

U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

N I E L S B O H R I N S T I T U T E

Master’s Thesis in Physics

Automated Parameter Tuning for the Versatile Ocean
Simulator (VEROS)

Ida Lei Stoustrup

Supervisors

James Avery & Markus Jochum

A C K N O W L E D G E M E N T S

First, I want to thank my supervisors, James and Markus, for their great help with this

project, and James especially for taking over when Brian went away for his new job. While

it is by far the most independent project I have worked on at university, requiring a lot of

choices and prioritisations on my part, it was invaluable to have James’ help with the overall

structure, and since I am not an ocean physicist it would have been impossible to set up the

ocean simulations without Markus’ guidance. I’d also like to thank both the eScience group

and Team Ocean for helping me figure out their respective computer clusters so I could run

my experiments on them.

Secondly, I want to thank my parents for letting me come home during the two lockdowns

caused by the COVID-19 pandemic, giving me a safe haven in which to work on my project

and lots of support whenever I felt a bit lost in it all. I also want to thank my roommate

Emma for being suitably impressed with my GUI even when it was just a window with a

button that didn’t do anything and for listening to my ramblings about the project, even

when I got too technical, too fast and lost her five minutes in.

ii

A B S T R A C T

Simulations of the ocean, especially those containing biogeochemistry, are often complicated

entities which involve a lot of parameters that govern the behaviour of the system. Many of

these parameters are often uncertain or unknown, and without better tools, ocean physicists

have to resort to tools like random searches or grid searches, which are often infeasible,

especially when used to tune many parameters. This thesis aims to provide a user-friendly,

effective tool by utilising a method called Bayesian Optimisation and developing a GUI to

give users insight into the process and the ability to make adjustments, if needed. The Python

code in the project has been made available as a Python package named veropt, available for

installation through the Python Package Index (PyPI). A series of test experiments are run to

verify the efficacy of the method and compare different parts of it to each other, and finally

the method is tested on three increasingly complex ocean simulations.

The method performed well on the test experiments, showing significant improvements

over random search and getting close to the global maximum in both single objective

experiments. It performed well on the ocean experiments as well, achieving a relative

error of 0.001, 0.002 and 0.004 in the three original optimisation runs and 0.0005 in a fourth

optimisation run, where the third ocean simulation was tuned again, this time with a small

change in the set-up.

The optimisation problems provided by the ocean simulations turned out to be lacking in

complexity, not quite serving as decisive demonstrations of the method’s prowess, since they

probably could be tuned satisfactorily by random search as well. Still, we demonstrated the

veropt package’s ability to easily inspect and adjust optimisation runs and then discussed

some of the many ways in which the method can be made even better and more robust in

the future, while maintaining its transparency and adjustability.

iii

C O N T E N T S

I I N T R O D U C T I O N

1 I N T R O D U C T I O N A N D O U T L I N E 2

II B A C K G R O U N D

2 O P T I M I S AT I O N 6

2.1 General Strategy . 6

2.2 Assumptions and Limitations . 8

2.3 Gaussian Process Regression . 8

2.3.1 Bayesian Linear Regression . 8

2.3.2 Using Basis Functions . 13

2.3.3 Gaussian Processes . 14

2.3.4 Kernels . 18

2.3.5 Optimisation of kernel parameters . 21

2.4 Acquisition Function . 25

2.4.1 Noisy Upper Confidence Bound . 27

2.4.2 Optimisation of the Acquisition Function 27

2.5 Initial Evaluations . 29

2.6 Prior Information . 31

2.7 Difference Measure . 32

2.8 Multiple Objectives . 34

2.8.1 Normalisation in MOO . 38

3 O C E A N T H E O R Y 39

3.1 The Atlantic Meridional Overturning Circulation 39

3.1.1 Wind-driven Upwelling . 41

3.2 Eddies and Mixing . 42

3.2.1 Parameterising the Isopycnal Mixing 43

3.2.2 Parameterising the Flattening of Isopycnals 44

3.2.3 Spatially Dependant Vertical Mixing (the TKE Closure) 44

4 T H E C O D E 46

iv

C O N T E N T S v

4.1 Design Strategy . 46

4.1.1 Overall Structure . 47

4.1.2 Default Set-up . 48

4.2 The veropt package . 49

4.2.1 Underlying Python Packages . 49

4.2.2 Python Superclasses . 50

4.2.3 The GUI . 55

4.2.4 Saving the Optimiser Class . 58

4.2.5 The Visualisation Tools . 59

4.2.6 Using Priors . 62

4.2.7 Predefined Ocean Objectives . 63

4.2.8 Slurm Tools . 63

4.2.9 The Experiment Class . 64

4.2.10 Simple Example . 64

III T E S T F U N C T I O N S E X P E R I M E N T S

5 T E S T F U N C T I O N E X P E R I M E N T S 67

5.1 BO vs Random Search . 67

5.1.1 Hartmann Test Function . 68

5.1.2 Fitting a Sine . 68

5.1.3 VehicleSafety Test Function . 69

5.2 Tuning Acquisition Function Parameters . 70

5.3 Future Work . 72

IV O C E A N S I M U L AT I O N S

6 O C E A N S I M U L AT I O N S 74

6.1 Optimisation Set-up . 74

6.2 Difference Measure . 74

6.3 Simulation One . 75

6.3.1 The ACC Set-up . 75

6.3.2 Parameterisations . 76

6.3.3 The Optimisation Problem . 76

6.3.4 Test Runs . 77

6.4 Simulation Two . 77

6.4.1 The Optimisation Problem . 78

C O N T E N T S vi

6.4.2 Test Runs . 78

6.5 Simulation Three . 79

6.5.1 The Optimisation Problem . 80

6.5.2 Test Runs . 80

7 R E S U LT S & D I S C U S S I O N 81

7.1 Simulation One . 81

7.2 Simulation Two . 82

7.3 Simulation Three . 86

7.3.1 With A Logarithmic Difference Measure 89

7.4 Overall Evaluation . 91

V C O N C L U S I O N A N D F U T U R E W O R K

8 C O N C L U S I O N 94

9 F U T U R E W O R K 96

9.1 The Python Package . 96

9.2 Prior Information from Ocean Physics . 96

9.3 Space Design, Space Warping Kernel and More 97

9.4 Two Dimensional Objectives . 97

VI A P P E N D I X

10 A P P E N D I X 100

10.1 Examples . 100

10.1.1 Multiple Objectives, Vehicle Safety Test Function 100

10.1.2 Ocean Objective . 101

10.1.3 Slurm Support . 105

Bibliography 106

L I S T O F F I G U R E S

1 Waves crashing at Juno Beach. Photo by Leo Roomets on Unsplash. . 2

2 Ten functions drawn from the a priori distribution (left) and the

posterior (right). The black line gives the mean of the distribution

and in the plot on the right, data (sampled from a linear function with

noise) with standard deviation is shown as well. 13

3 Ten functions drawn from a prior distribution using an RBF kernel

(left) and a corresponding posterior conditioned on some data (right).

The data is just randomly chosen numbers. The blue lines are func-

tions drawn from the distributions, the black lines give the mean of

the distributions and in the plot on the right, data is shown as red stars. 18

4 Ten functions drawn from a prior distribution using an absolute

exponential kernel (left) and a corresponding posterior conditioned

on some data (right). The blue lines are functions drawn from the

distributions, the black lines give the mean of the distributions and

in the plot on the right, data is shown as red stars. 19

5 Ten functions drawn from a prior distribution using a Matern kernel

(left) and a corresponding posterior conditioned on some data (right).

The blue lines are functions drawn from the distributions, the black

lines give the mean of the distributions and in the plot on the right,

data is shown as red stars. 20

6 The MLL and its signi�cant two terms are plotted against the value

of the lengthscale hyperparameter on the left, given an RBF kernel

and a simple test set. On the right the data from the simple test set

is shown and we see the mean of three posterior distributions: One

with the smallest lengthscale we have used, one with the largest and

one with the lengthscale that gives the highest MLL. 24

7 This plot shows the same quantities as in �gure 6, except we are using

a Matern kernel here. 25

vii

L I S T O F F I G U R E S viii

8 Grid search (left) compared to random search (right) for some exam-

ple objective. We see that random search gives us more point on any

one parameter axis. Figure from [11]. 31

9 Example of a non-convex Pareto front. Figure taken from [46]. (The

axes were inverted since we try to �nd a maximum, not a minimum

in this thesis.) . 37

10 Illustration of the hypervolume indicator in two dimensions. We see

how different points contribute to the overall area covered between

the Pareto front and the reference point. Figure from [21]. 37

11 The currents of the AMOC (middle), the Antarctic Circumpolar Cur-

rent (bottom) and currents through the Paci�c Ocean (left and right).

Figure from [24]. 40

12 A vertical schematic of the volume transport and different upwelling

processes of the AMOC. Figure from [24]. 41

13 Overall structure of the veroptpackage. 48

14 The veropt GUI running an optimisation problem with the Brannin

Currin test function. 56

15 Prediction plot for the test problem sine_1param, available in the veropt

package. Above the objective function data and corresponding model

is shown and below the acquisition function is plotted. 59

16 Prediction plot for the Brannin objective in the BranninCurrin test

function from the collection of test functions available in the package

BoTorch. 60

17 Pareo front plot for the Brannin Currin test functions, showing the

distribution of the objective function values for both objectives and

marking the dominating (Pareto-optimal) points in black. We also see

the mean and variance of the candidate points for the next round of

the optimisation. 61

18 The mean (and its uncertainty) of the cumulative best objective func-

tion value for Bayesian optimisation and random search on the test

function Hartmann, available through the BoTorchpackage. 68

19 Mean and its uncertainty of the cumulative best value (left) and

histograms of the �nal best values (right) both for the test function

sine_3params, available in the veroptpackage. 69

L I S T O F F I G U R E S ix

20 Mean and its uncertainty of the cumulative best value when taking

the weighted sum of the three objectives (left) and the mean and its

uncertainty of the cumulative best value of each objective (right),

both of the VehicleSafety test function available in the BoTorchpackage. 71

21 Cumulative best values (of the weighted sum) for the VehicleSafety

function with varying values of a (left) and w (right). 71

22 Physical set-up for the �rst and second ocean simulation. Figure from

[1]. 75

23 Three test runs of the �rst simulations. We see the zonal mean of

the vertically integrated streamfunction at the southern border of the

model as it changes over time for three different values of kj 77

24 Contour plots of the zonally integrated meridional transport for kj =

500 (left) and kj = 1500. 79

25 The vertical minimum of the zonally integrated meridional transport

at different meridional coordinates. 79

26 The vertical minimum of the zonally integrated meridional transport

at 20ºN. 80

27 Objective function values, model predictions and acquisition function

values for the �rst simulation. 82

28 Objective function values at different points for the �rst simulation. . 83

29 Objective function values, model predictions and acquisition function

values for the second simulation. This is a two-dimensional parame-

ter space and we're seeing a slice for each parameter at the point with

the best objective function value. The plot with varying kj is on the

left and the one with varying min (kv) is on the right. 83

30 Prediction plots as in �gure 29 but after re�tting with different length-

scale bounds and with suggested points. 84

31 Three-dimensional �gure from the optimisation of the second sim-

ulation. We see that the points from a parabola. Note that this is an

old �gure from an old run and that's why the labels are so small. See

footnote for details. 85

32 Progress plot for the second simulation. 86

33 Prediction plot for simulation three at step 3, after the model has been

re�tted with wider lengthscale bounds. 86

L I S T O F F I G U R E S x

34 Prediction plot for simulation three, after the �nal step. We note that

the lengthscale has been �tted too small. 87

35 Prediction plot for simulation three after the �nal step. The model has

been re�tted with lengthscale bounds [1.0, 5.0] but behaves erratically. 87

36 Prediction plot for simulation three after the �nal step. The model has

been re�tted with lengthscale bounds [10.0, 12.0] and �ts correctly

but with too little variance. 88

37 Prediction plot for simulation three after the �nal step. The model

has been re�tted with a spectral mixture kernel (SMK). 88

38 Prediction plot for simulation three after the �nal step, here using a

logarithmic distance measure. 89

39 Prediction plot for simulation three after the �nal step, here using a

logarithmic distance measure. 90

40 Progress plots for simulation three. On the left with quadratic differ-

ence measure and on the right with the logarithm of the quadratic

difference measure. 91

L I S T O F TA B L E S

1 Table with the input variables for the class BayesOptimiser. 51

xi

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N A N D O U T L I N E

The ocean is an incredibly complicated system, reigned by numerous differential equations

and only really approachable with simplifying assumptions.

All the same, understanding it and its large-scale currents is of incredible importance, e.g.

to understand the climate of the world and how it might be changed by global warming.

To understand the behaviour of the ocean in greater detail, computer models are therefore

often used to simulate its behaviour. Besides from the great complexity, this is made more

dif�cult by two factors; The great circulations of the ocean take a very long time to come

into equilibrium (up to several centuries) and they depend signi�cantly on small-scale

movements.

This means we have two conditions we'd like to avoid when trying to run a simulation;

We need to run the model for a long time andat a high resolution.

To overcome this problem, a coarser spatial resolution is often chosen and sub-grid

processes are then approximated with parameterisations to make sure the large-scale tracer

developments are still correct. This then leads to a large amount of parameters with unknown

Figure 1: Waves crashing at Juno Beach. Photo by Leo Roomets on Unsplash.

2

I N T R O D U C T I O N A N D O U T L I N E 3

or uncertain values, and when the simulations run, they often behave quite differently than

the real-world ocean.

In order to make the simulations more correct, the parameters with unknown values are

often tunedby comparing part of the model's output to some real-world data and changing

the parameters' value until the output matches the data. In a more physical sense, this means

that we change the behaviour or strength of the parameterisation until some chosen part of

the simulation behaves the same way as its real-world counterpart. This could correspond

to checking that a current runs the right way with the right strength or that some speci�c

kind of algae has the right quantity and distribution.

The goal of this thesis is to develop a tool that can help ocean physicists tune their models

without requiring too many simulation runs and then to test this tool on a couple of ocean

simulations.

Now, for some speci�c tuning problem, we could use domain-speci�c knowledge to

predict its overall structure and what kind of optimisation method might work well. But the

real challenge in developing the kind of tool we're looking for is to create a tool that will

work well not just for onetuning problem but for any tuning problem it might encounter.

This is a big challenge of course, because we don't know what kind of behaviour to

anticipate and thus what kind of optimisation tool that will work well. We could choose

something with randomly varying parts, like an evolutionary algorithm but the problem

here is that since ocean simulations take such a long time to run, we can't expect to get

more than � 100evaluations. This means that any method with signi�cant randomness will

probably be too inef�cient.

What do we do then? Well, one option is a method called Bayesian optimisation in which a

surrogate model is �tted to the data and then optimised in place of the slow ocean simulation.

It requires entering some prior expectations by choosing the form of the surrogate model,

which means that we get direct control over which structure the optimisation is expecting

and, more importantly, that we can change this prior expectation as we want.

Of course, we don't want to make the tool too demanding of the user, so we will try to

�nd a simple default set-up that will hopefully perform well on a wide range of problems,

but we will keep the user as a safe-guard, giving them the tools to inspect the optimisation

and its progress, making sure that everything is running as it should and otherwise adjust it.

To enable the user to do this, we will develop a user interface from which the model can

be inspected and adjusted. This ensures that if the user sets up an optimisation run that

I N T R O D U C T I O N A N D O U T L I N E 4

takes several weeks or months to complete, they will always know that the optimisation is

on the right track, not wasting the computer time that it's occupying.

We will start this thesis by going through the theory for Bayesian optimisation and some

of the many options we have at every part of the method. We will then go through the theory

of the ocean simulations we plan to do. Then we will go through the structure, design and

most important features of the Python code that has been written.

After this theoretical part, we test out the developed method, �rst on a couple of test

functions and then on the ocean simulations themselves.

Part II

B A C K G R O U N D

2
O P T I M I S AT I O N

All I ask is a tall ship and a star to steer

her by.

Mase�eld

Optimisation can be done in many ways and for many different purposes. The focus

in this thesis is on �nding the best parameter values within a highly limited amount of

evaluations (in the order of 100) of the function being optimised. In other words, we are

assuming that the evaluations of the function of interest take a very long time which means

that the time we spend on the optimisation itself can be allowed several minutes if needed

and still be insigni�cant in comparison.

This means that we want to take advantage of the information available as much as

possible and �nd the best possible coordinates for new points, avoiding wasting time with

poorly motivated points that are unlikely to yield anything interesting.

We'll generally assume that we're looking for a maximum during this thesis. This involves

no loss of generality, since one can always change the sign of the function being optimised.

While the ultimate goal of the project is to make an optimisation tool that works well for

the tuning of ocean simulations speci�cally, we do not utilise any ocean theory while setting

up our general optimisation method, so we will talk about the error between the chosen

simulation output and its target value simply as the objective function .

2.1 G E N E R A L S T R AT E G Y

In order to �nd an optimum within a small amount of evaluations, we need to utilise the

information we have already obtained about the function being optimised (i.e. the points

we have already evaluated) to the best of our ability. One way to do this is to create a

surrogate model that tries to predict the behaviour of the objective function. This surrogate

6

2.1 G E N E R A L S T R AT E G Y 7

model should optimally have both a predictive value and a measure of uncertainty at every

coordinate in the function domain, and ideally it should contain all the information we have

about the objective function, allowing us to predict where interesting (high-valued) points

may reside.

There will have to be made some assumptions about the objective function, of course,

since we could �t an in�nite number of functions to any given number of points. More about

this in the next section.

Once we have a surrogate function, we need to use it to �nd out which point(s) we would

prefer to evaluate next. Of course, we'll want to look at areas where the predicted value of

the objective function is high, but we might also want to look at how uncertain our model is,

since areas with high uncertainty might be harbouring maxima that our model just doesn't

have enough information to predict yet. The function that describes the desirability of a

point as the next evaluated point (given the information from the surrogate model) is called

the acquisition function and can take many different forms. To �nd the next point we

simply �nd the maximum of this function. This means that we have to choose a method of

optimisation for this as well. Since the surrogate model does not have the long evaluation

time of the true objective function, we can use a different kind of optimisation for this that

assumes short evaluation time and thus utilises a large amount of evaluated points.

The surrogate model will often have one or more parameters to tune it to the points

evaluated so far. Before this tuning can happen, we will need some data to �t to, so we

always start out an optimisation with some initial evaluations . This can be done randomly

or one can choose a method that aims to �ll out the space in a desirable way.

We can now summarise the optimisation process in the following steps:

Algorithm 1: Overall strategy

Evaluate initial points;

for opt_stepin n_opt_stepsdo

Fit hyper parameters of model to all evaluated points;

Find optimum of acquisition function to obtain new candidate points;

Evaluate objective function at new candidate points;

end

2.2 A S S U M P T I O N S A N D L I M I TAT I O N S 8

2.2 A S S U M P T I O N S A N D L I M I TAT I O N S

In order to approximate the objective function with a surrogate model, we have to make

some assumptions about it. This means we have to either know something about it in

advance or make some general assumptions that will work for a wide range of functions. A

simple assumption could be that the function is continuous and varies with some average

length.

If we don't know anything prior to optimising and can't make a general assumption

like the one above, optimising can become very dif�cult, if not impossible. A worst case

scenario would be some function that had the same value everywhere except for one very

narrow, high-valued peak (essentially a delta-function). With a function like that the best

one can do is to perform a random search and hope to be lucky enough to stumble upon

the right area by chance. Hopefully, the objective functions encountered when optimising

ocean simulations will rarely be so dif�cult. Still, it is important to know that Bayesian

optimisation hinges on the prior assumptions (whether speci�c to the problem or general)

being somewhat reasonable. If the surrogate model fails critically, the method fails and then

something as simple as a random search will perform better. Luckily, the prior information

given to the Bayesian optimisation can be changed by the user during the optimisation, and

so the method can prevail, even if the initial set-up was sub-optimal.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N

One way to construct a surrogate model is to use something called Gaussian process regression.

We will go through the theory of that now.

We start out with simple linear regression, expand that model with basis functions and

then end up using Gaussian processes to do the regression, which we will show gives us an

equivalent to using an in�nite amount of basis functions, without having to explicitly use

the basis functions.

2.3.1 Bayesian Linear Regression

As described above, we want to make a surrogate model that tries to predict the behaviour

of the objective function and we either have no information about the objective function

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 9

(except for a standard set of assumptions) or some case-speci�c initial information about

what kind of function we're expecting.

The question is now how to make a model that gives us the best approximation of the

objective function, given the points we have already evaluated, despite not having an

equation to describe it.

One way to do this could be to just guess and e.g. assume that the function is linear. An

obvious problem with this, of course, is that if the true objective function is not linear, our �t

will fail critically. Making this assumption is thus just a stepping stone on the way to greater

things and we will revoke it soon enough.

This section is inspired by Chapter 2 of [33].

Given the linearity assumption, we can start by �tting a weight for each parameter xi in

the input vector x = [x1, x2..xn] and we'll have that the model takes the form,

f (x) = xTw (1)

where f (x) is the surrogate model and w is a vector of weights. To put it in another way, we

are making the assumption that the objective function has an equation like the following

one:

y = xTw true + e (2)

where y is the objective function, w true is a vector of the true weights and e is Gaussian noise

of the form N (0, s2
n).

The prior knowledge we have in this case would then surmise of the form of the surrogate

model (which here assumes a linear objective function) and whatever guesses we make

about the weights w. One option for the latter is to assume that the weights are Gaussian

distributed with zero mean and some covariance matrix Sw so that,

w � N (0, Sw) (3)

where N (m, s2) signi�es a Gaussian distribution with mean mand variance s2. The � sign

here means that the variable on the left is drawn from the distribution on the right.

We can now look at what these assumptions mean practically. If we know the covariance

matrix Sw, describing the prior information of the weights, we can draw a vector of weights

from the distribution N (0, Sw). We can then use our model f (x) = xTw and evaluate it with

the weights we have drawn, on some function domain we've been given, and we'll see a

linear model with some speci�c slope. In one dimension, this is just a straight line.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 10

If we did this some number of times we would then get a sense of the distribution of

functions that we have chosen with our prior information, in one dimension simply a

distribution of lines with different slopes.

If we choose our a priori information correctly it should be true that the objective function

could be drawn from this distribution of functions, so in this case, the objective function

should be a linear function going through the origin with some slope, the value of which is

reasonably likely given the prior over the weights, N (0, Sw). If this is not true, the surrogate

model will fail to �t the data and our overall method will fail. Now, this might be alarming

to the reader since we have currently chosen a very restricted model that will fail at most

problems, but we will soon show that other prior distributions of functions can be chosen

that will �t (very nearly) any function we might come across. (At least in the sense that the

model will go through all data points. The quality of the �t will always depend upon how

well the objective function corresponds to the prior distribution of functions.)

Another concern regarding our prior information could be whether the prior we have put

on the weights is reasonable. This, however, is not as critical an issue since we can look at

the conditionaldistribution of the weights, once we have evaluated our initial points. To do

this we use Bayes' Theorem which says that,

P(A j B) =
P(B j A)P(A)

P(B)
(4)

where A and B are events with some likeliness and P(A j B) signi�es the likeliness of A

given B. In Bayesian statistical theory P(A j B) is known as the posteriorbecause it collects

the information from the prior P(A) and the likelihoodP(B j A). The denominator P(B) is

called the marginal likelihoodand generally just serves as a normalisation factor.

In our case, the posterior will be p(w j y(X)) , i.e. it gives us the likeliness for some

vector of weights w given the data y at coordinates X. This means that the overall equation

becomes,

p(w j y(X)) =
p(y(X) j w)p(w)

p(y(X))
(5)

Let's go through the different parts of it for our case. The prior is the Gaussian distribution

we put on the weights, so we have,

p(w) = N (0, Sw) (6)

Of course, a part of the overall prior information we're using is also the class of functions

(linear in this case) but we choose not to include it in this equation, instead letting it serve as

an underlying assumption.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 11

Our likelihood is given by the points we have already evaluated, at �rst given by the initial

points we always evaluate at the beginning of an optimisation run. If we assume that the

points are independent we can multiply the probability of each point given a speci�c vector

of weights w. The probability for each individual point can be found by using equation 2

and exchanging the unknown true weights w true for the variable w:

p(y(X) j w) = Õ
i

p(yi (xi) j w) (7)

If we then multiply all the probabilities of each point, we get the following equation for the

likelihood:

p(y(X) j w) = P n
i= 1p(yi (xi) j w) = P n

i= 1N (xT
i w, s2

n) (8)

= P n
i= 1

1
p

2ps n
exp(�

(yi � xT
i w)2

2s2
n

) = N (XTw, s2
n I) (9)

As intuitively must be the case, this is simply a Gaussian with mean XTw and variance

equal to the variance of the noise-parameter e, so when y � XTw is small (i.e. when the

discrepancy between the data and the model is small) the probability of drawing the data

set y (given the weights w) is high.

Notice that if there is no noise, the likelihood must simply be 1.0 if the weights make the

model go straight through the points and 0.0otherwise. This means that if there is no noise,

the likelihood will select (from the prior) exactly the functions that go through all the data

points and the posterior will simply consist of this selection.

In this linear case, this set could maximally consist of one function, but if we didn't have

the linearity assumption and had a larger set of functions in our prior (perhaps an in�nite

amount of functions), the likelihood would pick out all the ones that agreed with the data.

In this case, where we do have noise, the functions in our posterior simply consist of

a distribution of functions where the most likely one are the ones that have the highest

likelihood, i.e. the ones that have the least accumulated distance to the points they run

through.

The marginal likelihood p(y(X)) gives us the likelihood of the data regardless of the

weights. It is called the marginal likelihood because it is calculated by looking at the joint

distribution of the conditional distribution of the data given the weights and the prior

distribution of the weights and then marginalising out the weights by integrating over all

possible values of them;

p(y(X)) =
Z

p(y(X) j w)p(w)dw (10)

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 12

To get an equation for the posterior we now need to multiply the likelihood with the prior

(here choosing to omit the normalisation):

p(w j y(X)) µ p(y(X) j w)p(w) = N (0, Sw) � N (XTw, s2
n I)

=
1

(2ps 2
n)n/2

1

Sw
p

2p
exp(�

jyi � XTw j2

2s2
n

)exp(
1
2

wTSww) (11)

Of course, the product of two Gaussian distributions will give a new unnormalised Gaussian

distribution so the only hassle is to �gure out the mean and variance of this new distribution.

The marginal likelihood becomes trivial because we know that a Gaussian distribution is

normalised by the factor (s
p

2p) � 1where s is the variance.

To �nd the mean and variance of the posterior, we simply need to rewrite the above

equation as a Gaussian distribution. Doing this gives us,

p(w j y(X)) = N
�

1
s2

n
A � 1Xy, A � 1

�
(12)

where A = s � 2
n XX T + S� 1

w .

Now, what have we achieved? We're on our way to �nding a good surrogate model for our

objective function and we've started out with assuming that we could use linear functions to

�t it. We have then used Bayes' Theorem to go from a prior distribution of linear functions

to a posterior distributionof linear functions (more speci�cally a posterior distribution on

the weights w but that is easily translated to a distribution of functions by using equation

1). What remains is then to �gure out how to use this distribution to get an estimate for

the objective function at some speci�c set of coordinates x. Since we're using Bayesian

statistics and have a distribution over the weights w, the predicted value of y is determined

by doing an integration over this distribution, multiplying the posterior p(w j y(X)) by the

conditional probability of some possible value of the objective function f (x) given some

vector of weights w: p(f (x)jw). This means we end up with a distribution for the objective

function value at each point, not just a scalar value;

p(f (x) j y(X)) =
Z

p(f (x)jw)p(w j y(X))dw (13)

Writing out this expression and doing the integral gives us,

p(f (x) j y(X)) = N (
1
s2

n
xT A � 1Xy,xT A � 1x) (14)

Notice that this is simply the posterior distribution of weights, p(w j y(X)) , where the mean

has been multiplied by xT and the variance has been multiplied by xT from the left and x

from the right (which is intuitive since the model is f (x) = xTw).

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 13

Figure 2: Ten functions drawn from the a priori distribution (left) and the posterior (right). The black

line gives the mean of the distribution and in the plot on the right, data (sampled from a

linear function with noise) with standard deviation is shown as well.

We have then arrived at a predictive model for our objective function y, and since it's a

distribution and not a scalar, we can look at the mean if we want a single value and at the

variance for an idea of the uncertainty of the model at that point. The next step is to discard

the assumption that the objective function is linear and expand the �exibility of our model.

In �gure 2, ten functions have been drawn from respectively a prior distribution and a

posterior distribution conditioned on a set of noisy data. Looking at the functions from the

prior distribution, we can see that the distribution of weights has mean zero and a fairly

large variance. In comparison we can see that the posterior weight distribution has a mean

around 3 and a smaller variance because the likelihood has selected group of functions that

go through the data.

2.3.2 Using Basis Functions

How can we expand our linear model to something that can �t any underlying objective

function?

One option is to use a series of basis functions. If we choose a series that has large

expressiveness so that it converges to any reasonably well-behaved, bounded function then

we should be able to model any well-behaved function we might encounter reasonably well

(given that the amount of basis functions we include is large enough).

To implement this we now write a new model;

f (x) = f (x)Tw (15)

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 14

where f (x) is a function that maps the coordinates x to a feature spaceconsisting of these new

basis functions.

The attentive reader will notice that this is actually the same model as the one we used in

equation 1, except we exchangedx with f (x). This means the weights that before simply

gave us the slope of our model, now tells us how much each basis function contributes to our

model. It also means the dimension of the equation changed from nparametersto n f eatureswhere

the �rst scalar gives the amount of parameters we are tuning and the second counts the

amount of basis functions we're using.

Since the model is the same except for this substitution, we get exactly the same equations,

except x is substituted for f (x) everywhere.

Applying this we get that the predictive distribution of our surrogate model is now,

p(f (x) j y(X)) = N (
1
s2

n
f (x)T A � 1f (X)y, f (x)T A � 1f (x)) (16)

where A has been similarly changed to A = s � 2
n f (x)f (x)T + S� 1

w .

Introducing a new entity, k(x, x0) = f (x)TSwf (x0), we can rewrite this equation into the

following form:

p(f (x) j y(X)) = N (k(x, X)(k(X, X) + s2
n I) � 1y,

k(x, x) � k(x, X)(k(X, X) + s2
n I)k(X,x)) (17)

In this form, we can see that the prior information (the chosen basis functions and the prior

weights over them) is collected in the function k(x, x0) which we name the kernelor the

covariance function.

2.3.3 Gaussian Processes

In the previous subsection, we expanded our linear model into a feature space with some

�nite amount of basis functions and thus achieved much better expressiveness and �exibility

of our surrogate model. But what if we could make the model even more �exible by having

an in�nite amount of basis functions? Then we would (given that the series of basis functions

converges to any reasonably well-behaved, bounded function and the objective function is

indeed reasonably well-behaved and bounded) be able to �t any objective function and thus

have all functions in the posterior distribution go exactly through every point in the data (or

through a suitable area around the data points, if the data has noise).

The obvious problem with this, is that so far our prior information is contained in the

covariance function, given by k(x, x0) = f (x)TSwf (x0) which contains two entities that are

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 15

n f eatures-dimensional and would thus gain in�nite dimensionality, if we let the amount of

basis functions go towards in�nity, making the covariance function incomputable.

Unless, of course, we could write those basis functions as an in�nite sum and similarly

write the weights as an in�nite series. This, however might be quite cumbersome to work

with, and the prior information contained in these sums might be quite dif�cult to get a

good, intuitive feeling of. But having gotten this far, we might ask: What if such a sum

could be written as a simple expression with just one term? Then we'd have a simple,

compact expression that for each set of points (x, x0) gave us a scalar just like the expression

f (x)TSwf (x0) would.

To get a better understanding of what kind of information would be contained in such an

expression, we turn our attention towards something entirely new for a moment, something

called stochastic processes, speci�cally the kind called Gaussian processes.

A stochastic process is a collection of random variables where each variable follows the

same statistics in some way, e.g. by being drawn from distributions of the same kind.

A Gaussian process is a stochastic process where each random variable follows a Gaussian

distribution and any �nite collection of these follow a multivariate Gaussian distribution.

The random variables depend on the continuous coordinate x. We write,

GP(x) = GP(m(x), k(x, x0)) (18)

where GP(x) is a Gaussian Process,m(x) is the mean and k(x, x0) is a covariance function.

The last two quantities entirely describe the Gaussian Process. Because the variablex is

continuous, there is an in�nite number of random variables de�ned over some interval of it.

When using a Gaussian Process in practice, however, it is evaluated over a grid and so it

degenerates to a multivariate normal distribution with a �nite number of random variables.

In our case such a series of random variables (and let us just keep them �nite for ease

of understanding) could be a series of (unknown) objective function values f y1, y2..yng at

coordinates f x1, x2..xng, and so a draw of the Gaussian process could give us a possible

sequence of values of the objective function, given that we found a suitable mean and

covariance function.

Knowing the de�nition of a Gaussian process we can look at the quantities m(x) and

k(x, x0). If m(x) is described by a vector of n entries (where n is the amount of variables in

our series), each entry will give the mean for the corresponding random variable, or, in our

case, the mean for the objective function estimate at that coordinate. If k(x, x0) is described

by a matrix of n � n entries, it will contain the covariance of each random variable and thus

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 16

describes the spread of their individual distributions along with their correlation to the other

random variables.

To understand the covariance function better, we might take a look at one often used when

working with Gaussian Processes; The Radial Basis Function (RBF) covariance function. It is

described by the equation,

k(x, x0)RBF = exp(�
jjx � x0jj 2

l
) (19)

where jjx � x0jj is the euclidian distance between points x and x0 and l is the lengthscale

hyperparameterwhich we can choose the value of. More on that later.

First of all, we remark upon that this covariance function is dependent speci�cally on the

squared difference between x and x0, thus making it independent on the absolute position

on the x-axis. This kind of covariance function is called a stationarycovariance function.

Next, we notice that a squared distance of 0 between x and x0will give us a correlation of

1, whereas a large distance will have the correlation descending towards 0. This means that

points close to each other will be highly correlated and thus have similar values, whereas

points far from each other will be near independent. The existence of covariance functions

like this one thus tells us that the draws from the Gaussian Process can be continuous.

Now that we know that the vectors drawn from the Gaussian Process can be continuous

and speci�ed with a mean and interdependence between the points, we might start to see

how it could represent an estimate of our objective function. We notice though, that we,

unlike before, won't be getting an analytical expression, unless we know the basis functions

behind the covariance function.

But as it turns out, it is often possible to expand a given covariance function into a series

of basis functions, and if that series is in�nite, we call the covariance function nondegenerate.

Speci�cally, Mercer's theoremtells us that any positive semide�nite covariance function can

be expanded into a series of basis functions ([33], page 14). For a de�nition of a positive

semide�nite kernel see [29]. Sometimes it's possible to �nd this expansion analytically

and even if that's not possible, it may be possible to approximate the basis functions with

computer algorithms [33].

The good thing about working from the perspective of Gaussian Processes is that we

understand that the covariance function simply tells us the correlation between points at

different locations of the model, and we don't actually need to know the series of basis

functions in order to use a given covariance function, just that it's positive semide�nite and

perhaps whether or not it's degenerate. In other words, we can set up a prior distribution of

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 17

functions simply by stating the interdependence of points, instead of de�ning an in�nite

series of basis functions. Practically, this means that instead of drawing a vector of weights for

our basis functions (when we draw a function from our prior distribution) and multiplying

it by our series of basis functions, we simply draw a vector from our collection of random

variables and this vector then directly represents a function from our prior distribution.

In equation 17, we found the predictive distribution by explicitly using basic functions.

Can we reach the same result only using Gaussian Processes?

Let us begin with the prior distribution. The covariance function of this Gaussian Process

will simply be the one we have chosen to represent our prior information. We just call it

k(x, x0) as we have before. The mean of the Gaussian Process can be chosen depending on

our prior assumptions as well. A usual choice is to simply let it be zero.

Putting this together, our prior distribution is simply,

p(f (x)) = GP(0, k(x, x0)) � N (0, k(x, x0)) (20)

The � sign simply signi�es that the expression on the right of it is evaluated over a grid,

whereas the expression on the left is de�ned over a continuous variable. We use the same

symbols for the mean and covariance function, even though there's a technical difference

there as well; from the continuous functions to their vector/matrix representations.

How do we get to the posterior from here? Well we saw in the earlier subsection that the

posterior is simply the prior times the likelihood (normalised by the marginal likelihood),

and that if we have no noise, the likelihood simply selectsthe functions from the prior that go

through the data. Since we already know that we will be using the method with simulations

that always return the same result given some given parameter values, this is the scenario

we are interested in. This means all we need to do is "reject" all the functions from the prior

that do not correspond with the data.

Of course, actually doing this process would be horribly impractical, but luckily it can be

done ef�ciently by simply conditioning the prior on the data. One might think there is a

problem here: That we do not know the distribution of the data. But if our prior is correct,

the data should follow that distribution. This means we have two multivariate Gaussians,

both de�ned by the covariance function k(x, x0) and a mean of zero. One of them is given by

our data and a �nite Gaussian distribution, while the other is a continuous Gaussian Process,

where we can choose which grid points we want to evaluate it on.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 18

Figure 3: Ten functions drawn from a prior distribution using an RBF kernel (left) and a corresponding

posterior conditioned on some data (right). The data is just randomly chosen numbers. The

blue lines are functions drawn from the distributions, the black lines give the mean of the

distributions and in the plot on the right, data is shown as red stars.

If we choose a grid for the Gaussian Process (thus estimating it with a Gaussian distribu-

tion) and then condition this Gaussian distribution on the Gaussian distribution of the data,

we get the posterior1,

p(f (x) j y(X)) = N (k(x, X)(k(X, X) + s2
n I) � 1y,

k(x, x) � k(x, X)(k(X, X) + s2
n I)k(X,x)) (21)

And we see that whether we look at this problem through the lens of basis functions or

Gaussian Processes we get exactly the same result! So this is completely equivalent to the

basis function approach from the last subsection.

2.3.4 Kernels

As we saw in the previous section, the covariance function or kernel of a Gaussian Process

de�nes its behaviour. Now the question becomes which kernels we might consider when

doing our optimisation process.

In the previous section we looked at the Radial Basis Function kernel. This kernel gives a

distribution of functions where every one of them is in�nitely differentiable and continuous

[38], and the correlation between each point is simple and easy to understand. However,

the smoothness of the functions can sometimes make them rigid and prone to �uctuations

between points if the length scale hyperparameter is large, because the functions have to

be smooth and can't make abrupt turns to go more directly through points that are not

1 See [33] A.2 for how to condition one Gaussian distribution on another.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 19

Figure 4: Ten functions drawn from a prior distribution using an absolute exponential kernel (left)

and a corresponding posterior conditioned on some data (right). The blue lines are functions

drawn from the distributions, the black lines give the mean of the distributions and in the

plot on the right, data is shown as red stars.

directly in their current path. This might induce features in our model that are inconsistent

with the data, unless, of course, the underlying objective function is known to be in�nitely

differentiable itself. With simulation outcomes we don't expect this to be the case.

Another option for a covariance function could then be if we removed the second power

from the RBF kernel and instead did,

k(x, x0)abs_exp = exp(�
jjx � x0jj

l
) (22)

Now this kernel turns out to make functions that are completely indifferentiable [37], look

very noisy and in �gure 4, we see that the posterior mean just draws straight lines through

every point. We have thus gotten rid of the problem of the model "swinging out" in between

points and gotten to a worse alternative: A model that here just performs linear interpolation

between points and won't predict optimum for us like we want it to.

One might wonder if there's something in between these two alternatives that gives us

the behaviour we've been looking for. And it turns out that there is! Its name is the Matern

kernel and the equation is given by,

k(x, x0)Matern =
21� n

G(n)

p

2n
jjx � x0jj

l

! n

Kn

p

2n
jjx � x0jj

l

!

(23)

where G(�) is the gamma function and Kn is the modi�ed Bessel function of the of order n.

This kernel turns out to be dne � 1 differentiable [25] and it is plotted in �gure 5 with

n = 2.5, making it twice differentiable. We see that we have a continuous set of functions

that go through the data nicely without "swinging out" between points like the functions

generated by the RBF kernel did (compare with �gure 3).

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 20

Figure 5: Ten functions drawn from a prior distribution using a Matern kernel (left) and a correspond-

ing posterior conditioned on some data (right). The blue lines are functions drawn from the

distributions, the black lines give the mean of the distributions and in the plot on the right,

data is shown as red stars.

For the default set-up of our method (which won't assume any speci�c properties of

the objective function) this might be a strong contender. It offers a simple correlation

between points (at least if we utilise the information that it is something between an absolute

exponential kernel and an RBF kernel), it easily �ts our relatively dramatically changing

little test problem without any peculiar behaviour and only has a single hyperparameter to

�t.

If we have more speci�c information about a given problem or anticipate a very complex

function structure that we don't believe the Matern kernel will be able to contain, we have

many, manyother options. There are periodic kernels, linear kernels (equivalent to the linear

regression we did in chapter 2) and the rational quadratic kernel, just to mention a few (see

[7] for equations for these and more). Furthermore we can addand multiply different kernels

as we want, since the only requirement is that the kernel stays positive semide�nite.

For more complex kernels, we can mention the Spectral Mixture Kernel (SMK) [42] or the

Deep Kernel [43]. Both of these offer great complexity and can �nd complicated structures

in data. With the SMK we can even tune the amount of complexity by deciding how many

terms in a series to include (see equation 12 in [42]). Similarly in the Deep Kernel (DK), we

can design the Arti�cial Neural Network it incorporates as we wish, with as many layers as

we want. The SMK shows good performance and beats, among others, the Matern kernel

on a number of test sets that all display some kind of complex, periodic behaviour. The

DK is tested on a range of large datasets (compared to the ones we expect to encounter)

but is largely beaten by the SMK. It is shown to do well, however, on a step function full of

discontinuities where the SMK struggles.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 21

Clearly, there are many options (and many well-designed and intelligent options) when

choosing our kernel.

Through all this though, we have to remember: We assume to work with datasets of only

� 100data points and when �tting for the �rst time we might only have � 20points to work

with. As such, many of these complicated kernels are likely to be overly complex unless they

are chosen speci�cally to match the objective function (and even then over-complexity could

certainly still be a problem).

Furthermore and perhaps most importantly, we should go back and remember the follow-

ing: The Matern kernel (if we assume we will just use n = 2.5) only has onehyperparameter

and it is easily understandable. It simply states over which distance we expect the objective

function to change signi�cantly and it can easily be �tted. As a demonstration it could be

mentioned that the lengthscale in �gure 5 was �tted by hand since it's a one dimensional

parameter sweep and is barely worth the trouble of setting up an algorithm.

Many of the other mentioned kernels will mean that we end up with many parameters

that might be internally dependant and thus introduce an additional optimisation problem

into our method. Besides introducing the risk of failing this optimisation and gaining a poor

model for our method, it becomes more dif�cult for the user to adjust the hyperparameters,

should they have undesirable values.

With the Matern kernel, we can visualise the model for the user and give them the option

to change the �tted lengthscale if the �t looks wrong. Furthermore we can start up the

algorithm with easy-to-interpret boundson the hyperparameter that prevent it from being

catastrophically wrong.

Of course, if we knew we had many data points and anticipated objective functions with

complex patterns, using SMK or DK would probably be preferable.

When there are multiple parameters (as there generally are), we can choose a kernel for

each one or choose the same kernel for all and simply �t the hyperparameters individually

to each parameter.

2.3.5 Optimisation of kernel parameters

All of the kernels named above have one or more parameters that we need to choose values

for. Given that these parameters control our prior distribution of functions instead of being

function parameters themselves, we call them hyperparameters.

This chapter is inspired by chapter 5 in [33].

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 22

Being in a Bayesian framework, the obvious thing to do in order to optimise their values,

is to look at the probability of some potential values of them, given some data, i.e. to look at

the posterior of the hyperparameters:

p(q j y(X)) =
p(y(X) j q)p(q)

p(y(X))
(24)

where we use q to signify the hyperparameters, however many there might be.

Now this is a fairly complicated expression but we know that the marginal likelihood in

the denominator just normalises the expression, so we can write,

p(q j y(X)) µ p(y(X) j q)p(q) (25)

Next, we might assume that the prior on the hyper parameters is either �at or just fairly

broad and thus might not in�uence the location of our maximum. What we're left with is

then just the probability p(y(X) j q).

We now write up Bayes' equation for the function values;

p(f (X) j y(X)) =
p(y(X) j f (X)) p(f (X))

p(y(X))
(26)

And if we consider this equation given some speci�c values of the hyperparameters, we get,

p(f (X) j y(X), q) =
p(y(X) j f (X), q)p(f (X), q)

p(y(X), q)
(27)

And we get that the marginallikelihood in this equation is the same as the likelihood we

were looking for. This is useful because seeing the likelihood in this way we can write is as,

p(y(X) j q) =
Z

p(y(X) j f (X), q)p(f (X) j q)df (28)

and we see that we have found an equation that we can use to �nd the likelihood we needed.

Common practice is to take the logarithm of this expression and because of this, it is

commonly known as the marginal log likelihood(MLL). Of course, this is a bit of a vague name

as Bayesian optimisation utilises many likelihoods and any of them could be seen as marginal

if calculated by integrating out some quantity. All the same, this is the name and it can be

shown ([33], page 113) that it is equal to,

log(p(y(X) j q)) = �
1
2

yTK� 1
y y �

1
2

log jKyj �
n
2

log(2p) (29)

where Ky = K f + s2
n I and K f is k(X, X), the covariance matrix for the coordinates of the data

points.

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 23

This equation turns out to be very informative of the behaviour of the MLL, as each term

affects the optimal choice of hyperparameters (and thus the optimal form of the surrogate

model) in different ways. The �rst term gives a measure of how well the model follows

the data, which in the case of no noise on the data is perhaps a little less intuitive than

usual, since all functions in the posterior go through the data points, but the term essentially

measures whether the covariance function predicts the same correlation as is given in the

data vectors y. The second term gives a punishment for complexity (or alternatively, a

reward for simplicity) and the third term gives nothing really, as it's just a normalisation

term and independent of q.

The �rst term is one we would expect from any measure on how good our model is,

but the second is very interesting. When setting up a model, we generally want to avoid

unnecessary complexity that isn't represented in the data (a principle known as Occam's

Razor), and with MLL we actually get this automatically!

Another favourable quality of the MLL is that it becomes more peaked when we have more

data [42]. This basically shows us that the MLL converges towards a speci�c interpretation

of the data when more data is known.

If we were to look at the RBF or Matern kernel for an example, we can look at the

lengthscale hyperparameter they both have and see how it in�uences the MLL.

If we start with the RBF kernel (see �gure 6), we can see that the data-�t term plummets

after the value of � 1.0(left). If we look at the right-hand side plot, where the mean of the

posterior is plotted for the smallest, largest and best lengthscale value, we can see why; For

the lengthscale l = 2.0, the mean of the posterior distribution swings wildly between data

points in a way that is completely unrepresented by the data. This is, as mentioned earlier,

because the RBF kernel is in�nitely differentiable and with a large lengthscale, it can only

get through the quickly changing points by "bending" in between. (Think of trying to force a

very thick, stiff cable through a series of fastenings with varying height.)

Looking at the results from the Matern kernel instead (�gure 7), we see that it doesn't have

this erratic behaviour. Instead we have that the best lengthscale and the largest lengthscale

almost coincide completely. We also notice that at small lengthscales the function value

go towards our chosen prior mean (zero) in between points. This is simply because the

functions in the prior distribution vary so rapidly that they just become noise around the

mean and then "shoot up" to meet each data point. It should be noted that the RBF kernel has

the same behaviour at low lengthscales. Most kernels will probably lead to this behaviour if

2.3 G A U S S I A N P R O C E S S R E G R E S S I O N 24

Figure 6: The MLL and its signi�cant two terms are plotted against the value of the lengthscale

hyperparameter on the left, given an RBF kernel and a simple test set. On the right the

data from the simple test set is shown and we see the mean of three posterior distributions:

One with the smallest lengthscale we have used, one with the largest and one with the

lengthscale that gives the highest MLL.

the hyperparameters are badly �tted in a way such that the prior functions change much,

much more rapidly than the data.

Furthermore, if we look at the left hand side of the plot, we can see the behaviour of the

two terms of the MLL; The data-�t term still falls when we get to the higher lengthscales,

but it doesn't plummet dramatically like it did for the RBF kernel. This term has a maximum

around l � 0.6. The simplicity term rises as the lengthscale becomes longer. This is because

the model is less complex at higher lengthscales where the variations of the model value

happen over a longer distance. This means that if we look between two data points, some of

the functions in our posterior distribution might predict a higher value and some of them

might predict a lower value, but none of them will predict that the value goes up and down

multiple times (see �gure 5). To make an analogy with a well-known subject, we could

think about a Taylor series. A simple Taylor series will just contain a few, low-order terms

that vary simply, whereas a complex one might involve many high-order polynomials that

swing up and down between the data points (if the problem is over-�tted at least). Another

way of putting it is that a lower lengthscale will allow for more variation and will not be

"surprised" (have a low probability) for new data points that lie outside of the current mean.

For example, if we turn up the lengthscale in �gure 5 to 15.0 (the one shown in the �gure is

2.5), all the draws lie exactly on top of the mean, i.e. the probability of values outside of the

mean falls towards 0.

2.4 A C Q U I S I T I O N F U N C T I O N 25

Figure 7: This plot shows the same quantities as in �gure 6, except we are using a Matern kernel here.

When using a kernel with a simple hyperparameter like the lengthscale, it can be a good

idea to set some bounds before letting the optimisation run. By doing this we are guaranteed

not to choose a value that is dramatically low or high. At low lengthscales (before reaching

the point of complete nonsense and bias towards our prior mean), we can over-estimate

the uncertainty between points, because the posterior functions oscillate too much. At high

lengthscales our model turns overly con�dent and we lose the information that is the spread

in our posterior distribution of functions.

An alternative to using MLL could be to use cross validation (especially leave-one-out

cross validation so we still get to utilise all of our precious, sparse data), but we won't go

into this method and its pros and cons in this thesis.

As a �nal note, the Bayesian framework used to �nd an expression for the MLL could also

be used to compare different models, once we have evaluated our initial points, but that has

not been attempted in this thesis.

2.4 A C Q U I S I T I O N F U N C T I O N

Once we have a good surrogate model �tting our objective function, we will need to decide

how to use it for choosing candidate points. To make this decision we introduce an acquisition

function that prioritises the two main sources of information from our model: The mean and

the variance of the posterior distribution.

Naturally, we want to evaluate the objective function at coordinates where the mean of

the model is large, since it then predicts that the objective function will be large there. When

it comes to the variance, however, it is slightly less intuitive, because while a maximum with

2.4 A C Q U I S I T I O N F U N C T I O N 26

low variance of course has its advantages (because we are fairly sure that it is a maximum), a

place with a mean in the middle of our range but a high variance might be host to a hidden

maximum. Furthermore there's an advantage to exploring areas with high variance because

these are often areas where the model is lacking information and evaluating points here

might further our understanding of the objective function.

A simple acquisition function then becomes,

aUCB(x) = m(x) + s2(x)b (30)

where mis the mean of the model, s2 is the variance and b is a tunable parameter.

This acquisition function is called Upper Con�dence Bound(UCB) because it combines the

mean and variance to give a guess at an upper bound (in�uenced by the parameter b) of

how good the objective function is expected to be at some set of coordinates. The parameter

b gives a direct, linear way to set the trade-off known as exploration vs. exploitation, where a

high b will give large exploration and thus will search places with high variance to expand

our knowledge of the objective function by exploring many different regions or �nd maxima

that weren't certainly predicted by the model yet. A low b, on the other hand, will mean

that we're exploiting the regions where we already know that the objective function has a

large value or where the model very certainly predicts that it does.

Another popular acquisition function is the Expected Improvement(EI) function that aims

to calculate the expected increase in function value at any given coordinate set with the

following equation [23]:

aEI(x) = E[max(fmax � f (x), 0)] (31)

where E[�] signi�es the expected value and fmax is the maximum value of the objective

function that we have found so far.

Since this acquisition function integrates over all model values at coordinate vector x,

it automatically uses the spread of the distribution as well as the mean. The advantage

and disadvantage of this acquisition function then becomes the same: It doesn't have any

parameters. This is great as long as it performs well, but if it doesn't we have no way to

adjust its behaviour (i.e. its exploration/exploitation balance).

Furthermore, EI has the advantage that already evaluated points (without noise) will have

acquisition value zero, where they with UCB will simply be a local minimum because the

variance will be zero at the point but larger immediately around it. This however, leads us

to another disadvantagewith EI, which is that it will be zero in large areas and thus might be

dif�cult to �nd the maximum of.

2.4 A C Q U I S I T I O N F U N C T I O N 27

2.4.1 Noisy Upper Con�dence Bound

During initial testing of the method, it sometimes happened that the objective function was

very �at in one parameter, resulting in a nearly �at mean with a slight tilt and a constant

uncertainty. In this case the optimisation could sometimes get stuck at a speci�c value for that

parameter, because there would be a slight maximum on the right or left side of the bounds.

This would keep the parameter from sampling other values and keep the optimisation from

discovering any structure in the objective function along that parameter.

To mitigate this, we propose to add a little bit of Gaussian noise to the acquisition function

and make that noise dependant on the size of the variance, so that more uncertain areas of

the model will get more noise. The proposed acquisition function is called UCBVar and has

the equation,

aUCB_Var(x) = m(x) + s2(x)b + rs2(x)bg (32)

where r is a random number from the normal distribution N (0, 1) and g is a tunable

parameter.

We propose a default value for g of 0.01, so the noise only really makes a different when

the model is very �at in some parameter and won't introduce too much randomness into

our method.

Note that since the noise is larger when the variance is higher, this addition to UCB won't

affect the optimisation when the model is con�dent in its predictions.

Note also that because a random perturbation is chosen every time the acquisition function

is called, a powerful optimisation method like dual annealing might be able to ignore the

noise and still �nd the point with the largest acquisition function value without taking the

noise into account. Given that, it might be favourable to �nd a way to add noise to the

acquisition function that is more constant in the parameter space, but this has not been

further explored in this project.

2.4.2 Optimisation of the Acquisition Function

When optimising the surrogate model instead of the objective function, we have one major

advantage: The surrogate model is quick to evaluate so we can evaluate it lots and lots of

times.

This means we can use any standard global optimisation method we would like, as long as

it performs well and �nishes within some reasonable amount of time. This amount of time is

2.4 A C Q U I S I T I O N F U N C T I O N 28

better chosen too high than too small: Getting stuck in a local maximum of the surrogate

model (or worse: not �nding a maximum at all) and thus choosing a bad candidate point

basically means wasting an entire evaluation of the objective function and if this takes hours

or even days, this is really a critical mistake. Going from e.g. 3 to 6 minutes of optimising the

acquisition function, however, is completely insigni�cant (as long as the objective function

takes much longer), so if that's the price for �nding the right candidate, it's well worth it.

Of methods to use for this optimisation, we can name e.g. Dual Annealing [45] and

multi-start L-BFGS-B (as implemented by the BoTorchPython package [2]). But as mentioned,

any suitable method for global optimisation can be used.

2.4.2.1 With Multiple Points

If we're running multiple evaluations of the objective function at each step of the optimisation,

we need to �nd multiple candidate points at each step as well.

This can be approached either by expanding the acquisition functions to return more

points at one evaluation or by �nding one point at a time and using some criterion to push

the candidates away from each other.

The former is described in [44] and requires using Monte Carlo to approximate the

acquisition function. It has the advantage of attempting to simply expand the criterion used

to �nd one parameter to �nding several, but we won't go further into how it works here.

The latter could be done most simply by making a hard boundary, so after �nding one

point, we don't allow any more inside some radius around it. The disadvantage of this is

that if we were to have two peaks close to each other, we might want to have a candidate

point on each one, and if we are using hard bounds, one of the peaks might get excluded.

Instead, we propose to add a punishment to the acquisition function that increases when

we are close to already-chosen points. A simple choice for this punishment would be a

Gaussian centred around each point we've found so far, so that the acquisition function dips

down around already chosen points. A peak close to a point that is already a candidate

might then still get chosen, if the punishment is not too harsh or too broad.

The scaling of the Gaussian can be chosen to be some fraction of the value of the acquisition

function at that point (without any punishments) to make sure that the punishment always

has the same impact, no matter the scale of the problem.

2.5 I N I T I A L E VA L U AT I O N S 29

This then leaves us with two parameters: a that describes the width of the Gaussian and w

which describes the relative size of the dip. The equation is,

punishment (x) = å
i

a(x) � w � e�jj x� xcand_i jj 2/ a2
(33)

where jj � jj signi�es the Euclidian distance, a(x) is the value of the acquisition function, w

is a parameter, a is a parameter and xcand_i is the i'th candidate point that has already been

found. This punishment is subtracted from the acquisition function during optimisation.

Having the parameters a and w is both an advantage and a disadvantage compared to

using the expansion approach, because we get two simple parameters to control the spread

of the points, but we then have to choose some kind of values for them. We don't expect,

however, that they're overly sensitive or vary too much with each individual problem.

Another advantage over the expansion approach is the simplicity. Understanding exactly

how the expanded version of e.g. UCB works isn't necessarily very easy or intuitive. But

simply adding a punishment to push the points apart is simple and can be easily adjusted

by the user while running an optimisation.

2.5 I N I T I A L E VA L U AT I O N S

Before we can use our model to make educated guesses about where the highest objective

function values might be, we need to give it some data to �t its hyperparameters. This means

that we have to choose someinitial candidate points that �ll the parameter space in some

way.

So how do we choose these points? One simple idea is to do a so-calledgrid searchwhere

we uniformly search the parameter space in a grid structure. This gives us the advantage of

sampling the parameter space with equal spacing. The great disadvantage, however, is that

the grid structure means that we use the same value of a given parameter multiple times

and thus end up with fewer individual values in each dimension than if we chose a structure

where none of the points are overlapping when projected to the axis of a speci�c parameter.

Another option then, is the random searchwhere the parameter values are simply sampled

from a uniform random distribution along every axis. In this method we are not guaranteed

equal spacing between points but with a high amount of evaluations we do get a uniform

sampling of the parameter space. On the other hand we have now dispensed with the

overlapping structure of the grid search, so we now get ninit points on each parameter axis.

The two methods are illustrated in �gure 8.

2.5 I N I T I A L E VA L U AT I O N S 30

In this project, we are assuming generally to have only a small number of evaluations

so the fact that the random sampling becomes uniform at high amounts of points might

not mean much to us. In fact, when sampling a small amount of points we might generally

expect the points to "clump" together (as in �gure 8) and thus give us parts of the parameter

space that are well represented and parts that are not. This leads us to asking whether there

might be a method that ensures good space-�llingas it's called and simultaneously avoids

the overlap issue of the grid search.

In the method called Latin Hypercube Sampling(LHS) we divide each axis of the parameter

space into equally large parts and make sure that none of the points we sample coincide

within the same divisions along each axis. This means that we are guaranteed a large degree

of space-�lling within each separate dimension, but we might still see some amount of

clumping along linear combinations of the axes ([18], chapter 4).

Alternatively we can consider a method called minimax (or the similar one called max-

imin), where the points are spread in a more deterministic fashion to get the minimum

maximum distance (or in maximin, the maximum minimum distance). Either metric spreads

the points out through the search space and avoids "clumping" in any direction.

Either of these could possibly provide a good option, but while space-�lling and uniformity

are both intuitively good, sensible goals for the initial design, there is one thing we have yet

to consider: What kind of sampling does the model need to �t its hyperparameters?

And here, we might immediately see a problem with space-�lling designs: High-frequency

variations might be missed, if all of the points are spread far apart, thus making e.g. the

lengthscale hyperparameter of Matern or RBF models longer than it should be when it is

�tted.

In [47] it is shown through six experiments with problems of increasing dimensionality

(one in the �rst and six in the last) with 30 different lengthscales to be �tted in each experiment

and 1000 realisations of space design in each, that random space design indeed performs

better with a log(MSE) metric (comparing the �tted model to the data) than minimax, but

at the same level as LHS (which probably makes sense as LHS still allows some degree

of "clumpiness", i.e. small distances between points). To investigate which distributions

of pairwise distances performed well in the random designs, they took out the 50 best

performing random designs and looked at the distributions of pairwise distances in these.

They then proposed a design �tted to that distribution called betaand �nally a hybrid design

that combines LHS and beta called lhsbeta. The latter design especially performs well and

2.6 P R I O R I N F O R M AT I O N 31

Figure 8: Grid search (left) compared to random search (right) for some example objective. We see

that random search gives us more point on any one parameter axis. Figure from [11].

outperforms all the above-mentioned designs in nearly all experiments with the exception

that beta sometimes does a little bit better.

Given that these results hold up across other use cases, it might be advisable to use

their design for initialisation. Otherwise doing random sampling or LHS might be the best

alternatives. Minimax should only be used if the lengthscale is known to be long along all

parameter axes.

2.6 P R I O R I N F O R M AT I O N

If we have prior information about which parameter values are more likely to yield the

global maximum of the objective function, we want to use this information.

One simple solution would be to use it when �nding our initial points, by sampling from

this prior distribution over the parameter values, instead of e.g. sampling from a uniform

random distribution as mentioned above. Then our initial points would have a greater

chance of striking high objective function values and thus leading the model quickly to

desirable regions of the parameter space.

A disadvantage of doing this, is that the regions with low probability in the prior would not

be sampled and so our model would attribute them with high uncertainty, which means our

acquisition function would likely have a high value there, causing our method to investigate

by choosing candidate points there.

2.7 D I F F E R E N C E M E A S U R E 32

A solution to this was proposed in [32] where the pairwise distance in the kernel jj x � x00jj 2

is replaced by,

jj f m(xm) � f m(x0
m)jj 2 (34)

where f m is the cumulative distribution function (cdf) of the prior.

This method can be used with any kernel that uses a pairwise distance (i.e. any stationary

kernel) and works by warping the space of the model so that the regions of the parameter

space with high prior likelihood are expanded to �ll up more of the space, while low-

likelihood areas are shrunk to �ll less, in such a way that the prior distribution is �at in

the warped space. If the prior distribution accurately describes the likeliness of �nding the

global maximum, that likeliness will be �at in this warped space as well.

In the article, the method generally outperforms a BO method without prior information

and a method that just samples from the prior distribution (without using BO), but it is not

run against a BO method initialised with the prior.

A disadvantage of the method might be that the warping of the parameter space could

transform a well-behaved objective function into something less �t-able. It might also be

worthwhile to note that the acquisition function cannot immediately use the same transfor-

mation since it doesn't use pairwise distance, and will thus be operating in a different space

than the model, and might then still over-sample the uninteresting regions.

An important note is also that if the prior is wrong and the global optimum is outside of

the regions that have a high prior likelihood, it will be very dif�cult to �nd with this method,

more so than if we just use the prior for sampling the initial points.

A possible alternative might be to simply punish the acquisition function for suggesting

candidate points with low prior likeliness, perhaps by

aUCB_prior(x) = m(x) + s2(x)b � (1 � pprior(x)) tf (35)

where t = abs(m(x) + s2(x)b) and f is some arbitrary constant with range f 2 [0, 1] that

toggles how hard the punishment is. We don't have time to explore this acquisition function

further in this thesis, but mention it in case it sparks inspiration for a future reader.

2.7 D I F F E R E N C E M E A S U R E

In our simulations, our objective function will generally be measuring the difference between

some output of the simulation and some data that we have acquired.

2.7 D I F F E R E N C E M E A S U R E 33

Choosing the metric for this difference in a reasonable way is of great importance, since it

greatly in�uences the shape of the objective function. Of course, the objective function will

also be shaped by how the chosen output depends on the parameter values, and this relation

we don't know. If we did we wouldn't need to run the optimisation at all.

The relationship between the objective function, the difference measure and the simulation

can roughly be written as,

fobj = fdi f f _met(y(X), fsim(p)) (36)

where p signi�es the parameters, fobj is the objective function, fdi f f _met is the difference

measure and fsim(p) is the simulation output as a function of the parameters.

Given all this, we need to make a decision about the difference metric we use, and thus

we need to make an assumption about fsim(p). The simplest thing we can do is to assume

that it's linear, and if we only need to consider a small area - such as the section of the

parameter space close to the global maximum of the objective function - it might be an

alright assumption. If the assumptions holds in that area we will know what our global

maximum looks like and thus how well our model will be able to �t it.

The simplest metric we can imagine is probably the squared difference (with a negative

sign, since we're maximising the objective function). This function has the advantage that it

makes a nice, smooth peak that a kernel like Matern or RBF will have an easy time �tting.

The disadvantage is that the difference is squared so the optimisation will be rewarded

greatly by getting to decent solutions with a few correct digits but won't be rewarded greatly

by getting a large precision on the match between the chosen simulation output and the

data.

The quadratic difference measure is simply,

fobj = � (output � target)2 (37)

This isn't necessarily a problem; It all depends on the problem at hand. If we are optimising

a large amount of objectives or just one very dif�cult objective, this might be exactly what

we want. We will �nd the acceptable areas of the parameter space for an objective and then

be focused on getting the other objectives correct as well.

If, however, we are optimising an output where we would ideally like to get many digits

correct, we will need to choose a different metric.

The least dramatic thing to do would be to simply drop the second power and use the

absolute value of the difference instead. The drawback of this is that the peak of our objective

2.8 M U LT I P L E O B J E C T I V E S 34

will no longer be a smooth parabola but a triangle with a non-differentiable point at the top.

This might prove more challenging for some kernels. It will also still not encourage a very

large precision in the output.

The absolute difference measure is given by,

fobj = � abs(output � target) (38)

A more drastic solution would then be to take the logarithm of the quadratic difference

measure, making our objective function increase linearly when the error falls with an order

of magnitude. The issue with this is that our objective might then get a very narrow peak

that might be challenging for some kernels to �t, since the objective function values will

essentially be diverging as the error approaches zero.

The logarithmic difference measure is given by,

fobj = � log((output � target)2) (39)

2.8 M U LT I P L E O B J E C T I V E S

If we have more than one objective, we need to consider how we �t the data points from

them all and how we choose our candidate points.

The simplest thing to do would be to combine the different objectives with a weighted

sum. Then we'd only need to �t one model, as we did before, and we'd be able to use the

same acquisition functions we did before.

Now, the immediate disadvantage of that is that we are bound to lose information by

collapsing the nobjsdifferent objective functions into one. So �tting one model to a weighted

sum is bound to give us less information than �tting nobjsmodels to nobjsobjective functions.

Given our general situation, where we have little information and lots of time to take

advantage of it, we can immediately see that we don't want to do this.

So we �t one model to each one of our objective functions and thus are left with the

question of how to use our acquisition function, which is designed to consider just one input

variable.

Once again, the simplest thing to do is to simply add the objective function estimates

from the models in a weighted sum and use our acquisition functions as we would with one

objective. To explore why this isn't necessarily a good idea we have to take a step back and

ask ourselves the more fundamental questions: If we used a weighted sum, which weights

would we use? If we have more than one objective, and a given vector of parameter values

2.8 M U LT I P L E O B J E C T I V E S 35

gives us, not a scalar objective function value, but a vector of objective function values,

which data points do we think of as good? If all the objectives were perfectly correlated and

always increased in the same parameter regions, this would be easy, but that isn't necessarily

the case.

The overall answer to these questions is simple: It's subjective. Or rather, it depends on

the user and what their priorities are, for whatever reasons they might have.

To get a deeper answer, we need to introduce some new concepts.

First off, let's represent the vector of objective function values as,

f(x) = [f1(x), f2(x)...fnobjs(x)] (40)

Now, if this vector only has one element, it's easy to de�ne one being superior to another.

If the vector has more elements, things become muddier, because of the above-mentioned

circumstance: Choosing among these points might need a prioritisation by the user.

If, however, the two vectors we're comparing obey the condition that everyelement of the

�rst one is larger than the respective element in the other, we can say without a doubt, that

the �rst one is better. More speci�cally, we say that the �rst vector dominatesthe other one,

or that,

v � u (41)

if,

vi > ui 8 i 2 f 1, ...,nobjsg (42)

If the elements are instead larger than or equal to (� instead of > in the de�nition above) we

sat that v weaklydominates u and we write v � u.

Given this de�nition we can now de�ne a non-dominated solution, as one that is not

dominated by any other solution, and then we can de�ne the set of solutionsthat are non-

dominated. We call this set the Pareto-optimal setand the collection of objective function

values given by it is called the Pareto front.

We have then arrived at a possible goal for multi-objective optimisation: Finding the

Pareto front.

If we know the Pareto front, we know every solution that we might be interested in. The

optimiser can then return these solutions to the user, who can choose which one they want.

Of course, since we have a highly limited amount of evaluations, we don't actually expect

to discover the full shape of the Pareto front. That is, we don't expect enough points to

sample it abundantly, but we can still try to sample it as diversely as possible and try to keep

2.8 M U LT I P L E O B J E C T I V E S 36

�nding points that dominate the ones we already know, getting closer and closer to the true

Pareto front.

The question then becomes how to sample the Pareto-front ef�ciently and without bias.

And now we can return to the discussion of the weighted sum approach!

What we want when using the weighted sum approach, is to sample the points on

the Pareto front that has the speci�c trade-off given by the weights between the different

objectives. In practice, however, we �nd that different sets of weights can lead to the

same points and thus the method gives us a non-uniform sampling of the Pareto front [46].

Furthermore, it only works well with convex Pareto fronts [46]. To give some quick intuition

as to why that is, we can think of an example where we have a mostly convex Pareto Front,

let's say in two dimensions, and we then a little "dent" (see �gure 9) and the Pareto-optimal

point that gives us exactly the trade-off we've requested with our weights happens to lie in

this dent. Let's say that we have weights (0.5, 0.5). If point A has objective values (5.0, 3.0),

point B has values (3.0, 5.0) and C has values (3.5, 3.5), then C is not dominated by either A

or B (it is Pareto-optimal) and it gives us the trade-off we had requested. By using weighted-

sum, however, we would arrive at point A or B because the weighted sum of these points

is 8, while the weighted sum of point C is 7. Now, this might not be such a big problem.

Perhaps the 0.5 value difference in one objective is not particularly important to the user

and they'd rather have the sum be that much higher. But consider another scenario, where

we have found a point where one objective gets a very large value, say 8.0 and the other

objective at that same point is only at 0.5 and that we have another point where we have

the values (4.0, 3.5). The weighted sum method prioritises the �rst point but (depending on

the case and the user!) it might be more desirable to have two decent values rather than one

high and one low, and the weighted sum method might simply not �nd the (4.0, 3.5) point

for the user to choose.

An alternative to the weighted sum method is using the hypervolume indicator.

The hypervolume indicator aims to give a measure of the size of the known Pareto front.

In two dimensions this would simply be the area contained by all Pareto-optimal points and

some chosen reference point, as shown in �gure 10. This reference point is usually chosen to

be the nadir point [4], which is de�ned as the worst value for each objective amongst the

objective values in the dominating objective vectors.

2.8 M U LT I P L E O B J E C T I V E S 37

Figure 9: Example of a non-convex Pareto front. Figure taken from [46]. (The axes were inverted

since we try to �nd a maximum, not a minimum in this thesis.)

Figure 10: Illustration of the hypervolume indicator in two dimensions. We see how different points

contribute to the overall area covered between the Pareto front and the reference point.

Figure from [21].

Generally, the hypervolume indicator can be de�ned as [21],

H (S) = L (
[

p2S
p� r

[p, r]) (43)

where L () is the Lebesque measure and[p, r] = f q 2 Rdj p � q and q � rg is the (hyper)box

contained by the points p and r. d is the amount of objectives. With this de�nition, we see

the hypervolume, as we described above, as the union of all hyperboxes contained by the

reference point r and the dominating objective vectors. Other de�nitions are possible, see

[21].

With the hypervolume indicator we get a measure for MOO that tells us the diversity and

spread of our solutions and grows monotonously as we get closer to the true Pareto front.

It does not require us to state the priorities of our objectives beforehand and thus doesn't

depend heavily on such a choice, like the weighted sum method would.

2.8 M U LT I P L E O B J E C T I V E S 38

In [10] Emmerich, Giannakoglou and Naujoks proposed a version of the Expected Im-

provement acquisition function that utilised the hypervolume indicator, now known as the

Expected Hypervolume Improvement (EHVI). This method essentially replaces the expected

scalar improvement of a single objective in the original EI with the expected improvement

in the hypervolume indicator. As such, it integrates the existing methodology we have

described above with a sensible indicator of our improvement across multiple objectives and

makes a good candidate for our method.

2.8.1 Normalisation in MOO

When we are working with multiple objectives, we suddenly see that an element that previ-

ously did not impact our algorithm much, becomes incredibly in�uential: The normalisation.

Whether we are using a simple weighted sum or a clever approach like the hypervolume

indicator, the normalisation is essential because otherwise, different scaling of our objectives

could mean that one of them completely overshadows the others. Of course, if we know

beforehand that our objectives are in the same scale, we can forego the normalisation.

This isn't necessarily a given though and if we have, e.g. a difference of a factor 103

between objectives, the result is catastrophic in that we only really consider one objective's

improvement when looking at candidate points.

One simple option is to normalise after the initial evaluation so that all objectives are

transformed to have mean 0 and standard deviation 1. Alternatively, one could transform

the objectives to be within the interval [0, 1] or perhaps [� 1, 0] if one wants to converge

towards 0.

The question then becomes whether or not to renormalise after that initial normalisation.

If we don't, we get that an objective will be prioritised more if it is easier with our method to

make improvement past the initial evaluations. This isn't necessarily undesirable behaviour.

An argument in the opposite direction could be that we, with repeated renormalisation,

make sure that all the objectives are always equally weighted.

3
O C E A N T H E O R Y

We neither fear complexity nor embrace

it for its own sake, but rather face it with

the faith that simplicity and

understanding are within reach.

Fred Adler

Across the Atlantic Ocean, an immense amount of water is continuously transported,

running all the way from the Southern Ocean to up above Greenland. This circulation,

named The Atlantic Meridional Overturning Circulation, carries incredible amounts of heat

(up to around 1 PW in the North Atlantic [24]) and is of vital importance to the climate of

the Earth.

In a given model of the world's oceans, it is therefore always an important part and must

be reasonably faithful to the real-world version for the rest of the model to be trustworthy.

For this reason, it makes a good target for tuning an ocean simulation.

3.1 T H E AT L A N T I C M E R I D I O N A L O V E RT U R N I N G C I R C U L AT I O N

The temperature and salinity of the water changes throughout all the world's oceans. They

are the key players in determining the water's density [35] and thus have a large impact on

the ocean's currents.

At the equator, the temperature is high and the amount of water evaporating exceeds

the amount of water added to the ocean through precipitation. This means that both the

temperature and the salinity are high. Note, however, that salinity and temperature affect

the density in opposite ways. A simple formula for the change in density is [39],

r = r 0(1 � aDT + bDS), (44)

39

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Introduction and Outline

	Background
	Background
	Optimisation
	General Strategy
	Assumptions and Limitations
	Gaussian Process Regression
	Bayesian Linear Regression
	Using Basis Functions
	Gaussian Processes
	Kernels
	Optimisation of kernel parameters

	Acquisition Function
	Noisy Upper Confidence Bound
	Optimisation of the Acquisition Function

	Initial Evaluations
	Prior Information
	Difference Measure
	Multiple Objectives
	Normalisation in MOO

	Background

	Ocean Theory
	The Atlantic Meridional Overturning Circulation
	Wind-driven Upwelling

	Eddies and Mixing
	Parameterising the Isopycnal Mixing
	Parameterising the Flattening of Isopycnals
	Spatially Dependant Vertical Mixing (the TKE Closure)

	Background

	The Code
	Design Strategy
	Overall Structure
	Default Set-up

	The veropt package
	Underlying Python Packages
	Python Superclasses
	The GUI
	Saving the Optimiser Class
	The Visualisation Tools
	Using Priors
	Predefined Ocean Objectives
	Slurm Tools
	The Experiment Class
	Simple Example

	Test Functions Experiments
	Experiments
	Test Function Experiments
	BO vs Random Search
	Hartmann Test Function
	Fitting a Sine
	VehicleSafety Test Function

	Tuning Acquisition Function Parameters
	Future Work

	Ocean Simulations
	Ocean Simulations
	Ocean Simulations
	Optimisation Set-up
	Difference Measure
	Simulation One
	The ACC Set-up
	Parameterisations
	The Optimisation Problem
	Test Runs

	Simulation Two
	The Optimisation Problem
	Test Runs

	Simulation Three
	The Optimisation Problem
	Test Runs

	Ocean Simulation Results

	Results & Discussion
	Simulation One
	Simulation Two
	Simulation Three
	With A Logarithmic Difference Measure

	Overall Evaluation

	Conclusion and Future Work
	Conclusion
	Conclusion
	Future Work

	Future Work
	The Python Package
	Prior Information from Ocean Physics
	Space Design, Space Warping Kernel and More
	Two Dimensional Objectives

	Appendix
	Appendix
	Appendix
	Examples
	Multiple Objectives, Vehicle Safety Test Function
	Ocean Objective
	Slurm Support

	Bibliography

