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ABSTRACT

Simulations of the ocean, especially those containing biogeochemistry, are often complicated
entities which involve a lot of parameters that govern the behaviour of the system. Many of
these parameters are often uncertain or unknown, and without better tools, ocean physicists
have to resort to tools like random searches or grid searches, which are often infeasible,
especially when used to tune many parameters. This thesis aims to provide a user-friendly,
effective tool by utilising a method called Bayesian Optimisation and developing a GUI to
give users insight into the process and the ability to make adjustments, if needed. The Python
code in the project has been made available as a Python package named veropt, available for
installation through the Python Package Index (PyPI). A series of test experiments are run to
verify the efficacy of the method and compare different parts of it to each other, and finally
the method is tested on three increasingly complex ocean simulations.

The method performed well on the test experiments, showing significant improvements
over random search and getting close to the global maximum in both single objective
experiments. It performed well on the ocean experiments as well, achieving a relative
error of 0.001,0.002 and 0.004 in the three original optimisation runs and 0.0005 in a fourth
optimisation run, where the third ocean simulation was tuned again, this time with a small
change in the set-up.

The optimisation problems provided by the ocean simulations turned out to be lacking in
complexity, not quite serving as decisive demonstrations of the method’s prowess, since they
probably could be tuned satisfactorily by random search as well. Still, we demonstrated the
veropt package’s ability to easily inspect and adjust optimisation runs and then discussed
some of the many ways in which the method can be made even better and more robust in

the future, while maintaining its transparency and adjustability.
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