of usability. For the dynamics, only

the elastic-viscous-plastic solver is implemented.

1

https://veros.readthedocs.io/en/latest/
https://wiki.cen.uni-hamburg.de/ifm/TO/pyOM2
https://wiki.cen.uni-hamburg.de/ifm/TO/pyOM2
https://github.com/MITgcm/MITgcm
https://mitgcm.org/documentation/

Contents

1 Abstract 1

2 Introduction 4

3 Thermodynamics 8

3.1 Ice Growth in Open Water . 8

3.2 Ice Growth of an Existing Ice Cover . 9

3.3 Ice Melting due to the Mixed Layer Temperature 11

3.4 Ice Growth due to the Formation of Snow-Ice 11

4 Dynamics 13

4.1 Spatial Discretization . 13

4.2 The Viscous-Plastic Rheology . 13

4.2.1 Stress Terms . 14

4.2.2 Stress Tensor . 14

4.3 The Elastic-Viscous-Plastic Method . 17

4.4 Parameterizing Landfast Ice . 19

4.5 Advection Scheme . 21

5 Fortran to Python Translation 23

5.1 Translation to Python . 23

5.2 Use of Object Oriented Programming . 24

5.3 Testing the Model Against the MITgcm Reference 25

6 Coupling With Veros 26

6.1 Order of Operations . 26

6.2 Using the Original Surface Heat Forcing 27

6.3 Implementing the Heat Flux Bulk Formula of the MITgcm 28

6.4 Analysing Veros Using the Simple Sea Ice Mask 32

6.5 Running Veris Combined With Salinity Restoring 35

6.6 Comparison With ERA5 Data . 39

6.7 Multi-Year Runs . 40

2

7 Analyzing The Effects Of The Coastal Drag Parameterization To Sim-

ulate Landfast Ice 43

8 Summary 47

9 Discussion 49

10 Outlook 51

3

2 Introduction

Climate models are usually written in Fortran. On the one side, this is simply due to

their legacy. Fortran has a good backwards compatibility and a lot of old code can be

reused by newer models written in newer versions of Fortran. This saves a lot of time

compared to rewriting legacy code in a new language. Another very important reason for

the use of Fortran is its good computational performance as its main focus is on the speed

of numerical calculations. Climate models usually execute a lot of calculations as they

are iterated over many time steps and on large grids, therefore performance is especially

crucial for this type of modeling. Despite the advantages of Fortran, it has a relatively

low popularity in comparison to newer languages like Python among scientists who are

not working in climate modeling. This makes it more difficult to start researching in this

field as a lot of time needs to be invested into learning a new programming language.

The higher popularity of Python also means that there are more libraries that can be

imported and used. Fortran is a low-level language and as such not optimized for read-

ability. Using a high-level language such as Python would make it much easier to make

structural changes to the code like implementing new parameterizations and to debug the

code after doing so.

The higher popularity and better readability of Python alone are not a good enough

reason to switch from Fortran to Python though as the performance difference without

any additional work or extensions is too large to justify the use of Python. To increase

the performance of Python and to close this gap, JAX (Bradbury et al., 2018) is used.

JAX is a Python library for array based computing. Its syntax is very similar to that of

Numpy. A code written in Numpy therefore does not need to be fundamentally changed

in order to work with JAX. JAX includes a set of useful transformations that can be used

on functions like vectorization, parallelization, automatic differentiation and just-in-time

(jit) compilation. jit comilation is the compilation of code at run time. This drastically

reduces the runtime of iterative calculations and is therefore very well suited for climate

models as they iterate over many time steps. Another big advantage of JAX besides

being able to use these transformations is that it is accelerator agnostic, meaning the

same code can be run on CPUs and GPUs. GPUs as compared to CPUs are due to the

higher number of cores much more suitable for parallel computing. Using GPUs instead

of CPUs can also reduce the power consumption and therefore the carbon footprint of

4

running climate models.

Häfner et al. (2018) presented a Python based ocean model that is publicly available as

the Versatile Ocean Simulator (Veros, https://veros.readthedocs.io/en/latest/).

It is a translation of the Fortran backend of the ocean model pyOM2 (v2.1.0, https:

//wiki.cen.uni-hamburg.de/ifm/TO/pyOM2). By using the jit compiler of JAX, the

performance gap to the original Fortran model was closed (Häfner et al., 2021). Veros is

fully parallelized and thus well suited for the use of GPUs, allowing it to be run with a

much better energy efficiency compared to using a CPU based computing system. It is

possible to switch between using Numpy and JAX as a backend when running Veros. This

makes the development and implementation of new features easier, as debugging within

compiled functions is much more difficult. The initial debugging can be done in Numpy

before switching to JAX for performance. So far, Veros does not contain a sea ice model.

It is therefore not suitable to be used in high latitudes as the presence of ice and snow

on the ocean surface has a significant impact on the local climate (Roots, 1989). Some

important aspects are the greatly increased surface albedo of ice or snow compared to

open water, and the insulation effect as the heat transfer between ocean and atmosphere

is drastically reduced if an ice cover is present. Furthermore, if energy is gained or lost at

the surface, it is to be used for melting and freezing instead of a temperature change of

the ocean surface. The ice cover also impedes the transport of moisture from the ocean

to the atmosphere and has thus an impact on the cloud formation which also impacts the

local climate. All of these effects also alter the ocean characteristics. It is thus obvious

that an accurate model of the ocean in high latitudes needs to include sea ice.

The development of sea ice can be divided into two parts: the thermodynamics and the

dynamics. The first model that contained both of these (the first model whose dynamics

included the ice rheology and not just strongly simplified dynamics, respectively) was

introduced by Hibler (1979). The model has been developed further, including the im-

plementation of different numerical solvers, e.g. the elastic-viscous-plastic solver (EVP,

Hunke and Dukowicz (1997)), the modified EVP solver (mEVP, Bouillon et al. (2013)),

the adaptive EVP solver (aEVP, Kimmritz et al. (2016)), and the Jacobian-free Newton-

Krylov solver (JNFK, Lemieux et al. (2010)). A comparison of results of different numer-

ical solvers is given by Losch et al. (2010).

This work translates the sea ice component of the Massachusetts Institute of Technol-

5

https://veros.readthedocs.io/en/latest/
https://wiki.cen.uni-hamburg.de/ifm/TO/pyOM2
https://wiki.cen.uni-hamburg.de/ifm/TO/pyOM2

ogy general circulation model (MITgcm, Marshall et al. (1997), Losch et al. (2010),

https://github.com/MITgcm/MITgcm, https://mitgcm.org/documentation/)

that is based on Hibler (1979) into Python. It is coupled to Veros to extend its range of

usability.

A big motivation for the development of models in Python is the increased accessibility

of the code. With a more structured and readable code, it is easier to implement and

test new features, such as new parameterizations for specific processes or new dynamics

solvers. After the coupling with Veros, a new parameterization of landfast ice is imple-

mented. Landfast ice is sea ice that stays immobile or nearly immobile for a certain time

span. It has multiple important roles. For local communities in the Arctic, it serves as

a platform of traveling and hunting (Gearheard et al., 2006). In the Antarctica, it serves

as a protection of outer ice shelf margins and reduces ice calving (Massom et al., 2018).

It also has an impact on climate models as its development differs from regular sea ice:

landfast ice is mostly immobile and thus changes are mostly due to thermodynamics.

This will lead to differences in the ocean-atmosphere exchange of heat, momentum, and

moisture. It is therefore important that landfast ice is accurately represented in models.

There are two possibilities for the formation of landfast ice. The ice cover can be either

fixed to the ground by forming down reaching ice keels or laterally to a coast. At the

time of the Fortran to Python translation of the sea ice component of the MITgcm, a

parameterization of landfast ice due the formation of ice keels was included in the MIT-

gcm. The only form of coastal drag parameterization was the use of a no-slip boundary

condition. The tangential velocity at a boundary is zero which can be seen as a very

simple form of landfast ice parameterization. This especially underestimates the extent of

landfast ice in regions of deeper water where no ice keels reach to the ground. Liu et al.

(2022) developed a parameterization of coastal drag to simulate landfast ice to replace the

no-slip drag. A new lateral stress term that is dependent on the coastline is added to the

momentum equation. In this case, a free-slip boundary condition is used, i.e. there are no

gradients of tangential velocity across a boundary. Using a free-slip boundary condition

in combination with the coastal drag parameterization gives more control over the lateral

drag exerted by the coastline.

In section 3 and 4 the thermodynamics and dynamics of the model are explained. Sec-

tion 5 describes the technical aspects of the translation from Fortran to Python. The

6

https://github.com/MITgcm/MITgcm
https://mitgcm.org/documentation/

challenges and results of the coupling with Veros are presented in section 6. After the

coupling, the coastal drag parameterization to simulate landfast ice is implemented. The

results are presented in section 7. A summary and discussion of this work are given in

section 8 and 9. Section 10 contains an outlook to future work with the sea ice model.

7

3 Thermodynamics

The thermodynamics are implemented as in the subroutine seaice_growth_adx.F of the

sea ice package of the MITgcm (https://github.com/MITgcm/MITgcm/blob/master/p

kg/seaice/seaice_growth_adx.F).

Typically, a grid cell will not be fully covered with ice and will furthermore contain ice

of different thicknesses. To account for this, the variables mean ice thickness h and sea

ice concentration A are used. The mean ice thickness is the equivalent ice thickness if

all of the ice in the cell were distributed equally over the whole cell area. The sea ice

concentration is the fraction of the cell that is covered by ice. For the calculation of the

growth rate of the mean ice thickness, a two level thickness configuration is assumed. If

the mean ice thickness in a cell is h, then the mean thickness of the actual ice cover, i.e. the

equivalent ice thickness if all of the ice in the cell were distributed equally over the fraction

of the cell that is covered by ice, is hactual = h
A
. A grid cell is assumed to be covered with

ice of thickness hactual and open water, weighted with A and 1 − A, respectively. The

growth rate of the mean ice thickness is then calculated from the growth rate of the part

of the cell that is covered with ice and the growth rate of the part that is open water

(Hibler, 1979):

∆h

∆t
= f(hactual)A+ f(0)(1− A) + fml (1)

where f(h) is the growth rate of ice of thickness h, and fml is an additional implementation

of the growth rate due to the mixed layer temperature. For A→ 0 the actual ice thickness

tends to infinity and is therefore calculated by using a regularized ice concentration that

has a certain minimum value. The total change in the sea ice concentration is

∆A

∆t
=


f(0)

h0
(1− A) if f(0) > 0

0 if f(0) < 0

+


0 if ∆h

∆t
> 0

A

2h

∆h

∆t
if ∆h

∆t
< 0

(2)

where h0 is the lead closing parameter that describes the lateral growth. As A cannot

exceed 100%, a cutoff function is used to ensure a maximum value of 1.

3.1 Ice Growth in Open Water

The ice growth in open water is given by the net heat flux out of the ocean. If heat is

leaving the ocean, this is balanced by the release of latent heat, i.e. freezing. This only

8

https://github.com/MITgcm/MITgcm/blob/master/pkg/seaice/seaice_growth_adx.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/seaice/seaice_growth_adx.F

occurs if the sea ice concentration of a grid cell is less than one (see equation (1)). The

change in ice thickness due to open water growth is

f(0) =
Qnet

ρiLf

(3)

where Qnet is the net open water heat flux out of the ocean, ρi the density of ice, and Lf

the latent heat of fusion.

3.2 Ice Growth of an Existing Ice Cover

For calculating the ice growth of an existing ice cover, first the heat fluxes through the

ice (the ice-snow system to be more precise) need to be determined. For this, the heat

flux divergence at the ice/snow-atmosphere interface and the corresponding temperature

change is calculated. With this new surface temperature, the heat fluxes are recalculated

(Parkinson and Washington, 1979). This process is iterated to get the correct surface

temperature and heat fluxes. The steady state boundary condition at the ice/snow surface

is

Fc = Fia (4)

where Fc is the conductive heat flux through the ice-snow system and Fia the heat flux

from the ice/snow surface to the atmosphere. The conductive heat flux is given by

Fc = keff(Tb − Ts) (5)

where keff is the effective conductivity of the ice-snow system, Tb the temperature at

the ice bottom which is set to the freezing temperature, and Ts the ice/snow surface

temperature. The heat flux to the atmosphere is given by the outgoing fluxes of sensible

heat Fsens, latent heat Flat, and longwave radiation Flw, and the absorbed heat fluxes of

the incoming longwave and shortwave radiation Fabsorbedlw and Fabsorbedsw, respectively.

Fia = Fsens + Flat + Flw − Fabsorbedlw − Fabsorbedsw (6)

Fsens = Cdcpρav(Ts − Ta) (7)

Flat = CdLsρav(qs − qa) (8)

Flw = σϵsT
4
s (9)

Fabsorbedlw = ϵsQlw (10)

Fabsorbedsw = (1− as)(1− psw)Qsw (11)

9

Cd is the Dalton constant/ sensible and latent heat transfer coefficient, cp the specific heat

of air, ρa the density of air, v the surface wind speed, Ta the atmospheric temperature,

Ls the latent heat of sublimation, qs the specific humidity directly at the surface, qa the

specific humidity at 10m height, σ the Stefan-Boltzmann constant, ϵs the surface emis-

sivity, as the surface albedo, psw the fraction of the shortwave radiation that passes the

ice-snow system (and is not absorbed), and Qsw and Qlw the downward shortwave and

longwave radiation, respectively.

If snow is present, no shortwave radiation can pass because of the high extinction coef-

ficient of snow. The penetrating shortwave fraction psw is then set to 0. For ice with

no snow cover Parkinson and Washington (1979) use a constant value for psw. In the

MITgcm, it is calculated from the ice thickness according to:

psw = psw,0 e
−1.5hactual (12)

where psw,0 is a constant parameter.

Equation (4) is solved by using the Newton-Raphson method for determining the root of

Fc(Ts)− Fia(Ts). If T0 is a first guess of the surface temperature, then the first approxi-

mation to the real value is

T1 = T0 − (Fc(T0)− Fia(T0))/

(
dFc

dT
(T0)−

dFia

dT
(T0)

)
(13)

This surface temperature is then used to recalculate the fluxes. Using this method, only

a few iterations are needed for the temperature and thus the fluxes to converge.

If the ocean looses heat to the atmosphere, i.e. the conductive heat flux through the

ice-snow system is upward (Fc > 0), freezing at the ice bottom will occur to balance the

heat loss. The change in ice thickness is then

f(hactual) =
Fc

ρiLf

(14)

If the heat flux is from the atmosphere to the ocean, i.e. the conductive heat flux through

the ice-snow system is downward (Fc < 0), melting at the surface will occur. In order

for the ice to be melted at the surface, the snow cover has to be melted completely. The

change in snow thickness is

f(hs,actual) =
Fia

ρsLf

(15)

10

where ρs is the density of snow and hs,actual =
hs

A
the actual snow thickness. The change

in ice thickness is then

f(hactual) =
F ′
ia

ρiLf

(16)

where F ′
ia is the heat flux available for melting ice that is left after Fia is reduced by the

fraction that is used for melting snow.

The snow thickness can also be changed directly by snowfall or by precipitation if the

surface temperature is below 0°C.

3.3 Ice Melting due to the Mixed Layer Temperature

The ice thickness also changes due to melting at the bottom if the temperature of the

ocean surface is higher than the freezing temperature. Following McPhee (1992), the

ocean-ice heat flux is

Foi = −St u∗bρwcp,w(To − Tb)τml (17)

where St is the Stanton number, u∗b the typical friction velocity at the ice bottom, ρw the

density of water, cp,w the heat capacity of water, To the ocean surface temperature, and

τml (additionally implemented in the MITgcm) the mixed layer turbulence factor that

determines how strongly the heat flux depends on the temperature difference between

ocean and ice:

τml =
1 + (Ctf − 1)

1 + exp(A−0.4
17.5

)
(18)

with the tapering factor Ctf . The change in ice thickness due to the temperature difference

between ocean and ice is then

fml =
Foi

ρiLf

(19)

3.4 Ice Growth due to the Formation of Snow-Ice

Following Archimedes’ principle, the ice-snow interface is at the water surface if

ρshs + ρih = ρwh (20)

Snow is submerged in water if

hsub =
ρshs + ρih

ρw
> h (21)

11

where hsub is the height of the ice-snow system that is submerged. The submerged snow

will then be transformed to snow-ice. For this process, three assumptions have been made.

Firstly, all of the submerged snow is transformed to ice with the new ice thickness being

the submerged height. Secondly, this transformation occurs without the release of latent

heat. Thirdly, the mass of the ice-snow system is conserved, i.e. the snow height is not

reduced by the height of snow that is submerged but by the height that is required in

order for the submerged height to stay the same. Using these assumptions, the change in

ice and snow thicknesses are calculated according to

∆h = hsub − h (22)

∆hs = −(hsub − h)
ρi
ρs

(23)

12

4 Dynamics

4.1 Spatial Discretization

The variables are given on an Arakawa C-grid (Arakawa and Lamb, 1977). The c-point

refers to the cell center, the u-point is at the middle of the western cell wall, the v-point

at the middle of the southern cell wall, and the z-point at the south-west corner of the

cell. The scalar values like h, A, and the heat fluxes defined in section 3 are stored on the

c-points. In general, if not mentioned otherwise, all variables are stored at the c-points.

The components of the velocity vector are stored on the respective velocity points. When

solving the momentum equation, the sea ice mass is averaged to the velocity points,

indicated with the notation mu/v. When calculating the u-component of the velocity

vector mu is used, while for calculating the v-component mv is used. They are calculated

according to

mu
i,j =

1

2
(mi,j +mi−1,j) (24)

mv
i,j =

1

2
(mi,j +mi,j−1) (25)

4.2 The Viscous-Plastic Rheology

The horizontal momentum equation is

ρh
du

dt
= ρhf(vi− uj) + Au/v(τa + τw) +∇σ − ρhg∇H (26)

where ρh = m is the mass of the ice-snow system, u = ui + vj the horizontal velocity

vector, i and j the unit vectors corresponding to the x- and y-axis of the Cartesian co-

ordinate system, respectively, f the Coriolis parameter, τa the wind stress, τw the water

stress, σ the internal ice stress tensor, g the gravity, and H the sea surface elevation. The

ice concentration centered around the velocity points Au/v is calculated analogously to

mu/v.

13

4.2.1 Stress Terms

The wind stress is calculated from the ice-wind velocity difference using

τa,u = ca

(
cos(αa)urel,a −

f

|f |
sin(αa)vrel,a

)
(27)

τa,v = ca

(
cos(αa)vrel,a +

f

|f |
sin(αa)urel,a

)
(28)

where ca is the air-ice drag coefficient and urel,a and vrel,a are the component-wise wind

velocities relative to the ice velocities. The air turning angle αa is the angle between the

wind forcing and the resulting stress on the ice surface. It is a parameterization of the

Ekman spiral that is not resolved in the model.

The water stress is calculated from the difference in ice and ocean surface velocity using

τw,u = cw

(
cos(αw)urel,w − f

|f |
sin(αw)vrel,w

)
(29)

τw,v = cw

(
cos(αw)vrel,w +

f

|f |
sin(αw)urel,w

)
(30)

where cw is the linear ice-water drag coefficient, urel,w and vrel,w the component-wise ocean

surface velocities relative to the ice velocities, and αw the water turning angle.

The relative velocities urel,a/w and vrel,a/w and the drag coefficients ca and cw are calculated

at the c-point. After calculating the wind and water stress components using equation

(27) - (30), they are interpolated to the velocity points.

4.2.2 Stress Tensor

The stress tensor σ =

σ11 σ21

σ12 σ22

 defines the rheology, i.e. the relationship between the

applied stresses and the resulting deformations. The eigenvalues of σ are the principal

stress components σ1,2:

σ1,2 =
σ11 + σ22

2
±

√(
σ11 − σ22

2

)2

+ σ21σ12 (31)

The stress invariants σI,II can then be defined as

σI =
1

2
(σ1 + σ2) =

1

2
(σ11 + σ22) (32)

σII =
1

2
(σ1 − σ2) =

1

2

√
(σ11 − σ22)2 + 4σ21σ12 (33)

14

where σI is the normal stress and σII is the shear stress. The stress state of the ice is

then given as (σI , σII). The stress states of plastic deformation are given by the elliptical

yield curve (Hibler (1979), Fig. 1) defined by

ϵ̇ij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(34)

σij = 2η ˙ϵij + [(ζ − η) ˙ϵkk −
P

2
]δij (35)

where ˙ϵij are the components of the strain rate tensor with ∂/∂xi,j the derivatives in

x- and y-direction, respectively, ζ = P
2∆

and η = ζ
e2

are the bulk and shear viscosity,

respectively, P the ice strength, ∆ a measure of the deformation rate, ϵ̇kk the trace of the

strain rate tensor, δij the Kronecker delta, and e the axes ratio of the elliptical yield curve.

∆ is calculated from the normal strain rate ϵ̇I and the shear strain rate ϵ̇II according to

∆ =

√
ϵ̇2I +

1

e2
ϵ̇2II (36)

ϵ̇I = (ϵ̇11 + ϵ̇22) (37)

ϵ̇II =
√

(ϵ̇11 − ϵ̇22)2 + 4ϵ̇212 (38)

To avoid singularities of ζ for ∆ → 0, a regularized value ∆reg = max(∆,∆min) is used.

This allows for stress states within the yield curve. In this region, the ice flow is viscous

and the internal stress increases linearly with the strain rate. If a certain stress threshold

is reached, the stress state lies on the yield curve and will deform in a plastic way so that

the internal stress stays constant. The stress threshold for plastic deformation is so small

that the ice is in its plastic limit most of the time. The viscous-plastic threshold is defined

by ∆min. If ∆ ≤ ∆min, the flow is viscous; if ∆ > ∆min, the flow is plastic.

ϵ̇11, ϵ̇22, σ11, and σ22 are defined on the c-points while ϵ̇12, σ12 are defined on the z-points.

The components of the divergence of the stress tensor are calculated on the respective

velocity points.

The ice strength P is calculated from the ice thickness and cover fraction following Hibler

(1979) using

P = P ∗he−C∗(1−A) (39)

where P ∗ and C∗ are constant parameters. The ice strength is the maximum compressive

stress of the ice.

15

TC

S

S

σI

σII

Figure 1: The stress states of the ice for plastic deformation are defined by the elliptical

yield curve. They are given in terms of the stress invariants σI (normal stress) and σII

(shear stress). The direction of deformation is given by the location on the yield curve.

The points T and C are pure tensile and compressive deformation, respectively, and the

points S are pure shearing deformation. The stress states on the yield curve that lie

inbetween these points will lead to both shearing and tensile/ compressive deformation.

For viscous deformation, the stress state lies within the ellipse.

Even without velocities and velocity gradients, i.e. when all the strain rate tensor com-

ponents are zero, the stress tensor components σ11 and σ22 are non-zero due to the ice

pressure term p = P
2

(equation (35)). This will result in an ice flow even though no forcing

is present. To avoid this, a replacement pressure can be used (Hibler and Ip, 1995):

pr = ζ∆ (40)

The use of this, however, yields the problem that when the ice is not moving due to being

directly at a boundary, no stress is present to resist further incoming ice. This can lead

to an unphysical build up at the boundaries.

The elliptical yield curve is defined in such a way that the ice has resistance to compressive

stresses but not to tensile stresses. To include some resistance to tensile stresses, the

viscosities and ice pressure can be defined as

ζt = st
P

2∆
(41)

ηt =
ζt
e2

(42)

pt = st
P

2
(43)

16

where st is the tensile stress factor (König Beatty and Holland, 2010). If both the tensile

stress resistance and the replacement pressure are used, the pressure is given by

pr,t = ζ∆
1− st
1 + st

(44)

Implemented are the normal pressure term as well as the two modifications with the

option to choose between them.

4.3 The Elastic-Viscous-Plastic Method

Integrating the momentum equation explicitly using the viscous-plastic rheology requires

very small time steps. Hunke and Dukowicz (1997) showed that for a divergence-free

velocity field the time step would need to be of the order of one hundredth of a second

for an explicit time stepping scheme to be stable if the grid cell spacing is about 10km.

Only being able to use small time steps results in a computationally expensive model. To

overcome this, an elastic behaviour is introduced, allowing for larger time steps and thus

increasing the numerical efficiency.

The momentum equation is solved using a modified elastic-viscous-plastic (mEVP) solver.

To advance from time step n to time step n + 1, first a number of subcycling iterations

indicated with indices p are done (Bouillon et al., 2013):

σp+1 = σp + (σ(up)− σp)
1

α
(45)

up+1 = up +

(
∆t

mu/v
(∇σp+1 +Rp+ 1

2) + un − up

)
1

β
(46)

where α and β are numerical relaxation parameters and R contains all the forcing terms

from the momentum equation. σ(up) is directly calculated from up while σp is calculated

using equation (45), i.e. from the previous iteration step.

In convergence, when σp+1 → σp and up+1 → up, the equations (45) and (46) become

σp = σ(up) (47)

up =
∆t

mu/v
(∇σp+1 +Rp+ 1

2) + un (48)

= un+1 (49)

⇔ mu/vu
n+1 − un

∆t
= ∇σp+1 +Rp+ 1

2 (50)

and the full viscous-plastic equations are recovered. Convergence is assumed after a

fixed number of subcycling iterations. The starting values σp=0 and up=0 are 0 and un,

17

respectively.

The superscript p+ 1
2 of the forcing term refers to an intermediate calculation after Rp

has been calculated. The ice-ocean stress can be treated explicitly or implicitly. In the

forcing term R, the stress term from equations (29) and (30) is calculated from the ocean

velocities and not the ocean velocities relative to the ice with the following differentiation

between explicit and implicit treatment. If the ice-ocean stress is treated explicitly, then

Rp+ 1
2 = Rp − c

u/v
d up (51)

If it is treated implicitly, then

Rp+ 1
2 = Rp (52)

and an additional term is added to the velocity step:

up+1 = up + (
∆t

mu/v
(∇σp+1 +Rp) + un − up)

1

β

1

1 + c
u/v
d ∆tm

u/v

β

(53)

cud and cvd are the ice-water drag coefficients at the velocity points (explained in more

detail in section 4.4).

For the elastic-viscous-plastic method to be stable, the parameters α and β need to be

sufficiently large. Kimmritz et al. (2015) performed a 1D stability analysis of the mEVP

solver and found the stability criterion to be

αβ >> γ (54)

where γ = k2P∆t
2m∆

with k2 ≤ π2

∆x2 (note that ∆ in the denominator of γ is the one from

equation (36) while the other ∆ refer to the time step and the grid spacing), and α

and β are of similar size. If they are too large, however, the process is slowed down

unnecessarily as with larger α and β more subcycling iteration steps are needed. This

motivated Kimmritz et al. (2016) to develop an adaptive EVP method (aEVP) with

variable values for α and β. As they only need to be large when the grid cell size is small

or the viscosities ζ and η are large, they are set to

α = β =

√
ζ
c∆t

Acm
(55)

where Ac is the area of the grid cell and c is an empirical constant. Using these param-

eters, the method is stable without being too computationally expensive. They are first

18

calculated at the c-point using equation (55) and then averaged to the u-, v- and z-points.

For equation (45) αc/z is used with αc being used for σ11 and σ22 and αz for σ12. The

averaging to the z-point is

αz
i,j =

1

4
(αi,j + αi,j−1 + αi−1,j + αi−1,j−1) (56)

Implemented are both methods with the option to choose between the mEVP solver

with constant values of α and β, and the aEVP solver with α and β that are dependent

on the ice field and the grid cell size.

4.4 Parameterizing Landfast Ice

The total drag coefficient cd (used in the momentum equation following equations (51) -

(53)) is calculated according to

cd = cw + cb (57)

where cw is the linear ice-water drag coefficient (see equation (29) and (30)) and cb the

basal drag coefficient. The basal drag coefficient parameterizes landfast ice. Landfast ice

is sea ice that stays immobile or nearly immobile for a certain time span. There are two

processes that lead to the formation of landfast ice. Firstly, the ice cover can form ice

keels that extend to the ground and build up normal stress which can keep the ice cover

at a fixed location or drastically slow down its movement. Secondly, the ice can be fixed

to a nearby coast.

The basal drag parameterization covers landfast ice due to the formation of ice keels

(Lemieux et al., 2015). The basal drag coefficient is

cb =


k2√

u2+v2+u2
b,0

(h− hc)e
−C∗

b (1−A) if A > 0.01

0 else
(58)

where hc = hwA
k1

is the critical ice height that allows for the formation of landfast ice, hw

the water depth, k1, k2, and C∗
b fixed basal drag parameters, and ub,0 a velocity parameter

to avoid singularities. In the MITgcm, an implementation of a smooth maximum of h−hc

19

and 0 has been used to avoid unphysical non-differentiable behaviour:

cb =


k2√

u2+v2+u2
b,0

1
10

ln(e10(h−hc) + 1)e−C∗(1−A) if A > 0.01

0 else
(59)

The basal drag coefficient depends strongly on the ice concentration as the mean ice cover

of a grid cell can only be regarded as landfast ice if A is close to 1. For small values of A,

some fraction of the cell could be landfast ice while other separate areas of sea ice could

still be moving.

The formation of landfast ice due the ice being fixed to a boundary can be parameterized

by the use of a coastal drag term. At the time of the Fortran to Python translation of the

sea ice component of the MITgcm, the only form of coastal drag parameterization was the

use of a no-slip boundary condition. In this case, the tangential velocity at a boundary is

zero. Liu et al. (2022) developed a parameterization of coastal drag to simulate landfast

ice to replace the no-slip drag. By the use of a new drag coefficient that is dependent on

the coastline, a new lateral stress term is added to the momentum equation. This lateral

drag coefficient is used in combination with a free-slip boundary condition. The total

drag coefficient is then

cd = cw + cb + cl (60)

where cl is the lateral drag coefficient. It is calculated according to

cl = ρiClF
1

|u|+ ul,0
(61)

where Cl is a fixed lateral drag coefficient, F the form factor and ul,0 a small residual

velocity of 0.01 m/s. The form factor is dependent on the coastline.

There are two form factors F1 and F2. The first form factor is given by the model grid.

Its value in a specific grid cell is given by how many neighbouring grid cells are land cells:

F
u/v
1 =


0, no neighbouring land cells in x/y direction

1, one neighbouring land cell in x/y direction

2, two neighbouring land cells in x/y direction

(62)

20

F u is to be used for the u-component of the momentum equation, while F v is used for

the v-component.

The second form factor is calculated from a sub-grid scale coastline data set. The data is

taken from Natural Earth 10 m Physical Vectors (https://www.naturalearthdata.com

/downloads/10m-physical-vectors/). The 10 m coastline vector is projected on the x-

and y-axis and normalized by the grid cell size. The normalized integrals of the coastline

are

F u
2 =

∑N
n=1 |lncosθn|

∆x
(63)

F v
2 =

∑N
n=1 |lnsinθn|

∆y
(64)

where N is the number of coastline points within one grid cell, ln the length of the

nth 10 m coastline vector, θn the angle between the nth 10 m coastline vector and the

x-axis of the model grid, and ∆x and ∆y the grid cells lengths in x- and y-direction,

respectively. F u
2 and F v

2 are calculated on the z-points according to equation (63) and

(64) and then averaged to the u- and v-points to be used in the momentum equation.

They are normalized to a maximum value of 3 so they can be used in equation (61) with

the same lateral drag coefficient as F1.

Implemented are both ways of calculating the total drag coefficient: without coastal drag

(equation (57)) in combination with a no-slip boundary condition and with coastal drag

(equation (60)) in combination with a free-slip boundary condition. When using the

coastal drag parameterization, it is possible to switch between the two form factors.

4.5 Advection Scheme

After the ice velocity has been calculated, the advection is done using a second order

flux limiter scheme. The advective flux F is formulated as a combination of a first order

upwind flux F1 and a second order Lax-Wendroff flux FLW . The following calculations

are for the advection in u-direction. The advection in v-direction is done analogously.

F = (1− ψ(r))F1 + ψ(r)FLW (65)

F1 = Uθ − 1

2
|u|δθ (66)

FLW = Uθ − 1

2
c|u|δθ (67)

21

https://www.naturalearthdata.com/downloads/10m-physical-vectors/
https://www.naturalearthdata.com/downloads/10m-physical-vectors/

where U = u∆y with u the calculated velocity in u direction and ∆y the grid cell width

along the western cell wall, θ is the advected sea ice field, i.e. the ice or snow thickness or

the ice concentration, c = |u|∆t
∆x

the CFL number, ψ the limiter function, and r the slope

ratio. The used abbreviations are

θi,j =
1

2
(θi,j + θi−1,j) (68)

δθi,j = θi,j − θi−1,j (69)

The slope ratio and the limiter function are

r =


θi−1,j − θi−2,j

θi,j − θi−1,j

if ui,j > 0

θi+1,j − θi,j
θi,j − θi−1,j

if ui,j < 0

(70)

ψ(r) = max(0,max(min(1, 2r),min(2, r))) (71)

The change in the sea ice field θ is then

∆θi,j =
∆t

Ac

(Fi,j − Fi+1,j) (72)

After the advection, if the ice concentration is larger than 1, it is set to 1 to account for

ridging.

22

5 Fortran to Python Translation

The MITgcm is written in Fortran 77. In the following sections, the for this work rele-

vant differences between Fortran 77 and Python as well as the translation to Python is

described. Also presented are structural changes that have been made to the code after

the translation that work towards the coupling with Veros.

5.1 Translation to Python

When working with arrays, the difference in the indexation needs to be considered. In

Fortran, the range of indices is manually defined when the array is initialized which also

allows for negative indices. In Python, only the length of an array can be defined with

the first index always being 0. If in Fortran an array is defined with indices 1 - L to

N + L, this corresponds to an array with indices 0 to N + 2L in Python. The Fortran

indices 1 and N then correspond to the Python indices L and N + L, respectively. Another

difference when working with arrays is the use of vector operations in Python. While in

Fortran 77 calculations need to be done for each element of an array individually using

loops, in Python it is possible to directly use the array or slices of the array. If for example

the Fortran code for the interpolation between two velocities

DO j=1,Ny

DO i=1,Nx

uAtC(i,j) = 0.5 * (u(i+1,j) + u(i,j))

ENDDO

ENDDO

is translated to Python, the result is

uAtC[Ly:Ny+Ly, Lx:Nx+Lx] = 0.5 * (u[Ly:Ny+Ly, Lx+1:Nx+Lx+1]

+ u[Ly:Ny+Ly, Lx :Nx+Lx])

Note that the order of indexation has been switched. This is because in Fortran multi-

dimensional arrays are stored on memory is such a way that the most rapidly changing

index comes first (F order). Arrays in Python are stored in C memory order, i.e. the

most rapidly changing index comes last. In other words, in Fortran the first index (i)

corresponds to the x-axis of a matrix and the second index (j) corresponds to the y-axis.

23

In Python, this is the other way round. This code can be made much more compact by

using the roll function of NumPy which rolls the elements of an array backwards along

a given axis. Elements that roll beyond the last position are reintroduced at the first one.

The code is then

uAtC = 0.5 * (roll(u,-1,axis=1) + u)

Using this method the whole array u is used. This has the advantage that uAtC does not

need to be initialized separately.

Array operations that are dependent on if statements can be simplified by using NumPy’s

where function. If for example in the MITgcm the emissivity of the ice surface is set based

on whether or not snow is present, the code is

_RL Emiss = (1:Nx, 1:Ny)

DO j=1,Ny

DO i=1,Nx

IF (hSnow(i,j) .GT. 0.0)

Emiss(i,j) = SnowEmiss

ELSE

Emiss(i,j) = IceEmiss

ENDDO

ENDDO

In Python this can be done in a single line:

Emiss = where(hSnow > 0, SnowEmiss, IceEmiss)

While in Fortran the array Emiss needs to be initialized first with its elements then

individually set, the where function used in the Python implementation returns an array of

the same shape as hSnow and fills it with SnowEmiss where hSnow > 0 and with IceEmiss

everywhere else.

5.2 Use of Object Oriented Programming

In the MITgcm and the first version of the model of this work, variables are passed

individually between functions. This can get very confusing for more complex functions

as some of them require more than 15 input variables and have similarly many outputs.

24

When such functions are nested within each other, it is difficult to keep track of variables

and also to make changes in the code, e.g. if one wants to add or remove something as input

or output. For this reason, Veros uses object oriented programming. The functions do

not take in or give out many individual variables but work on a state object that contains

all the variables. This drastically increases the readability of the code and therefore also

the accessibility for new programmers. If functions are nested or reused with different

inputs, e.g. in an iterative loop, it is still possible to have individual variables as input

and output.

5.3 Testing the Model Against the MITgcm Reference

The testing of the model was split up in two parts. The thermodynamics and the dynamics

were tested separately. For the thermodynamics, one dimensional benchmarks were used

that only consisted of one grid cell. There were several benchmarks created with different

constant forcings in both melting and freezing conditions. A direct comparison of the

Python model and the MITgcm showed differences in the range of 10−7. The modeling

time was one year. The differences were random and did not accumulate over the modeling

time. They were assigned to the differences in numerical precision.

After ensuring that the model works in the same way as the original one, some minor

changes have been made. While in the original model only hactual and not hs,actual has

been regularized (see section 3), the model of this work uses the regularization for both

the ice and the snow thickness.

The dynamics were compared on a grid with 65 × 65 cells with a grid cell width of 8000

m. For the forcing, wind and ocean surface velocities have been used separately and

combined. Both the mEVP and the aEVP solver have been compared. It showed that for

the aEVP solver, the differences between the results were one order of magnitude smaller

than for the mEVP solver. In convergence, the aEVP solver yields deviations of the ice

thickness, ice concentration, and ice velocities in the order of 10−3 when compared to the

MITgcm.

25

6 Coupling With Veros

6.1 Order of Operations

The necessary order of operations for a coupled ocean-sea ice model is displayed in Fig. 2.

At the beginning of the time step, the ocean surface forcing is calculated. This refers to

the fluxes of heat, salt, and momentum into and out of the ocean, respectively. Afterwards

the sea ice model (from now on called Veris for versatile ice simulation) is called. The

sea ice growth is calculated based on the net ocean surface heat flux in regions of open

water and on the ocean temperature and atmospheric state where there is ice present (see

section 3). Alongside with the sea ice variables like the ice thickness and concentration,

Veris also updates the heat, salt and momentum fluxes acting on the ocean surface. The

heat flux is modified due to the release and absorption of latent heat during freezing

and melting, respectively. The salt flux is altered so that the surface salinity increases

(decreases) if sea ice is growing (melting). In regions of ice cover, the salt flux is also

modified by precipitation and snowfall accumulating as snow on the ice surface instead of

going into the ocean, as well as the evaporation under an ice cover being set to zero. The

momentum flux on the ocean surface is calculated as the wind stress in regions of open

water and the ice-ocean stress in regions of ice cover. After these changes in the ocean

surface forcing, the ocean model is to be called. Because of this sequence a first attempt

to include Veris as a plug-in to Veros failed because plug-ins of Veros are called at the

end of the time step. Therefore all modifications of the surface forcing calculated by Veris

would be overwritten by the surface forcing being calculated at the beginning of the next

time step.

Figure 2: Required order of operations for coupling a coupled ocean-sea ice model.

26

6.2 Using the Original Surface Heat Forcing

In the original version of Veros, all of the surface heat forcing is contained in the single

variable Qnet (net surface heat flux) that is imported as a prescribed field. With this

approach, several problems arise when coupling the models.

Firstly, this surface heat flux is not suitable to drive a sea ice model. This is because it is

an air-ocean heat flux that already assumes a sea ice cover in the respective regions. The

presence of sea ice reduces the surface heat flux which can be seen in Fig. 3. Displayed

is Qnet in February and in July. In general, if a variable is shown at a specific month and

it is not stated otherwise, this always refers to the first day of that month. The heat flux

is close to zero in regions where ice is expected, like the Baffin and Hudson Bay and the

Nordic Seas in February and along the coast of the Antarctica in July. For the calculation

of thermodynamic sea ice growth, an open water heat flux field would be needed (see

section 3.1). This prescribed heat flux is too low and does not lead to accurate sea ice

growth.

The sea ice growth is not only determined by Qnet but also by other variables. Many of

these are not available in the original version of Veros, e.g. the atmospheric temperature

and humidity. These additionally needed fields are taken from the ECWMF ERA5 re-

analysis (Hersbach et al., 2020). With all of the necessary variables now being available,

the problem is that Qnet as a prescribed field is independent of the current state of the

model while it should be dependent on e.g. ocean surface and atmospheric temperature.

27

Figure 3: Prescribed net ocean surface heat flux in the northern hemisphere in February

(left image) and in the southern hemisphere in July (right image). A positive sign means

heat flux out of the ocean. In this data set an ice cover is assumed, therefore the heat

flux is close to zero in the regions where sea ice is expected. The arctic region above 80°N

is not part of the model region.

6.3 Implementing the Heat Flux Bulk Formula of the MITgcm

To overcome both of these issues, the heat flux bulk formula from the MITgcm is im-

plemented that calculates Qnet from both the atmospheric state and the current state of

the ocean model (Large and Yeager, 2009). The net heat flux is calculated as the sum of

shortwave and longwave radiation and the sensible and latent heat flux:

Qnet = Qsw,net +Qlw,net +Qlat +Qsen (73)

The net shortwave radiation Qsw,net also accounts for the ocean surface albedo. The net

longwave radiation Qlw,net is the sum of the downward and upward longwave radiation.

The upward longwave radiation is calculated from Stefan-Boltzmann’s law according to

Qlw,upward = ϵoceanσT
4
ocean (74)

where ϵocean is the emissivity of the ocean, σ the Stefan-Boltzmann constant and Tocean

the ocean surface temperature. The latent heat flux Qlat is calculated according to

Qlat = ρaLevwclat∆q (75)

28

where Le is the latent heat of evaporation, vw the wind speed, clat the transfer coefficient

of latent heat, and ∆q the difference in specific humidity of the atmosphere and directly

at the ocean surface. The sensible heat flux Qsen is calculated according to

Qsen = ρacpvwcsen∆T (76)

where cp is the specific heat of air, csen the transfer coefficient of sensible heat, and ∆T

the difference in atmospheric temperature and ocean surface temperature.

From the latent heat flux the evaporation rate can be calculated. If this is not done,

a prescribed evaporation field is used which is independent of the current model state.

Calculating the evaporation rate from the latent heat flux and thus from the model state

is therefore more consistent. The evaporation rate E is

E =
Qlat

Leρw
(77)

Using this heat flux and evaporation rate yields an ice distribution shown in Fig. 4 and

5. The ice distribution in February looks realistic with the Baffin and Hudson Bay being

covered with ice and also some ice being present in the Nordic Seas. In July, however, the

ice distribution is no longer physical with large gaps in front of the coast of the Antarctica.

29

Figure 4: Ice thickness distribution in February with the surface heat flux calculated using

the same bulk formula as the MITgcm.

Figure 5: Ice thickness distribution in July with the surface heat flux calculated using the

same bulk formula as the MITgcm.

30

The ice cover is expected to be continuous. As a reference, the MITgcm was run on the

same grid with the same forcing data. The results are displayed in Fig. 6 and 7. There

are no large gaps in the ice cover.

Figure 6: Reference ice thickness distribution in February calculated by the MITgcm using

the same forcing data as the Veros run shown in Fig. 4 and 5.

Figure 7: Reference ice thickness distribution in July calculated by the MITgcm using the

same forcing data as the Veros run shown in Fig. 4 and 5.

31

The gaps in the ice distribution in Veros are due to an increased ocean surface temperature

in these regions. This can easily be verified by setting the ocean surface temperature to

a constant value which then allows for a continuous ice cover to be formed. The other

forcing fields like the air temperature do not show a pattern with local anomalies whereas

the ocean surface temperature (displayed in Fig. 8) shows the same pattern as the ice

distribution with regions close to the coast of the Antarctica where the temperature is

higher. In these regions, the ocean surface temperature is too high for sea ice to be formed,

independently of the other forcing fields.

Figure 8: Ocean surface temperature in July with the surface heat flux calculated using

the same bulk formula as the MITgcm.

6.4 Analysing Veros Using the Simple Sea Ice Mask

There is a simple sea ice model in the original version of Veros. When the ocean surface

temperature is at or below the freezing point and the heat flux is negative, i.e. heat is

leaving the ocean, Veros assumes an ice cover that inhibits any further cooling and sets

the surface forcing to zero. This is realized by

mask = logical_and(temp < -2, forc_temp_surface < 0.0)

forc_temp_surface = where(mask, 0.0, forc_temp_surface)

forc_salt_surface = where(mask, 0.0, forc_salt_surface)

where temp is the ocean surface temperature, forc_temp_surface the heat flux and

forc_salt_surface the salt flux. The ocean surface temperature in July using this sea

32

ice mask instead of Veris is displayed in Fig. 9. The ocean is at the freezing around the

coast of the Antarctica with no isolated regions of higher temperature.

Figure 9: Ocean surface temperature in July using the simple sea ice model of the original

version of Veros.

In this situation, the surface salt flux forc_salt_surface = dS
dt

is not calculated from

forcing data like precipitation but is purely a restoring term that is calculated as a nudging

towards a prescribed field of surface salinity:

dS

dt
=

1

tres
(Sref − S) (78)

where tres is the restoring time scale, Sref the given reference surface salinity, and S the

actual surface salinity.

If the model is run with no surface salt flux, i.e. dS
dt

= 0, the resulting surface temperature

shows regions of larger surface temperature, displayed in Fig. 10. Fig. 11 shows the

development of the surface temperature and salinity and the salt flux of one of the grid

cells with a too high temperature. The left image is with salt restoring, the right without.

The left image shows the expected development of the surface temperature as it is going

down to and staying at the freezing point during southern winter. The salt restoring is

zero or negative throughout the whole year which represent a freshwater flux lowering

the salinity. Without this salt restoring, the salinity is higher and the temperature has a

minimum at around -0.3°C. A possible reason for this could be vertical mixing due to the

higher density of more saline water. After around 110 days, the temperature increases by

33

Figure 10: Ocean surface temperature in July using the simple sea ice model of the original

version of Veros with the surface salt flux being set to zero.

Figure 11: Ocean surface temperature T and salinity S and surface salt flux Sf for a

specific grid cell. The y-axis for the left and the right plot are the same. During these

model runs, the simple sea ice model of the original version of Veros was used, preventing

the temperature from dropping below the freezing point. The left image is from a model

run with salt restoring and the right image from a model run without.

0.5°C over a few days.

If this was due to the surface heat flux, this increase would also be present in the model

run with salt restoring. It is thus most likely that this grid cell needs a negative salt

flux in order for the temperature to reach the freezing point and remain there. The same

analysis is done for other grid cells that have a too high temperature for sea ice formation.

They show the same behaviour: with salt restoring, the salt flux is negative throughout

34

most of the year and the temperature is at the freezing point during winter. Without

salt restoring, the salinity and temperature are higher. In some grid cells, a large sudden

increase in temperature can be observed. An example of this behaviour is displayed in Fig.

12. This could be due to a density threshold that is reached at a certain salinity, leading

to upward mixing of warm water. In fact, most grid cells with too high temperatures

for ice formation show this sudden increase in temperature after staying at the freezing

point for some time instead of the temperature always being too high as in the grid cell

analysed in Fig. 11.

Figure 12: Analysis of another grid cell with a too high temperature, analogous to Fig.

11 (left: with salt restoring, right: without salt restoring).

6.5 Running Veris Combined With Salinity Restoring

In Veris, the salt flux into the ocean is calculated from the model state. In regions of

no ice cover, it is determined by precipitation, evaporation and runoff. In regions of ice

cover, the salt flux is determined by ice growth. For ice growth or melting, and melting

of snow, the salt flux is proportional to the change in ice and snow thickness:

dS

dt Veris
= S

(
(E − P)(1− A)−R− PiA+

∆h

∆t

ρi
ρw

+
∆hs
∆t

ρs
ρw

)
(79)

P is the precipitation rate, R the runoff rate, Pi the precipitation rate that flows through

an ice cover, and ∆h
∆t

and ∆hs

∆t
the changes in mean ice and snow thickness per time step.

If there is an ice cover at some coast, the runoff is assumed to still flow into the ocean

therefore it is not weighted with the ice concentration A. The term Pi is only non-zero

in regions of precipitation and an ice surface temperature larger than the freezing point.

35

Note that the changes in ice and snow thickness are the changes in mean values and are

already implicitly weighted by the ice concentration.

If Veris is run with this calculated salt flux, the surface temperature is too large in some

specific grid cells leading to gaps in the ice cover as shown in section 6.3. In regions of

ice growth, the salt flux is positive due to the ∆h
∆t

ρi
ρw

term. The analysis in section 6.4,

however, led to the conclusion that some grid cells need a negative salt flux/ sufficiently

low salinity for the surface temperature to reach the freezing point and remain there. The

salt flux is therefore modified by adding the restoring term to it:

dS

dt
=
dS

dt V eris
+
dS

dt res
(80)

dS
dt

is the total salt flux that is used by Veros, dS
dt V eris

the salt flux calculated by Veris

according to equation (79), and dS
dt res

the restoring salt flux calculated according to equa-

tion (78). The ice cover from a model run using this configuration is displayed in Fig. 13

and 14. It shows a continuous ice cover. Both in February and in July, there is more sea

ice than in the MITgcm reference run. In regions of sea ice, the ice cover is larger, both in

thickness and extent. In February, Veros has in contrast to the MITgcm also developed

sea ice in the Southern Ocean.

Figure 13: Sea ice distribution in February with the salt flux being calculated as the sum

of the Veris salt flux and the restoring salt flux.

36

Figure 14: Sea ice distribution in July with the salt flux being calculated as the sum of

the Veris salt flux and the restoring salt flux.

Ideally, the restoring term would only be needed in regions of no ice cover. The salt

and freshwater fluxes between atmosphere and ocean in these regions are not based on

conservation as there is no coupled atmosphere model. The atmospheric variables like

temperature and humidity are imported from prescribed fields. In regions of ice cover,

however, the salt fluxes should be modelled correctly. Here, the salt flux is determined

by the interaction of ice and ocean which are interactively coupled and both part of the

model. The salt flux here is thus based on conservation. Based on this, the salt flux is

calculated according to

dS

dt
=
dS

dt V eris
+
dS

dt res
(1− A) (81)

Note that dS
dt V eris

is also given in regions of no ice cover where it is calculated from

precipitation and evaporation (see equation (79)). The ice concentration weighting is

already done in Veris, therefore dS
dt V eris

does not need to be multiplied with A. The

results of a model run using this configuration are displayed in Fig. 15, 16 and 17. The

ice thickness is lower than in the configuration with the salt flux just being the restoring

term but there are no large gaps in the ice cover in July. Later in the year, a large region

of open water is formed in the Weddell Sea.

37

Figure 15: Sea ice distribution in February with the salt flux being weighted by the ice

concentration: In regions of sea ice, the Veris salt flux is used. In regions of open water,

the sum of the Veris salt flux and the restoring salt flux is used.

Figure 16: Sea ice distribution in July with the salt flux being weighted by the ice con-

centration: In regions of sea ice, the Veris salt flux is used. In regions of open water, the

sum of the Veris salt flux and the restoring salt flux is used.

38

Figure 17: Sea ice distribution in September with the salt flux being weighted by the ice

concentration: In regions of sea ice, the Veris salt flux is used. In regions of open water,

the sum of the Veris salt flux and the restoring salt flux is used.

6.6 Comparison With ERA5 Data

When analyzing the output of Veros in this section, model runs with the salt flux into the

ocean being calculated as the sum of the Veris salt flux and the restoring term according to

equation (80) have been used. As a simple evaluation of the modelled sea ice distribution,

the ice concentration is compared to the values taken from ERA5. The monthly mean

values are displayed in Fig. 18 and 19. The forcing data for Veris was taken from ERA5

with the only variables imported from Veros being the ocean surface temperature, salinity

and velocity. The ice thickness is not available in ERA5. The ice concentration in Veros

has values close to one in the whole ice covered region with an abrupt drop to zero at the

ice edge. In ERA5, the ice concentration steadily declines when approaching the ice edge

with values around 0.4 in the outermost grid cells of the ice cover.

39

Figure 18: Monthly mean ice concentration modelled by Veros (left image) and taken

from ERA5 (right image) around the Antarctica in July.

Figure 19: Monthly mean ice concentration modelled by Veros (left image) and taken

from ERA5 (right image) in the northern hemisphere in February.

6.7 Multi-Year Runs

In the previous sections, the first modelling year was analyzed. The atmospheric forcing

data of Veros is prescribed for one year. If Veros is run for longer, the forcing data of the

first year is reused periodically. The sea ice is expected to reach an equilibrium at some

point. Fig. 20 shows the mean ice thickness in the northern and southern hemisphere

during the respective winter over a modelling time of 200 years. This refers to the mean

ice thickness of the grid cells that are covered with sea ice. The mean ice thickness in the

southern hemisphere is increasing in the first few years and then decreases to 49 cm after

40

100 years. The mean ice thickness in the northern hemisphere is continually increasing

until it reaches an equilibrium at 3.39 m after 100 years. Analyzing the mean ice thickness

only during the winter of the respective hemisphere yields the same result. The sea ice is

expected to reach equilibrium much faster than 100 years. This would require an ocean

in equilibrium which is not the initial condition of this model. Therefore the sea ice takes

a longer time to reach equilibrium as the ocean model takes a long time period to spin

up. This can be seen in Fig. 21 where the mean global ocean surface temperature is

displayed. The ice thickness distribution after 100 years is displayed in Fig. 22 and 23.

Figure 20: Mean ice thickness in the northern (left image) and southern (right image)

hemisphere over a modelling time of 200 years.

Figure 21: Mean global ocean surface temperature over a modelling time of 200 years.

41

Figure 22: Mean ice thickness distribution in northern winter after 100 years.

Figure 23: Mean ice thickness distribution in southern winter after 100 years.

There is a significant build up of ice in the northern hemisphere north of the Kara Sea.

In this region the sea ice reaches a thickness of 8 m both in summer and in winter. This

is due to the missing arctic region. Without an Arctic, the region north of Kara Sea is

directly at a boundary. There are no ocean currents from the Arctic that could transport

the sea ice to other regions, leading to a build up. The region also has a width of only

one grid cell in latitude direction, the sea ice is therefore stuck between two boundaries.

42

7 Analyzing The Effects Of The Coastal Drag Param-

eterization To Simulate Landfast Ice

In Veris, two possibilities for the simulation of landfast ice are implemented. The forma-

tion of landfast ice due to ice keels reaching to the ground is parameterized by the basal

drag coefficient cb. The formation of landfast ice due to the ice being fixed to a nearby

coast is either parameterized by a lateral drag coefficient cl in combination with a free-slip

boundary condition or by just using a no-slip boundary condition with no additional drag

coefficient. The total drag coefficient is

cd =

cw + cb using the no-slip boundary condition

cw + cb + cl using the free-slip boundary condition
(82)

A comparison of the zonal ice velocities of a model run with the coastal drag parameter-

ization to one without is shown in Fig. 24 and 25. In these model runs, the salt flux was

calculated as the sum of the Veris salt flux and the restoring term (equation (80)). The ice

velocities at a coast are drastically reduced. The reduction in velocity is larger when using

the second form factor as it yields larger values of the drag coefficient (see section 4.4).

A comparison of the resulting sea ice distribution to the one calculated without coastal

drag is displayed in Fig. 26. The changes in the ice field are the smallest in the Ross

Sea where the ice speed directly at the coast is very small in the configuration without

coastal drag already. Adding the coastal drag parameterization does therefore not lead to

large changes in the ice velocity here. The ice speed without coastal drag is largest south

of the Indian Ocean, leading to the largest reduction in ice speed and ice thickness when

adding the coastal drag parameterization. The ice thickness does not only change directly

at the coast but also further out in the ocean. This is because if the velocity of the grid

cells at the coast changes, the advection into their neighbouring cells further away from

the coast also changes. In general, the ice thickness in the configuration using coastal

drag is larger. Without coastal drag, the ice drifts away from the coast forming regions

of open water. In open water the sea ice growth rate is the largest but as the ice drifts

away from the coast, the mean ice thickness in these regions decreases. There is also ice

drifts northward into regions of warmer water where it melts. This is why the increased

ice production due to more open water does not lead to an accumulation of more sea ice.

With coastal drag, the ice drift into regions where it would melt is reduced and the ice is

43

reaching larger thicknesses.

Figure 24: Left image: Mean ice speed from March to November without coastal drag.

Right image: Mean ice speed with coastal drag using form factor F1.

Figure 25: Mean ice speed from March to November with coastal drag using form factor

F2.

44

Figure 26: Comparison of the ice thickness in July calculated with coastal drag to the ice

thickness calculated without coastal drag (∆h = h−hcoastal drag). Left image: use of form

factor F1. Right image: use of form factor F2.

The criterion used by Liu et al. (2022) to categorize landfast ice is an ice velocity below

5 · 10−4 m/s (corresponding to a drift of 600 m in two weeks) and an ice concentration

larger than 95%. This criterion leads to the landfast frequency displayed in Fig. 27. It

is important to note that the grid cell size used by Liu et al. (2022) is 36km whereas the

grid cell size used in this work is 4°. With smaller grid cells, some cells close to the coast

can be landfast ice while cells further away from the coast are still moving. If they are

represented by a single larger grid cell, its mean velocity can be larger than the landfast

ice criterion. This leads to an underestimation of landfast ice when using lower spatial

resolutions. As a reference the landfast ice frequency obtained from a NASA Moderate

Resolution Imaging Spectroradiometer (MODIS) derived data set with a spatial resolution

of 1km x 1km (Fraser et al., 2020) is shown in Fig. 28. The landfast ice extent is small

compared to the grid cell size of Veros (4° x 4°). Landfast ice is therefore not expected to

be modelled correctly.

45

Figure 27: Landfast ice frequency between March and November (1 corresponds to the

presence of landfast ice at every day).

Figure 28: Landfast ice frequency between March and November (1 corresponds to the

presence of landfast ice at every day). The areas in light blue are shelf ice. This data set

is obtained by satellite remote sensing and has a spatial resolution of 1km x 1km (Fraser

et al., 2020).

46

8 Summary

This work presented the underlying physics and its numerical implementation of a sea ice

model as well as the translation of the model from Fortran to Python. The model was

tested against the original in idealized scenarios with constant forcing before coupling it

to the ocean model Veros. The sea ice distribution calculated from the coupled models

was compared to the MITgcm which was run using the same forcing data. The ice cover

of Veros without any additional tuning showed large gaps in the ice cover. This was

due to a too high ocean surface temperature preventing sea ice growth. By analyzing

the surface temperature and salinity of the original version of Veros using the simple

sea ice mask as sea ice model, it was concluded that the ocean surface temperature is

heavily dependent on the ocean surface salinity. Larger salinities are linked to larger

temperatures in general and often to a sudden increase in temperature in a very short

time period. This is most likely because due the higher density of more saline water,

vertical mixing takes place which brings up warmer water from lower levels. To suppress

this, a salinity restoring can be used that nudges the surface salinity towards a prescribes

value. This salinity restoring is zero or negative in regions of sea ice growth leading to

a lower surface salinity and no vertical mixing. This allows for the surface temperature

to stay at the freezing point during winter. If Veros is run with Veris and this salinity

restoring, the sea ice distribution is physical and does not show gaps of open water in the

first modelling years. In longer runs the ice distribution does show gaps. It is possible to

only use the salinity restoring in regions of open water. Veros does not contain a modelled

atmosphere, therefore the atmosphere-ocean salt flux is not based on conservation. The

salt flux is based on conservation in regions of ice cover where the salt flux is between

the ice model and the ocean model. It is thus expected that these regions do not need

nudging. This configuration showed much better results than the one with no nudging at

all in the sense that the ice cover shows much less gaps. It is much thinner than expected

though and still shows large gaps in the Weddell Sea.

A parameterization of coastal drag to simulate landfast ice is additionally implemented

in Veris. It was shown that this has a large impact on the ice velocities as they were

drastically reduced directly at a coast. This is the expected behaviour of landfast ice.

The overall development of the ice distribution was strongly influenced by this with the

ice thickness being generally larger when using coastal drag, especially directly at the

47

coast. The criterion for landfast ice used by Liu et al. (2022) was not suitable to diagnose

landfast ice in the model runs of this work due to the larger grid cell size used by Veros.

48

9 Discussion

The goal of this work was to translate the sea ice component of the MITgcm into Python

and to couple it to Veros. The coupling was successful in the sense that Veros is now able

to calculate an ice cover in the expected regions. As a reference, the ice distribution is

also calculated by the MITgcm using the same forcing data as Veros. The ice thickness

calculated by Veros was larger than the one calculated by the MITgcm. For the ice cover

to be continuous, a nudging in the salt flux is needed. If the salt flux is directly calcu-

lated from precipitation, evaporation and sea ice growth, the ocean surface temperature

shows regions of higher temperature that are too high for sea ice to form. For Veros to

yield physically sound results with a directly calculated salt flux, an in-depth analysis and

probably modification of its dynamics of vertical mixing is required.

The grid used by Veros only extends to 80°N and does not cover the Arctic region. For

the ocean in the Arctic to be modelled correctly, a coupled sea ice model is crucial as

large parts of the Arctic Ocean are covered by sea ice. As Veros did not have a sea ice

model yet, the Arctic could therefore not be modelled in a realistic form anyway. If a

working sea ice model is implemented, a polar grid can be developed which then allows

for ocean and sea ice modelling in the Arctic. For a comprehensive analysis of the Arctic

Ocean and especially on how the dynamics of the Arctic Ocean change with respect to

sea ice growth and changes in the sea ice field, Veros should be modified to be working

without the salinity restoring. Veros still being dependent on the salinity restoring has

two implications. The sea surface salinity of the Arctic has to be known throughout the

modelling time. This is not directly a problem, as it can be imported from e.g. ERA5,

similar to the atmospheric variables used in this work. If the surface salinity is calculated

by a nudging term, however, the influence of sea ice growth and other processes on it over

longer time scales can not be analyzed. The salt flux due to ice growth in a single time

step can be calculated but the nudging term will prevent the salinity from deviating from

its prescribed value. The dynamics of the ocean are dependent on the surface salinity by

e.g. vertical mixing. If the surface salinity is prescribed and not modelled, the effects of

sea ice on the ocean dynamics can therefore not be comprehensively analyzed. For this to

be possible, the ocean surface fluxes of heat, salt, and momentum need to be calculated

by the sea ice model from the model state. Still, using a configuration with a prescribed

salinity allows for the analysis of the sea ice distribution.

49

Part of the motivation of developing a Python based model was that it is easier to im-

plement new features than in a low-level language like Fortran. Implementing an addi-

tional landfast ice parameterization after the translation and coupling could be done very

quickly. The new parameterization lead to the expected reduction in ice speed close to

the coast. For a more comprehensive analysis a higher spatial resolution is required. This

is generally true for evaluating model outputs and for comparing it to observational data

but it is especially required when analyzing landfast ice. With too large grid cells the

ice speed of a cell will most likely be larger than the landfast ice criterion, leading to

an underestimation of landfast ice. It is possible to use a setup configuration of Veros

that has a higher spatial resolution. This was not done in this work because in these

setups the surface heat flux is treated in a different way, allowing for solar radiation to

penetrate through the upper ocean layer. The calculation of the surface heat forcing of

Veros was changed for this work as the original heat forcing was not suitable to drive a

sea ice model. These changes would also need to be implemented in the configurations

with a higher spatial resolution which requires more extensive work with Veros.

50

10 Outlook

The aspects of possible future work discussed in the last section were all about Veros:

analysing and modifying the dynamics, including the Arctic Ocean in the model region,

and using a higher spatial resolution. There is also scope for development in Veris, briefly

presented in this section.

With Python being a very popular programming language in the scientific community,

there are many libraries that can be used. In future work with Veris, other dynamics

solvers can be imported and implemented.

There are multiple thermodynamics routines in the sea ice component of the MITgcm.

The one translated for this work assumes that the sea ice has both a salinity and heat

capacity of zero. There is another thermodynamics routine in the MITgcm that can be

translated and implemented that includes both a non-zero heat capacity and salinity of

sea ice. The salinity of the sea ice has an impact on the salt flux into the ocean that

is created by freezing and melting. With a heat capacity of zero, no energy is needed

for the warming and cooling of the ice leading to an instantaneous adjustment of the ice

temperature. This leads to the sea ice immediately starting to melt in melting conditions

and also to a faster freezing in freezing conditions. In reality some energy would be needed

for the warming and cooling of the ice. This would lead to a delay between changes in

the surrounding conditions and the respective reaction of the sea ice.

51

References

Arakawa, A. and Lamb, V. R. (1977). Computational design of the basic dynamical

processes of the ucla general circulation model. General circulation models of the at-

mosphere, 17(Supplement C):173–265.

Bouillon, S., Fichefet, T., Legat, V., and Madec, G. (2013). The elastic–viscous–plastic

method revisited. Ocean Modelling, 71:2–12.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula,

G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX:

composable transformations of Python+NumPy programs.

Fraser, A., Massom, R., Ohshima, K., Willmes, S., Kappes, P., Cartwright, J., and Porter-

Smith, R. (2020). Circum-antarctic landfast sea ice extent, 2000–2018. Australian

Antarctic Data Centre, 10.

Gearheard, S., Matumeak, W., Angutikjuaq, I., Maslanik, J., Huntington, H. P., Leavitt,

J., Kagak, D. M., Tigullaraq, G., and Barry, R. G. (2006). “it’s not that simple”: a

collaborative comparison of sea ice environments, their uses, observed changes, and

adaptations in barrow, alaska, usa, and clyde river, nunavut, canada. AMBIO: A

Journal of the Human Environment, 35(4):203–211.

Häfner, D., Jacobsen, R. L., Eden, C., Kristensen, M. R., Jochum, M., Nuterman, R.,

and Vinter, B. (2018). Veros v0. 1–a fast and versatile ocean simulator in pure python.

Geoscientific Model Development, 11(8):3299–3312.

Häfner, D., Nuterman, R., and Jochum, M. (2021). Fast, cheap, and turbulent—global

ocean modeling with gpu acceleration in python. Journal of Advances in Modeling

Earth Systems, 13(12):e2021MS002717.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,

Nicolas, J., Peubey, C., Radu, R., Schepers, D., et al. (2020). The era5 global reanalysis.

Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049.

Hibler, W. and Ip, C. (1995). The effect of sea ice iheology on arctic buoy drift. ASME

APPLIED MECHANICS DIVISION-PUBLICATIONS-AMD, 207:255–255.

52

Hibler, W. D. (1979). A dynamic thermodynamic sea ice model. Journal of physical

oceanography, 9(4):815–846.

Hunke, E. C. and Dukowicz, J. K. (1997). An elastic–viscous–plastic model for sea ice

dynamics. Journal of Physical Oceanography, 27(9):1849–1867.

Kimmritz, M., Danilov, S., and Losch, M. (2015). On the convergence of the modified

elastic–viscous–plastic method for solving the sea ice momentum equation. Journal of

Computational Physics, 296:90–100.

Kimmritz, M., Danilov, S., and Losch, M. (2016). The adaptive evp method for solving

the sea ice momentum equation. Ocean Modelling, 101:59–67.

König Beatty, C. and Holland, D. M. (2010). Modeling landfast sea ice by adding tensile

strength. Journal of Physical Oceanography, 40(1):185–198.

Large, W. and Yeager, S. (2009). The global climatology of an interannually varying

air–sea flux data set. Climate dynamics, 33:341–364.

Lemieux, J.-F., Tremblay, B., Sedláček, J., Tupper, P., Thomas, S., Huard, D., and Au-

clair, J.-P. (2010). Improving the numerical convergence of viscous-plastic sea ice mod-

els with the jacobian-free newton–krylov method. Journal of Computational Physics,

229(8):2840–2852.

Lemieux, J.-F., Tremblay, L. B., Dupont, F., Plante, M., Smith, G. C., and Dumont, D.

(2015). A basal stress parameterization for modeling landfast ice. Journal of Geophysical

Research: Oceans, 120(4):3157–3173.

Liu, Y., Losch, M., Hutter, N., and Mu, L. (2022). A new parameterization of coastal

drag to simulate landfast ice in deep marginal seas in the arctic. Journal of Geophysical

Research: Oceans, 127(6):e2022JC018413.

Losch, M., Menemenlis, D., Campin, J.-M., Heimbach, P., and Hill, C. (2010). On the

formulation of sea-ice models. part 1: Effects of different solver implementations and

parameterizations. Ocean Modelling, 33(1-2):129–144.

Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C. (1997). A finite-volume,

incompressible navier stokes model for studies of the ocean on parallel computers. Jour-

nal of Geophysical Research: Oceans, 102(C3):5753–5766.

53

Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and Stammer-

john, S. E. (2018). Antarctic ice shelf disintegration triggered by sea ice loss and ocean

swell. Nature, 558(7710):383–389.

McPhee, M. G. (1992). Turbulent heat flux in the upper ocean under sea ice. Journal of

Geophysical Research: Oceans, 97(C4):5365–5379.

Parkinson, C. L. and Washington, W. M. (1979). A large-scale numerical model of sea

ice. Journal of Geophysical Research: Oceans, 84(C1):311–337.

Roots, E. (1989). Climate change: high-latitude regions. Climatic Change, 15(1):223–253.

54

	Abstract
	Introduction
	Thermodynamics
	Ice Growth in Open Water
	Ice Growth of an Existing Ice Cover
	Ice Melting due to the Mixed Layer Temperature
	Ice Growth due to the Formation of Snow-Ice

	Dynamics
	Spatial Discretization
	The Viscous-Plastic Rheology
	Stress Terms
	Stress Tensor

	The Elastic-Viscous-Plastic Method
	Parameterizing Landfast Ice
	Advection Scheme

	Fortran to Python Translation
	Translation to Python
	Use of Object Oriented Programming
	Testing the Model Against the MITgcm Reference

	Coupling With Veros
	Order of Operations
	Using the Original Surface Heat Forcing
	Implementing the Heat Flux Bulk Formula of the MITgcm
	Analysing Veros Using the Simple Sea Ice Mask
	Running Veris Combined With Salinity Restoring
	Comparison With ERA5 Data
	Multi-Year Runs

	Analyzing The Effects Of The Coastal Drag Parameterization To Simulate Landfast Ice
	Summary
	Discussion
	Outlook

