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Abstract—This paper evaluates using event-based scheduling
as a basis for dynamic workflow management. To do this, the
WorkflowRunner is introduced as a tool for conducting event
driven scheduling in a robust manner. It is evaluated in comparison
to Slurm and the WorkflowRunner is found to schedule analysis
roughly 2.5x quicker than Slurm in most cases. An example workflow
is also presented, demonstrating how this style of scheduling allows
for complete modification of the workflow structure at runtime, some-
thing very difficult to achieve in traditional workflow management
systems. These developments are expected to be of particular use in
distributed analysis systems, and in heterogeneous systems such as
those looking to accommodate human-in-the-loop interactions.
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I. INTRODUCTION

Modern scientific research frequently involves the process-
ing of large amounts of experiment data, in long running
jobs, on dedicated hardware. This analysis often comprises of
several different steps and is can be managed by Scientific
Workflow Management Systems (SWMSs). These typically
use Directed Acyclic Graphs (DAGs) as a basis for composing
a workflow, with individual steps linked together in a linear
progression. A DAG allows SWMSs to easily identify different
jobs and their dependencies within a workflow, as well as mak-
ing workflow composition straightforward for users. However,
scientific workflows are exploratory in nature [10], and have
an inherent need to be dynamic [24]. This need is not easily
met through the use of a static DAG, and so alternatives are
needed.

One alternative to the static DAG paradigm is the use of
dynamic schedulers, where jobs are scheduled individually
without a full workflow necessarily being understood at the
start. Managing Event Oriented Workflows (MEOW) [23] is an
example of this. It uses event monitors to respond to file events
by scheduling individual jobs as part of a continuous, live sys-
tem. This can potentially distributes control of the scheduling
across multiple nodes, and enables dynamic processing that is
not possible within a static, sequential system.

A. Existing SWMS Offerings

Unsurprisingly, a large number of tools for constructing and
managing scientific workflows already exist. Many of these
are dedicated tools such as Apache Airflow [18], Kepler [1],
Pegasus [9], Taverna [29], Dask [34], DagOn* [26], Askalon
[15], and DVega [36]. All of these systems use a data-flow
model, where a pipeline of processing is constructed and data
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is passed from process to process. Each process will have
defined inputs and outputs, and should always perform some
modification on the input data. This model is maintained
through the use of one or more DAGs. A DAG is a linked
graph in which nodes are directionally connected such that
a loop is never formed. Thus, a DAG is an easy analogue
for a workflow, with a defined start and end, and with the
dependencies between the different steps trivial to identify. The
DAGs themselves are constructed by the user either through
a web interface, or programatically. More than one DAG may
be provided as individual steps within the workflow may be
smaller workflows themselves.

Typically, the previously mentioned systems do not carry
out processing themselves, but schedule jobs to be executed
using tools such as Kubernetes [21], Slurm [42], Globus [17],
corc [27], WLM [40], Torque [37], UNICORE [4], parsl
[2], cwltool [7], MapReduce [8], or OGE [30]. These can
each also be used on their own, though often have fewer
usability aids such as a GUI. They also typically offer a
lower-level control of job scheduling and frequently will have
fewer extra features such as robust error handling. Several
of these systems can be used in conjunction to create sub-
workflows, though few have specific accommodation for sub-
workflows not written in the same system as themselves. A
note-able exception to this is the ambiguously named Hybrid
Workflows system built on COMPS [3], presented in [41]
and [33]. This presents two types of workflow, in-situ and
task-based. In-situ workflows are run within a single resource.
Task-based workflows however are large, task parallel batches
of processing that may take place over all manner of remote
resources, or be processed locally. Hybrid Workflows uses
Decaf [12] to run in-situ workflows on performance systems.
These in-situ workflows are managed by PyCOMPS [35],
which runs each Decaf workflow as a step in a larger task-
based workflow. This allows for a large chain of analysis, with
individual steps tailored to their specific hardware needs, and
allows users to exploit the benefits of both types of workflow.

One final workflow system that is worth considering is
WED-flows [16]. WED-flows is interesting as it is an event-
driven workflow system. In WED-flows, data is processed
according to user defined trigger conditions. From one of
these triggers a series of processing activities are started, in a
control-flow fashion. The descriptions of WED-flows [16] are
unclear on whether a DAG is specifically used or not in the
creation and scheduling of processing tasks. It would certainly
be a task appropriate for a DAG, and there is no more dynamic
scheduling within those processing tasks than in any other
SWMS. These sub-workflows themselves are not event-driven,
and it is only the scheduling of the entire workflow itself that
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Fig. 1. A top-down workflow structure. Not shown is any data transfer or
dependency between jobs.

is undertaken in response to an event.
Formally, all of these systems could be characterised as

a top-down approach as a central workflow controller is
determining the entire structure ahead of time and dictating
it to individual jobs, as is shown in Figure 1. Here we can see
that a user submits their workflow definitions to the system,
either via a DAG, or something that from which a DAG can
be derived. In either case the workflow controller will use this
DAG to derive the steps. These steps in turn become the basis
for identifying jobs, which are scheduled on resources. No data
transfer or dependency between jobs has been shown in Figure
1, but at some point the final job will complete and any output
will become part of the workflow results. The DAG will also
form part of the results, independent of any job processing,
as it is a very informative and crucial part of the workflow
construction.

This top-down system of scheduling does not properly
accommodate the need for scientific workflows to by dynamic
[24]. This is as scientific workflows are inherently exploratory
in nature, and so analysis should be capable of being changed
at runtime [10]. Workflows should be capable of looping,
branching, or otherwise being adapted at runtime in response
to new knowledge or errors in execution. Many of the previ-
ously listed systems have some accommodation for some of
these systems, but they are often imperfect patches onto an
inherently static design.

B. Dynamic, Event-based Scheduling

An alternative design would be a bottom-up approach.
Rather than a single controller identifying, scheduling and
assigning all workflow jobs, individual jobs will be scheduled
in isolation. By this it is meant that the system does not
actively construct an entire workflow ahead of time, merely
that it identifies individual jobs, as is shown in Figure 2. In
this Figure we can see that as before, a user provides some
definitions. These are not reduced to a DAG but are instead
used as the basis for individual job scheduling. Once jobs
have completed, they may be linked together into steps. These
steps, along with any output from the jobs can then form
the results of the emergent workflow. The word emergent has
been highlighted as it is central to this new approach, and is
fundamental to understanding it. To re-iterate, in a bottom-up
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Fig. 2. A bottom-up workflow structure. Not shown is any data transfer or
dependency between jobs.

workflow system, a user does not actually construct a workflow
directly, they merely create the conditions such that individual
jobs can be scheduled.

One system that adopts a bottom-up design is MEOW [23].
Within MEOW users schedule jobs by defining blocks of
analysis code, referred to as a Recipe, along with the the
conditions under which said processing is scheduled, referred
to as a Pattern. Any combination of valid Patterns and Recipes
are called Rules. The conditions that Rules respond to are
events. For example, a Recipe might be some segmentation
algorithm while a Pattern might identify raw image data being
created at a particular file system location. If both the Pattern
and Recipe are defined then a Rule will be created that any
raw data created at that location will result in the automatic
scheduling of the segmentation analysis on said data. If the
raw data is ever updated then the analysis is also automatically
re-run. The analysis should produce some output, which may
trigger further Rules, and so form a chain of processing. This
will form the design shown in Figure 4.

For an example of where this may be used consider the
workflow structure shown in Figure 3. This shows a complete
scientific analysis made up of six distinct systems, with
the analysis within it scheduled in response to file events,
such as a data file being written as some processing output.
Currently, workflows like this exist at a variety of levels in
scientific processing. For instance, this could represent many
of the experiments carried out at large scientific experiment
institutions such as EuXFEL [13] or MAX IV [25], In these
typically researchers gather large amounts of data from in-
struments which must be initially cleaned up before being
passed into some local storage. This local storage is limited
and so data will need to be moved to longer term storage
from where researchers will schedule varying forms of analysis
using a variety of processing platforms, usually not local to
the data storage. This style of workflow is not limited to
large institutions, with smaller experiments using a similar
structure of having to gather data then moving it between
many specialised storage and compute systems throughout the
lifetime of workflow [38].
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Fig. 4. MEOW’s event-driven design structure.

MEOW is well suited to this system for three core reasons.
Firstly, in such a distributed system there is no obvious point
of central control from which a more traditional SWMS can
operate to accommodate the entire workflow from end to
end. For example, while much analysis and storage can be
managed remotely from a users personal workstation, the
operation of scientific instruments often cannot be. Similarly,
many dedicated analysis systems require access from on site,
or from within specific networks.

Secondly, as there is more demand for heterogeneous sys-
tems or human-in-the-loop interactions, it will become more
difficult to manage such a range of resources from a single
script or tool. Whilst tools such as CUDA exist to hand off
processing from a CPU to a GPU, such tools do not always
exist for every piece of dedicated hardware or instrument.
A lower level, generic approach such as reacting to data
being produced simplifies what would otherwise be complex
communication between different hardware systems.

Third and lastly, as the platforms for analysis become more
disjointed, there is an expected to be an increased likelihood
of errors throughout the workflow, especially in light of their
exploratory nature. Moving data across networks is expensive
in both time and data-usage and so repeated processing of al-
ready correct data should be avoided. By completing each job
in isolation, MEOW can easily maintain completed analysis
without one single error discarding an entire run of processing.

II. A WORKFLOW RUNNER

MEOW was designed initially to function as part of a grid
management solution, the Minimum intrusion Grid (MiG) [5].

User Worker n Timer n

State 
Monitor Admin Worker 1 Timer 1

File 
Monitor Queue Logger

... ...

Fig. 5. Process structure of the WorkflowRunner, showing individual
processes and their interactions. Connections to the logger have not been
omitted for brevity. Secondary connections used only for replies are shown
in dotted lines. Zero to n workers are created based on user input.

The MiG is a large grid solution, and so obviously not suited
to be deployed onto a wide variety of resources. Therefore,
if we are to use the MEOW system outlined within it on
varied hardware, then a new, smaller tool that only implements
the event driven scheduling would be needed. To do this, a
construct was created within the Python package mig_meow
[22] for running MEOW systems locally on any machine
capable of running Python 3. This tool was given the name
WorkflowRunner. It is intended as a proof of concept of
how event driven scheduling implementations can be used
on individual resources, but also as a robust and performant
implementation in its own right. Therefore it was designed
with a parallel internal structure. To ensure freedom from
deadlock and livelock a design utilising the principles of
Communicating Sequential Processes (CSP) [19] was adopted
as shown in Figure 5. As no circular loop of processing
interactions exist we can conclude in accordance with CSP
that it is impossible for this system to deadlock or livelock.

The USER process: The User process is the base process
in which the constructor for the WorkflowRunner is called,
and from which a WorkflowRunner object is returned. The
WorkflowRunner object is then used as the entry point
for any user interaction, with each sending an appropriate
message to the Admin process. A response is always expected
from the Admin. An exhaustive list of all provided functions
will not be provided here, though they include all necessary
functions for the creation, updating and deleting of Patterns
and Recipes, and for monitoring the continued status of the
WorkflowRunner

The STATE MONITOR process: Both the
State Monitor and File Monitor inherit from the



4

PatternMatchingEventHandler, part of the
watchdog API [39]. This catches file events. All defined
Patterns and Recipes are saved to disk where they can be
modified by a user. Any changes are picked up by the State
Monitor and are reported to the Admin process. No response
is ever expected from the Admin, so the State Monitor
process should never be blocked, and is therefore always able
to process new events.

The FILE MONITOR process: The File Monitor is
identical to the State Monitor process, though rather than the
internal directory for Patterns and Recipes, it monitors the
wider file system, .

The ADMIN process: By far the most complex process is
the Admin. It maintains the in-memory state of the runner, in
which all currently registered Patterns and Recipes are stored
and appropriate Rules are created. Updates to this state are
provided by the State Monitor process.The Admin process will
also receive input from the File Monitor. These events will be
compared against the current Rules. If the event path matches
a Rule, then the Admin will create a new job, and send its ID
to the Queue.

As well as this core functionality, the Admin deals with
requests from the User process, such as the previously men-
tioned adding or modifying Patterns and Recipes. Some re-
quests, such as to query the current queue composition require
further messages to be sent to the Queue before a response can
be generated, but a response is inevitable and provided as soon
as possible. The Admin process utilises a wait statement to
hang until receiving input from either the State monitor, User,
or File Monitor processes. These three inputs are prioritised
in the order given, so that if multiple are available at the same
time, only the first is read and processed.

Messages from the State Monitor are always of the highest
priority as a fresh state will always be needed by the Admin.
Changes in the state file system will also be finite in nature.
Secondly, are messages from the User process, which can be
replied to on a human time-frame. This means that they do not
need to be responded to within nanoseconds and so can wait
behind any State Monitor updates. Lastly, this leaves the File
Monitor. This may produce a theoretically infinite number of
messages as there is no limit on the number of files created
or updated by jobs. Despite this being an unlikely use case,
it is nevertheless a possibility and should be accounted for,
therefore it must be the lowest priority as anything behind it
could be eternally starved in this scenario.

The WORKER process: Jobs are executed within the
Worker processes. The amount of these to be spawned is
determined by the user, and at least one is needed if the
workflow runner is to process jobs. A Worker will request a
job from the Queue process. If a job is available, the ID will
be sent to the Worker, and it will be executed. The job itself is
processed by first parameterizing the input notebook using the
python module notebook_parameterizer [28]. This is
then run using papermill [31] in the same manner as is
done on the MiG. Once execution has been completed, the
job files are copied into a separate job output directory where
they can be individually inspected. Jobs may produce output
directly into the data directory, monitored by the File Monitor,

Laptop Threadripper
Cores 4 16
Hyperthreads 8 32
Processor i7-8550U Threadripper 1950X
Clockspeed 1.8 GHz 3.4 GHz
RAM 8GB 112GB
Disk SSD SSD

TABLE I
RESOURCES USED THROUGHOUT THIS PAPER.

in the same manner as can be done within the MiG. If no job
was available in the Queue, the Worker sends a notification
to its Timer process to start sleeping. If a job completes, or
the Worker is notified by the Timer, it will poll the Queue for
another job. This polling of the Queue will loop until manually
stopped.

The TIMER process: To prevent spamming the Queue
process with requests for new jobs, each Worker has its own
Timer process. This process will wait for a start signal from
their Worker and then sleep. Once the sleep is over, it will
send a signal to the Worker. By having the timer in a separate
process rather than internal to the Worker, the Worker is still
free to receive messages from the Admin, which would not be
the case if it itself were sleeping.

The QUEUE process: The Queue process acts as a buffer
for all jobs that have not yet been processed by a worker. It
accepts messages either from the Admin or any of the Worker
processes. From the Admin, the Queue will either receive the
identity of a new job to be added to the queue, or a request for
the current composition of the queue. Alternatively, any of the
Workers may request the identity of a new job to execute. In
any case, a response is always immediately generated and sent.
It was necessary to separate the queue into its own process,
rather than having it stored within the Admin, as otherwise
there would be a risk of deadlock between Workers and the
Admin.

The LOGGER process: The Logger process is just used
to send debug messages to either the console or a log file.

III. INVESTIGATING FEASIBILITY

In order to recommend MEOW as a system for scheduling
workflow jobs, we should demonstrate that event identification
does not add significant overheads to the scheduling process,
and that such a system is robust even at scale.

A. Testing watchdog Event Identification

As part of demonstrating the robustness of MEOW, we
should test that all file events are caught by watchdog.
Such a test was achieved by starting a monitor process using
watchdog that would count every file event. Several writer
threads would also be started that would concurrently create
as many events as possible. Through testing it was determined
that on the machine being used for the test, four writers each
creating empty files was the fastest way of generating events.
The test code is available at [14], with the results of four tests
in Table II.
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Events Made Events Seen Duration (s) Events (per s)
1,000 1,000 0.35 2857.28

10,000 10,000 3.00 3328.19
100,000 100,000 31.69 3155.38

1,000,000 1,000,000 352.94 2833.31

TABLE II
RESULTS OF THE WATCHDOG TEST. ALL RESULTS ARE A MEAN OF 20

RUNS AND ROUNDED TO 2 DECIMAL PLACES. RUN ON THE LAPTOP
RESOURCE OUTLINED IN TABLE I.

These results demonstrate that event over long periods of
time, watchdog does not get swamped and is capable of
identifying all file system events. This shows that it is capable
of scaling into large systems such as the MiG that may produce
large numbers of data files in a short length of time.

B. Measuring MEOW Overheads

To investigate the overheads involved in a MEOW system,
we first need a baseline to measure against. Here we will use
Slurm. Although not a dedicated SWMS, it is a tool for the
mass scheduling of jobs on distributed clusters of resources
and so has a similar use case to MEOW. Each of the following
tests were run in dedicated Docker [11] containers which can
all be found at [14]. All tests were repeated 10 times to get a
mean result, and each test was run from 10 to 500 jobs. These
tests were not run evenly however, with the amount of jobs
increasing at an accelerated rate as the jobs increase. This is
as it was expected that the finer trends would be apparent with
low amounts of jobs, while the overall relationship should be
obvious with only a few larger tests.

Each test was run on both resources outlined in Table I.
The laptop is a small machine, representative of the lower
powered machines most researchers have as a personal work-
station. Meanwhile the threadripper is a custom built machine
designed for massive processing of scientific problems. As
many of the tests are not explicitly parallelised, there will
not be a massive performance difference between the two, but
the threadripper will be less prone to being swamped by new
threads or context switching, and as a desktop it will have
much better cooling capabilities than a laptop. Due to space
requirements, only the most pertinent results will be shown
here, but full results can be seen at [14].

C. Overheads in Slurm

Slurm has two basic methods of scheduling jobs, srun
and sbatch. Both will schedule one or more jobs, though
srun is a blocking operation, where a user must wait for all
jobs to schedule and execute before their script or terminal
can progress. In contrast, sbatch schedules jobs in the
background and so is a non-blocking operation. This is more
akin to how the WorkflowRunner and most SWMS work
and so sbatch will be used to measure against in most future
tests.

To get a baseline for Slurm’s performance, both srun and
sbatch were used to schedule large numbers of jobs at once
and how long it took the scheduling to complete was timed.
Note that this does not include the execution time. As MEOW
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Fig. 6. Slurm scheduling durations on the Threadripper.

can also be used for continuous analysis we should also in-
vestigate the overhead of an ongoing system. Another test was
therefore developed where jobs were scheduled individually,
with each job scheduling a new job. This forms a chain of
processing akin to how MEOW is expected to be used. Note
that this second test includes execution times as each job needs
to be executed to schedule the next. The results of all three
tests on the Threadripper are shown in Figure 6. For each test
the scheduling time, execution time, and a combination of both
are shown. In the case of the srun and sbatch tests, the
scheduling time is the pertinent part to look at and has been
highlighted. In the case of the continuous scheduling test it is
the combined time, which has also been highlighted. This is
as the scheduling is in fact only the timing for scheduling the
initial job and so shows an inaccurately fast time, while the
combined time is the actual time for all jobs to be scheduled.

As Slurm is a relatively bare-bones system there is not much
scope for overhead. This is reflected in the demonstrated very
quick scheduling by sbatch. As the test was run with only
a single Slurm worker, srun must wait for jobs to complete
before scheduling the next, leading to the much larger over-
head. Running sbatch sequentially runs is effectively doing
the same thing, as each jobs needs to execute to schedule
the next, but the use of sbatch means that a small amount
of concurrency can happen between the scheduler and the
processor, hence the slightly decreased overhead as the number
of jobs increases. For low job numbers, the overhead in
repeatedly starting new threads will slow down the sequential
test compared to srun. Significantly, in all three tests the
scheduling time per job is increasing linearly, meaning that
Slurm will scale very well with larger job submissions.

D. Overheads in the WorkflowRunner

Within the WorkflowRunner, overheads will consist of
the sum of the following components: Event identification in
watchdog, Rule lookup, creating one or more new jobs, as
well as any associated orchestration overhead. To help identify
how much each of these components contribute to the total
overhead, as well as to identify additional overheads, five
different experiments were created. Unless otherwise noted
the Recipe in each is some inconsequential execution. The
five experiments would are as follows:

• Single Pattern, Multiple Files (SPMF). In this ex-
periment a single Pattern would be created that would
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trigger on any file event within a directory. N files would
then be created within the directory, causing the parallel
scheduling of N jobs. This should allow us to identify the
aggregate overheads of MEOW scheduling. This test can
be directly compared against the Slurm sbatch test.

• Single Pattern, Single Files, Parallel Scheduling
(SPSFP). In this experiment a single Pattern would be
created that would trigger on any file event within a di-
rectory. This Pattern would include an N wide parameter
sweep over some variable. A single file would then be
created within the directory, causing the parallel schedul-
ing of N jobs. By comparing this to SPMF we should
be able to identify the overhead caused by watchdog
and event identification, by minimising it within this
experiment. This test can be directly compared against
the Slurm sbatch test.

• Single Pattern, Single Files, Sequential Scheduling
(SPSFS). In this experiment a single Pattern would be
created that would trigger on any file event within a
directory. The Recipe used by this Pattern would create
another file in the same directory, so triggering the Pattern
again. A variable will also be included so that a file is
only created by the first N-1 jobs. This will result in
sequential scheduling of N jobs. This test should illustrate
the overhead in continuous, looping scheduling, the most
anticipated use-case for a MEOW system. This test can be
directly compared against the Slurm sequential sbatch
test.

• Multiple Patterns, Single File (MPSF). In this exper-
iment N Patterns would be created that would trigger
on any file event within a directory. A single file would
then be created within the directory, causing the parallel
scheduling of N jobs. When compared against the SPMF
experiment, this can isolate the overhead in Rule lookup.
This test can be directly compared against the Slurm
sbatch test.

• Multiple Patterns, Multiple Files (MPMF). In this
experiment N Patterns would be created that would each
trigger on a different specific file within a directory. N
files would then be created within the directory, each
matching to a single Pattern causing the parallel schedul-
ing of N jobs. By comparing this to the other tests we
should be able to identify the expected general overhead
in a live system, where many differing events may happen
at once, as well as the overhead for Pattern lookup in a
larger memory construct compared to the SPMF test. This
test can be directly compared against the Slurm sbatch
test.

The results for the tests run on the Threadripper are shown
in Figure 7 on a logarithmic scale. In the SPMF, MPSF
and SPSFP tests the WorkflowRunner actually comes out
ahead of the Slurm tests, with a speedup of roughly 2.5,
though this varies by experiment and the amount of jobs. In
each case the per-job scheduling time is reasonably constant
demonstrating good scalability in these situations, as can be
seen in Figure 8. The MPMF does not scale as well however,
with it being slower than the Slurm past roughly 100 jobs
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Fig. 7. Logarithmic WorkflowRunner scheduling durations on the Threadrip-
per. The Slurm sbatch has also been shown as a dashed line for comparison.

at once. This is down to two parts. Firstly, each file event
is identified and processed separately, and secondly it takes
time for the WorkflowRunner to navigate the stored Rules.
These overheads each occur in the SPMF or MPSF without
adding any noticeable slowdown, and so at least for up to 500
jobs we can conclude that they are negligible in isolation, but
have a quadratic effect on the per-job time when they both
increase.

The performance of the SPSFS test was roughly 100
times slower than the sequential sbatch test. This is down
to three key overheads, settling, querying, and executing.
Firstly, each event has a ‘settle time’, where to prevent the
WorkflowRunner getting swamped by multiple events from
the same location any events that occur at the same location
and very close in time are represented as a single event. This
means after any single event the File Monitor process will
wait for one second to catch any subsequent events at the
same location. By definition, this will add at least one second
of overhead to processing each event. This will occur in all
tests, but in all others it will occur only once no matter how
many jobs will be eventually scheduled, while in the SPSFS
test it will occur for each sequential job. There is also the
additional overhead of waiting for each job to be executed
in turn. Aside from the raw time taken to execute the code,
which is more complex in the WorkflowRunner jobs than
in the Slurm testing, there will also be a delay inherent in the
Worker process requesting a job from the Queue process. In
these tests the Worker was set to query for new jobs every
second. From all this we can conclude that in these tests at
least the overhead from each of these was roughly a single
second, and totalled 3 seconds. This is significantly slower that
the approximately 0.035s achieved by the sequential sbatch
test. However, it is worth highlighting that was in the case of
the SPMF, MPSF and SPSFP tests, the SPSFS demonstrates
very good scalability as it has a constant per-job overhead
of approximately 3s. This overhead should remain constant
even across a larger system of multiple users operating MEOW
analysis at the same time.

E. Overheads on the MiG

Exactly the same tests were run on the MiG as on the
WorkflowRunner. As with the other tests, the code and
results are available at [14]. As can be seen in Figure 9,
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Fig. 9. Logarithmic MiG scheduling durations on the Threadripper. Each
result is an average of 10 runs. The Slurm sbatch has also been shown as a
dashed line for comparison.

performance from these tests is worse across the board, but
this is to be expected. The MiG is a complete grid management
system rather than a lightweight scheduler, so will always run
much slower than either Slurm or the WorkflowRunner.
With this in mind we shouldn’t be too surprised that generally
the MiG is roughly 25-50 time slower than sbatch. The
sequential test is even slower at roughly 500 times slower
than the sequential sbatch test. It is worth noting that whilst
the SPSFS test demonstrates linear scalability, all others were
quadratic in nature. This is demonstrated in Figure 10 where
we can see that the difference in per-job timings is linear as
the total number of scheduled jobs increases, which results in
a quadratic increase in total scheduling time.

These broad increases are due to the nature of event process-
ing on the MiG. As each event occurs the watchdog monitor
will catch the event by performing some initial processing
such as attaching a timestamp to it, and then matching it
against the current list of Rules. This ‘pre-processing’ is kept
to a minimum, and so any actions from a Rule match being
carried out in a threaded function that must wait for processing
resources to be available. This is done to keep the monitor
process free to catch further events, but means that if many
events happen at once then many different threads will be
started. On the MiG this ‘pre-processing’ is quite extensive,
with a number of authentication and robustness checks needed
to be carried. Matching has been sped up through the use of
regex, but the overheads are unavoidable. As many different
matching events occur at the same time in these tests, more
and more overheads are added by starting so many different
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Fig. 10. Delta in per-job MiG scheduling durations on the Threadripper.
Each result is an average of 10 runs. Note that the SPSFS result have been
excluded as it has a much greater scale that crushes the rest of the results.

threads at the same time. Note that this does not occur on the
WorkflowRunner as this uses the multiprocessing design
does not require starting a new thread for each event.

Whilst it was expected that the MiG would run slowly,
it was not expected that it would run quite as slowly as
it has. Nevertheless, when we look at the results for the
WorkflowRunner we can at least conclude that this is
down to underlying issues within the MiG rather than with
the MEOW system itself. as the same lack of scalability is
not evident in the WorkflowRunner.

F. Evaluating the MEOW overheads

In light of all these tests we can conclude that MEOW
does not add significant overhead to the scheduling process.
It can be used to schedule large amounts of jobs at once,
with a minimum of user definitions. This scheduling will
demonstrate linear scaling when either a large amount of files
or Patterns are in use at one moment. However, when both are
in use at the same time the system can begin to experience
greater and greater overheads. This is especially true in the
MiG implementation. Even in the slowest non-sequential test
(500 Laptop MPMF jobs) it must be remembered that only
0.97s was spent on scheduling each job and most tests ran
considerably quicker than that. It does not seem unreasonable
to expect that most scientific analysis would take considerably
longer than this to complete, and so even this slow scheduling
would quickly fade into the background compared to any
execution time.

Although the scaling on sequential jobs is linear, a consid-
erable amount of time can be spent before all required jobs
are scheduled, as by definition all but one of them must be
executed before they will all have been scheduled. We also see
ever increasing overheads in the MPMF test. This is potentially
concerning if MEOW were to be used as a central controller,
such as in a large grid system like the MiG with many
unique events occurring and being compared against many
unique Patterns. If a sufficiently large enough number of users
were using the system to schedule MEOW analysis, such that
several hundred events were supposed to be triggering several
jobs within the same few second then each user would begin
to see increased overheads in line with the results presented
in Figure 9. However, the proposed event driven systems is
intended as a distributed one, with many schedulers on many
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different resources each with only a few users at any one
time. At the same time, the majority of scientific workflows
do not produce masses of small files, but few large ones.
Therefore, though this poor scalability from the MPMF test
remains noteworthy, it should not be applicable the majority
of MEOW use cases. Even with several users potentially
creating many Patterns and Recipes, and producing numerous
files at different locations, MEOW systems are capable of
automatically scheduling analysis in trivial times at scale,
especially compared to the hours or even days sometimes
experienced in scientific processing. Regardless of the job
processing time, MEOW can be expected to perform faster
than Slurm with roughly a 2.5x speedup. As Slurm is already
a widely adopted tool, this is an acceptable benchmark to pass
and so we can conclude that MEOW has an acceptable level
of performance in its scheduling.

IV. A SELF-MODIFYING WORKFLOW

A simple scientific example of a MEOW workflow has
already been presented within [23] and so instead here we
will examine a more interesting example of the new workflow
structures made possible by the bottom-up design. Namely,
the ability for a MEOW system to be self-modifying, and
construct, modify or remove MEOW constructs at runtime.
This is possible to do on both the MiG and within the new
WorkflowRunner and so will be presented using both.

A. Problem Outline
In this example a user wishes to apply a filter to image data.

However, the required filter regularly changes, even though the
fundamental process does not. The users needs can be met with
MEOW, by designing a system that will take configuration
inputs to create new Patterns. Each of these Patterns will
apply different filters to different data, according to their
configuration. In this system the user only needs to manually
write a single Pattern, and any subsequent requirements will be
met by the MEOW system itself. This problem will therefore
demonstrate how we can construct new MEOW Patterns from
within a MEOW system to fundamentally alter the structure
of the workflow. While Recipes perform the actual analysis,
assembling a Jupyter notebook programmatically has been
demonstrated numerous times before [6], and so will be
overlooked here but is of course just as possible.

What we will create is a single Pattern and Recipe, resulting
in one Rule. This Rule will schedule jobs to construct new
Patterns, based on user provided configurations. The structure
for this system is shown in Figure 11. Here we can see that
our single Rule will respond to any configuration files placed
in the confs/ directory. This Rule will trigger jobs that will
construct new Patterns, which will monitor different locations
for data. These subsequent Pattern will create further Rules,
that then schedule jobs as would be expected in any other
MEOW Rule.

B. Predefined Patterns and Recipes
Before we define a Jupyter notebook for assembling new

Patterns, let us describe the Recipe which the assembled Pat-
terns will use. This is the filter recipe.ipynb Jupyter notebook

data

JobsPattern
Maker

confs

New
Pattern

monitors monitors

creates schedules

Fig. 11. The structure of the self-modifying example.

and in it image data is read in, a filter is applied to this image,
and the filtered image is saved as a new file. The key part is
that the filter command is created from the arguments provided
to the Jupyter notebook. A valid filter command will be any
of the filters available as part of the Python ImageFilter
module [20], part of Pillow [32].

To construct new Pattern that will use the filter recipe.ipynb
Recipe, we will need a second Jupyter notebook. This is
defined in pattern maker recipe.ipynb. This notebook reads in
a configuration YAML file with then contents then parsed and
used to construct a new Pattern programmatically. Once
this new Pattern is complete, it is written to a specified
directory. This is the directory where the WorkflowRunner
will store the MEOW constructs, and is monitored by its
State Monitor process. By writing a new Pattern directly
to this location, we can insert it directly into the state of the
WorkflowRunner.

At the start of the experiment, only a single Pattern
is defined. This defines the directory path to be monitored,
which in this case is just the confs/ directory. All Pattern and
notebook definitions, along with all input and output data files
for both experiments can be seen in [14].

C. Using WorkflowRunner

A script was created to construct the necessary Pattern and
Recipes, and then start a WorkflowRunner instance with
them. Of note is that the internal state directory used by the
WorkflowRunner is manually set to the same directory as
the general file base directory, which in this example will be
the self-modifying/ directory. This means that both the State
Monitor and File Monitor processes will be monitoring the
same directory. Putting the state directory in the same place
as the base file directory makes it easiest to access from within
the jobs, which makes updating the WorkflowRunner state
easier. This does mean there will be two monitors listening
to the same file structure, so there may be some slowdown
in responding to events due to each event being caught and
processed twice. For a small proof-of-concept example like
this on a local system, this will not create a significant
overhead, though the problem will become more pronounced
if used on something larger such as the MiG, and so is not
generally advised.

When the WorkflowRunner is initially created, no data is
present within the confs/ directory, and so no Pattern creation
jobs are scheduled. A user can also easily see the Patterns
and Recipes that are registered in the system as they will each
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filter_recipe.ipynb
pattern_maker_recipe.ipynb

run_self_modifying_example.py
pattern_maker
recipe_filter
recipe_maker
Patch.jpgdata

confs

recipes
patterns

self-modifying

Fig. 12. The file structure of the self-modifying example before any
configuration files are added to the WorkflowRunner. Directories are
shown in orange and files in blue.

be in a patterns/ and recipes/ directory within self-modifying/.
Before we start initiating jobs, we can add some image data in
a data/ directory. This will give us the overall structure shown
in Figure 12. As no new Patterns have yet been created no
processing can take place, even if the WorkflowRunner is
running. To start scheduling some analysis we will need a
configuration file to place in the confs/ directory. Such a file
is shown in Listing 1. This file is a YAML file containing a
number of variable definitions, which match up to the expected
inputs in the pattern maker.ipynb Jupyter notebook. If this file
is placed into the confs/ directory, then the Rule created by
pattern maker will trigger, and a job will be scheduled.

i n p u t p a t h : d a t a / * . j p g
o u t p u t p a t h :

‘{VGRID} / G a u s s i a n B l u r r e d /{FILENAME} ’
f i l t e r : G a u s s i a n B l u r
a r g s :

r a d i u s : 2
Listing 1. input.yml file contents.

This newly scheduled job will use the parameters spec-
ified in input.yml to create a new Pattern, which will
be given the name GaussianBlur radius 2, and will use the
GausianBlur image filter in any resultant jobs. This Pattern
will be saved into the self-modifying/patterns/ directory, and
so picked up by the WorkflowRunner for it to create
a new Rule. As the Rule derived from this pattern will
monitor the data/ directory, and we have already placed an
image file, Patch.jpg in said directory, a job will be imme-
diately scheduled. In accordance with the already presented
definitions, this will produce output which will be saved into
the GaussianBlur directory. The sample input and output
data used in this example are shown in Figure 13. As the
WorkflowRunner is a continuous system, it will continue to
monitor for additional events until the user stops it. Therefore
we could add more data files, in which case more filter jobs
will automatically be scheduled. Alternatively we can also
add more configuration files to the confs/ directory, which
would create new Patterns and then lead to more filter jobs.

Fig. 13. Comparison of the input and output Patch.jpg data, used in the
self-modifying example. Input data from data/Patch.jpg is shown on the left,
with output data at GaussianBlurred/Patch.jpg on the right.

If any of the configuration or data files were changed then the
system would automatically reschedule the analysis without a
user needing to restart anything. If any incorrect configuration
were added, such as asking for a filter that did not exist, then
naturally that job would fail. However that job would fail in
isolation and all others could continue with no additional user
input. This should demonstrate the utility of MEOW as a tool
for scheduling jobs, in a robust, scalable and dynamic manner,
where small parts or even the entire system can be changed
at runtime.

D. Using the MiG

This same example was also carried out on the MiG, show-
ing that although more difficult to achieve, the same results are
possible even on a more restricted MEOW implementation. We
cannot simply manipulate the MEOW state storage location on
the MiG, as this part of the system is entirely hidden from the
user. This is an intentional security feature, so that users do
not manipulate data they do not have access to, or corrupt the
state of a live system.

We can gain some limited access however by manipulat-
ing the mechanisms exposed in the inbuilt JSON messaging
used in the WorkflowWidget [23]. To do so, we need
to define some additional variables used within the MiG.
Therefore we will update the old pattern maker.ipynb, to a
new pattern maker mig.ipynb. Mostly it is the same as before,
but with the addition of the WORKFLOWS SESSION ID,
WORKFLOWS URL and workgroup variables. These will all
be used in the modified pattern maker recipe.ipynb Jupyter
notebook so that it can communicate directly with the MiG. As
the WORKFLOWS SESSION ID is a security feature within
the MiG, it has not been shown in the examples files in [14],
but was of course used in the actual example run. The only
other significant difference is that rather than writing directly
to the state directory, we must instead communicate remotely
with the MiG via JSON requests. In practice, this results in
few code changes however, with locals writes being replaced
with remote messages being sent.
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As expected, once the Pattern and Recipes have been
registered with the MiG, no jobs were scheduled until a file
was added to the confs/ directory. The same data file was
added as before, and the Pattern GaussianBlur radius 2 was
created on the MiG. This itself did not schedule any processing
until the file data/Patch.jpg was added, at which point a second
job was scheduled. This produced identical results to those
shown in Figure 13, and so will not be repeated again here.

This is not an ideal solution however, as it depends on
exposing security features of the MiG. This problem is limited
in scope, as in order for a user to get to this stage they
will need to have access to the MiG in order to spawn
a Jupyter notebook with the necessary WORKFLOWS URL
and WORKFLOWS SESSION ID values. Therefore, as long
as users are sensible with these credentials they will not be
exposing data that would otherwise be secure. It is suspected
that drawing attention to these variables which are otherwise
hidden may encourage users to share them and so exacerbate
the problem.

From a usability perspective though, the pressing problem
is that Patterns and Recipes created in this manner will only
be possible for as long as the WORKFLOWS SESSION ID
remains valid. This is as only a WORKFLOWS SESSION ID
will ever be registered for a user, and they will be regenerated
throughout the lifetime of the MiG. However, creating a
new WORKFLOWS SESSION ID will not update the variables
passed in these Patterns and so when the resultant jobs try to
send a message to the MiG they will be rejected. For this
reason this solution is not suggested as a final implemen-
tation, but merely as a stop-gap demonstration of potential
future functionality. A more robust implementation would be
additional functionality within the MiG such as each job being
assigned its own WORKFLOWS SESSION ID, thus allowing
Patterns and Recipes interactions to be verified without having
to share hard-coded credentials across jobs. A similar system
is already in place on the MiG for SSH users within jobs,
which allows individual job mount requests to be similarly
authenticated, so it is not expected to be a significant challenge
to do that same for MEOW interactions.

E. Concluding The Self-Modifying Example

Although this was somewhat of a toy example, with a simple
configuration file taken as input, this is not the limit of the
possibilities. Any input file could be taken in and parsed so
as to produce new or modified MEOW constructs. Although
only the dynamic creation of Patterns has been shown, it is
perfectly possible for new Recipes to be constructed at runtime
in the same manner, it would just take considerably more lines
of code to create a new Jupyter notebook from scratch.

It is worth noting that we are not limited to merely adding
new constructs, but can modify existing ones if we used some
of the functions included in mig_meow for reading the current
state of the workgroup. Here we could read in definitions, and
write modified values back in the same manner as if we were
altering them programatically within a Jupyter notebook. This
means that a MEOW system can create, modify and delete
itself, or its parts at runtime. It can also make decisions about

when to do so within a suitably written Recipe, and so we can
conclude that MEOW analysis is Turing complete at runtime.
Whilst it would be bold claim to state that this is unique, none
of the currently encountered SWMS have come close to this
level of self modification.

V. CONCLUSIONS

This paper has explored event-based processing as a means
for scheduling workflows in a dynamic and distributed manner.
To better enable this a robust new tool has been introduced,
the WorkflowRunner within mig_meow. Five benchmarks
for event-based scheduling systems have also been described.
These benchmarks demonstrate that event-based scheduling
does not add significant overhead compared to traditional
centrally controlled scheduling. Additionally, a short example
is presented demonstrating how event-based systems can be
so dynamic as to completely rewrite their own structure at
runtime. This is something far more difficult to achieve in
traditional top-down scheduling systems and so allows for
new possibilities in workflow construction. This is expected
to be of particular worth to distributed analysis systems, or in
extremely heterogeneous systems accommodating human-in-
the-loop interactions.
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