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Abstract

The use of chromatographic analytical techniques for in-process monitoring
of impurities is crucial for ensuring the purity of the final pharmaceutical
product and thereby protecting the patient who ultimately receives it. Today
it is industrial practice to assess chromatographic data by commercial
chromatographic software combined with visual inspection of
chromatograms and peak tables. Although simple, this partly manual
method is quite laborious, extremely time consuming, seldom quantitative
and prone to subjective decision-making. Subsequently, the levels of each
impurity are monitored in separate control charts which make it difficult to
detect if the relationship between impurities varies. Ultimately to guarantee
that all impurities are resolved from the target compound and detected, it is
desirable to add a further dimension to the chromatographic separation such
as liquid chromatography-mass spectrometry (LC-MS). However, the
relevant chemical information may not be easily accessible from the huge
amount of data generated with LC-MS analysis, especially when the
presence of unknown impurities is investigated.

The purpose of this PhD study has been to explore the potentials of new
tools for improved assessment and monitoring of analytical
chromatographic data from process samples in the pharmaceutical industry.
This thesis demonstrates how newly developed methods and algorithms can
ensure better utilization of available information in chromatographic data.
The approach taken here, includes preprocessing of collected data in
numerical software to generate ‘clean’ data; followed by multivariate
statistical modeling that allows comprehensive control chart monitoring;
and finally interpretable visualizations providing diagnostic information on
deviating chromatographic data. Consequently, all these new and useful
tools have been presented, explained and visualized on actual
pharmaceutical analytical chromatographic data with more detailed
information found in the attached scientific PAPER I-III

In the first PAPER (PAPER I), a new comprehensive control (COCO) chart
procedure is developed that considers both univariate statistics and
multivariate statistics derived from PCA in a single plot that allows easy
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visualization of the combined data from a univariate and multivariate point
of view. The method is exemplified using integrated areas of analytical
chromatographic peaks.

PAPER 1II proposes a powerful multivariate statistical process control
(MSPC) approach based on principal component analysis (PCA) for
monitoring subtle changes in the chromatographic profile. Clear diagnostic
visualizations indicate subtle chromatographic deviations due to new
impurities co-eluting with the target compound. The procedure supports the
current practiced visual inspection of chromatograms by an automated and
timely tool for continuous quality verification of chromatographic data in an
objective and statistical reliable way.

In PAPER III, an MSPC tool based on PCA in conjunction with multiple
testing is developed to adapt the nature of LC-MS data and applied to in-
process LC-MS analysis of an industrial insulin intermediate. The tool
detected low spike-levels (0.05%) of a structurally related compound co-
eluting with the target compound and further provided clear diagnostics of
the co-eluting compound. This tool makes a fully automatic monitoring of
LC-MS data possible, where only relevant areas in the LC-MS data are
highlighted for further interpretation.

In PAPER II and III, different chromatographic data preprocessing methods
such as time alignment, baseline correction and scaling are applied to correct
for non-relevant analytical variation, since it largely influences the outcome
of the monitoring procedure.

In conclusion the research presented in this thesis has demonstrated the
unique potentials of assessing chromatographic data using novel
multivariate statistical tools. These tools utilize the available information
contained in multiple measured chromatographic signals simultaneously in
an objective (numerical) and statistically reliable way. The applications
described in PAPER I-III may all serve as good alternatives or supplements
to current procedures used in the pharmaceutical industry.



Resumeé

Anvendelsen af kromatografiske analyseteknikker til procesovervagning af
urenheder i laegemidler er af afgerende betydning for at sikre renheden af
produktet og i sidste ende beskytte patienten. I industrien er det generel
praksis at vurdere kromatografiske data ved hjelp af instrumentets
indbyggede software kombineret med visuel vurdering af kromatogrammer
og tabeller over de integrerede toppe. Denne enkle, delvis manuelle metode
er meget tidskreevende, sjeldent kvantitativ og er desuden pavirket af en
subjektiv beslutningstagen. Niveauet af de enkelte urenheder overvages ofte
i separate kontrol kort, hvilket gor det vanskelig at opdage, hvis forholdet
mellem urenheder varierer. For i sidste ende at sikre at alle urenheder er
separeret fra hovedkomponenten og detekteret, er det enskeligt at tilfaje en
ekstra  dimension til den kromatografiske separation, sdsom
vaeskekromatografi-massespektrometri (LC-MS). Det er dog ikke altid let et
ekstrahere relevant kemisk information fra den enorme mengde af data der
genereres ved LC-MS analyse. Dette kan iseer veere et problem nar formalet
er at undersoge tilstedeverelsen af ukendte urenheder.

Formaélet med dette PhD-studium har veret at udvikle forbedrede metoder
til evaluering og overvagning af analytiske kromatografiske data fra
procesprover i den farmaceutiske industri. Denne athandling viser, hvordan
nyudviklede metoder og algoritmer kan sikre en bedre udnyttelse af den
tilgeengelige information i kromatografiske data. Fremgangsmaden
indbefatter forbehandling af data for at generere “rene” data, efterfulgt af
multivariat statistisk modellering, opseaetning af kontrolkort der tillader en
alsidig overvagning og endelig let fortolkelige visualiseringer, der giver
diagnostisk information om afvigende kromatografiske data. Disse nye og
nyttige metoder er blevet preesenteret, forklaret og visualiseret pa faktiske
farmaceutiske analytiske kromatografiske data. Flere detaljer kan findes i de
vedlagte videnskabelige artikler (PAPER I-1II).

I den forste artikel (PAPER I), er en ny alsidig kontrolkort (COCO)
procedure udviklet, som bade handterer univariat statistik og multivariat
statistik vha. principal komponent analyse (PCA) i et enkelt plot. Dette
COCO kontrolkort gor det nemt at visualisere data fra et kombineret
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univariat og multivariat synspunkt. Metoden er eksemplificeret pa
integrerede arealer af analytiske kromatografiske toppe.

Den anden artikel (PAPER II) omhandler multivariat statistisk proces
kontrol (MSPC) som er en fremgangsmade baseret pa PCA til overvagning
af sma endringer i den kromatografiske profil. Diagnostisk visualisering
indikerer sma afvigelser i kromatogrammet pa grund af nye urenheder der
eluerer samtidigt med hoved komponenten. Artiklen beskriver hvordan den
praktiserede visuelle inspektion af kromatogrammer kan understottes med
denne automatiserede og rettidige procedure til lebende kvalitets
verifikation af kromatogrammer pa en objektiv og statistisk palidelig made.

I den tredje artikel (PAPER III), er et MSPC verktoj baseret pa PCA
kombineret med multipel testning udviklet til LC-MS data, og anvendt til
procesanalyse af et industrielt insulin mellemprodukt. Vearktgjet er i stand
til at detektere et lavt spike-niveau (0,05%) af et strukturelt beslaegtet stof,
der eluerer samtidigt med hovedkomponenten. Dette veerktoj gor en
fuldautomatisk overvagning af LC-MS data mulig, hvor kun relevante
omrader i data er fremhaevet til yderligere fortolkning.

I den anden og tredje artikel (PAPER II-IIl), er der anvendt forskellige
kromatografiske forbehandlingsmetoder sasom justering af tids-aksen,
basislinie-korrektion og skalering med det formal at korrigere for irrelevant
analytisk variation, da den i vid udstreekning pavirker resultatet af
overvagnings-proceduren.

Resultaterne som er praesenteret i denne afhandling viser hvorledes
kromatografiske data kan vurderes ved hjeelp af nye multivariate statistiske
redskaber. Disse verktgjer udnytter informationen i de multiple
kromatografiske signaler pa en objektiv, datadrevet og statistisk palidelig
made. Metoderne, beskrevet i de tre artikler er alle udviklet som alternativer
eller supplementer til de nuveerende metoder, der anvendes i den
farmaceutiske industri.
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1 Introduction

This PhD project was driven by a need and desire to develop alternative
solutions providing simpler yet more comprehensive monitoring capabilities
of analytical chromatographic data in the pharmaceutical industry. The use
of chromatographic analytical techniques for in-process monitoring of
impurities, is crucial for ensuring the purity of the final pharmaceutical
product, and thereby protecting the patient who ultimately receives it.
Today, it is industrial practice to monitor each impurity of interest with a
separate control chart, which indicates the range of acceptable variation in
concentration of the impurity. However, for in-process analysis, several
impurities may be of interest and this will necessitate that the practitioner
inspects a large number of control charts. Moreover, when special events
occur in a process they affect not only the magnitude of the impurities, but
also their relationship to each other. These events are often difficult to detect
by charting one impurity at a time because the correlations between the
impurities are not directly reflected in the individual control charts [PAPER
I].

Often analytical chemists and laboratory technicians are limited to the
integration systems available in the commercial chromatographic software.
This software often suffer from low reliability towards identifying unknown
peaks when these have low signal to noise ratio and are overlapping with
other peaks. Thus, it is common practice to assess the results of peak
integration by visual inspection of the chromatogram. Visual inspection of
chromatograms have been used for decades [1], and is a valid procedure for
identification of protein samples recognized by the regulatory authorities
[2,3]. Although simple, this partly manual method is quite laborious,
extremely time consuming, seldom quantitative and prone to subjective
decision-making [PAPER II].

Although high-performance liquid chromatography (HPLC) is the most
widespread analytical tool for in-process purity testing, it is recognized that
HPLC can not guarantee that all impurities are resolved from the target
compound (usually present in excess compared to any impurity). It is
therefore desirable to add a further dimension to the chromatographic
separation to increase confidence that all impurities are detected. Coupling
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mass spectrometry (MS) to liquid chromatography (LC-MS) adds a more
selective dimension to the chromatographic separation. However, the
relevant chemical information may not be directly accessible from the huge
amount of data generated with LC-MS analysis. That is particularly when
the presence of unknown impurities is investigated, which can be
considered as a case of needle-in-the-haystack expedition, due to the nature
of LC-MS data [PAPER III].

It would be of major benefit for the pharmaceutical industry if these
challenges could be handled by new and useful tools, improving assessment
of chromatographic data and providing more comprehensive monitoring
capabilities. In the following some motivations for this PhD project are
described, and finally the aim and outline of this thesis is given.

1.1 Scientific motivations

Pharmaceutical process and product monitoring demands an array of in-
process analyses, which consequently generate a huge amount of data,
containing hundreds or even thousands of variables. Despite significant
benefits may be gained from such analytical data; it is generally not a trivial
task to extract relevant information and knowledge from these data. Thanks
to the development of computer power and multivariate statistical data
analysis, spectacular progress has been achieved in comprehensively
extracting relevant information from analytical data. The pharmaceutical
industry can benefit from the wealth of knowledge accumulated and
published over the years within the field of multivariate statistical data
analysis. These methods have been successfully applied in other industries
and research areas. If the multivariate statistical analysis philosophy is
adapted by the pharmaceutical industry and further developed into
industrially reliable on-line monitoring schemes, it can lead to more
powerful and applicable methods, which can become useful to a broader
range of users.

1.2 Industrial motivations

Today many people depend upon the quality of pharmaceutical products for
their everyday health care. Pharmaceutical products are expected to be safe
and efficient whenever needed - day after day, year after year. If the
pharmaceutical product quality fails, the consequences can be catastrophic
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leading to annoyance, inconvenience and even more severe effects on the
customer. It takes a long time for a company to build up a reputation of
reliability, and only a short time to be branded as "unreliable". Therefore,
continual assessments of product quality are a critical necessity in the
pharmaceutical industry. In light of the recent quality by design (QbD)
initiative by the U.S. Food and Drug Administration (FDA) [4], increasing
attention has been drawn to the application of the QbD principles [5,6] for
impurity investigation and control, emphasizing process understanding
based on sound science and risk management [7-9]. Under the new QbD
paradigm, impurities should not only be tested for in the end product, but
rather be proactively controlled by design throughout the manufacturing
process. This of course, requires powerful analytical techniques and
comprehensive extraction of relevant information from the analytical data
that would govern early warnings of deviating product quality. Early
warnings may lead to timely corrections and consequently a minimization of
the number of rejected batches, product rework and lengthy failure
investigations. Moreover, improved monitoring of product purity will lead
to more effective and less complicated risk management procedures e.g.
during changes and optimizations of processes.

For a pharmaceutical company, all of these benefits will ensure license to
operate and could furthermore result in major savings and additional
funding for research and development of new and better products for the
benefit of the patient.

1.3 Aim of thesis

This thesis focuses on solutions for more comprehensive monitoring
capabilities of analytical chromatographic data in the pharmaceutical
industry, which simply ensure better utilization of available information in
chromatographic data. Therefore, the aim of this thesis is to develop
methods and algorithms that improve assessment and monitoring of
chromatographic data obtained for purity analysis in the pharmaceutical
industry. The intention is to automate and optimize the many aspects
present when setting up an industrial reliable monitoring scheme as
illustrated in Figure 1. This includes: Collection of data from commercial
chromatographic instruments to numerical software such as MATLAB
(MathWorks); application of necessary preprocessing steps to generate
‘clean’ data for subsequent modeling; multivariate statistical modeling
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representing the critical chromatographic data; comprehensive control chart
monitoring; and interpretable visualizations providing diagnostic
information on deviating data.

L
TP

Data collection Preprocessing Modeling Monitoring Diagnosis

Figure 1. Aim of thesis; from collection of chromatographic data, preprocessing
for subsequent multivariate statistical modeling, followed by control chart
monitoring, and finally diagnostic information.

1.4 Thesis outline

The thesis consists of an introductory part followed by three scientific
papers (PAPER I, I and III). The introductory part serves to introduce the
reader to pharmaceutical product purity; the methods used in the study as
well as the major results, and are organized as follows:

1.4.1  Chapter 2 Pharmaceutical product quality

Chapter 2 describes the importance of assuring pharmaceutical product
quality by monitoring impurities. Analytical chromatographic methods
commonly used for purity analysis in the pharmaceutical industry are
introduced, and state-of-the-art monitoring systems used to asses the
qualified status of the product during production are reviewed. Finally, this
chapter gives an overview of the multivariate monitoring scheme used
throughout this thesis.

1.4.2  Chapter 3 Chromatographic data

This chapter gives a brief historic perspective on the development of
chromatography, and on the instrumental hyphenation properties with mass
spectrometry. The data structure and dimensionality of HPLC data
(univariate UV detection) and LC-MS data (multivariate mass detection) will
be discussed, and some aspects of chromatographic peak resolution and
peak purity will be touched upon.

1.4.3  Chapter 4 Preprocessing

Chapter 4 describes how various preprocessing methods can prepare the
raw chromatographic data for subsequent multivariate statistical
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monitoring. The selected preprocessing methods described here all found
their usefulness in the papers included in the thesis. Among those are;
baseline correction, peak alignment, and scaling methods.

1.4.4  Chapter 5 Multivariate statistical monitoring

This chapter includes different aspects of multivariate statistical monitoring
based on principal component analysis (PCA). The usefulness of monitoring
chromatographic data in a multivariate statistical way will be discussed and
examples will be given from the papers included in this thesis. Since the
theory behind multivariate statistical monitoring originates from statistical
process control (SPC) methodology, a brief introduction is given to the
concepts of SPC and the link to multivariate SPC (MSPC).

1.4.5 Chapter 6 Conclusions and perspectives

Finally, Chapter 6 summarizes the major findings of new and useful tools
which improve assessment of chromatographic data and provide more
comprehensive monitoring capabilities in the pharmaceutical industry. The
topics where additional work and focus is needed will be discussed.
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2 Pharmaceutical product quality

Two branches exist in pharmaceutical production: the manufacture of active
pharmaceutical ingredients (APIs), also known as drug substances, and the
manufacture of drug products. With drug substance manufacturing, the
active ingredient is synthesized during the course of many individual
chemical reactions or process steps. Subsequently drug product
manufacturing involves carrying out a formulation of the drug substance
which delivers the drug substance in a stable, non-toxic and acceptable form,
ensuring its bioavailability and therapeutic activity. This thesis will focus on
the manufacture of the drug substance, as this branch has been the
foundation for the scientific work carried out during this PhD project.

Safety and efficacy of pharmaceutical products are two fundamental quality
issues of importance in pharmacotherapy (treatment of diseases through the
use of pharmaceutical products). The safety of a pharmaceutical product is
dependent not only on the toxicological properties of the active drug
substance itself, but also, for example, on the impurities that it contains.
Additionally, these impurities could potentially compromise the efficacy of
the active drug substance [10]. Thus, the analytical activities concerning
impurities in pharmaceutical products are among the most important issues
in modern pharmaceutical analysis [11].

An impurity in a drug substance as defined by the International Conference
on Harmonization (ICH) guideline document Q3A [12] as: “any component of
the drug substance that is not the chemical entity defined as the drug substance”.
Impurities in drug substances may originate from various sources and
phases of the process. The origin of impurities will not be described further
here, but several reviews offer insights into these matters [13-15]. Regulatory
agencies also explicitly regulate the control criteria for these impurities in
drug substances by providing guidance for the pharmaceutical industry.
These are not discussed here but are outlined in the ICH Q3A guideline
document [12]. The analytical testing for and evaluation of impurities are
important requirements. This, of course, requires suitable and powerful
analytical methods; these are briefly described in the following subsection.
Finally, in order to maintain the qualified status of the product during
production, the known impurities have to be monitored, and the unlikely
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presence of new unknown impurities should preferably be detected as early
as possible. Such impurity monitoring systems are discussed in the final
subsection of this chapter.

2.1 Analytical methods for purity testing

As stated previously effective testing and monitoring of impurities is crucial
for the pharmaceutical industry. This, of course, requires suitable and
powerful analytical methods. Analytical testing of impurities in
pharmaceutical products is also an important regulatory issue. The
validation of analytical procedures, i.e., the proof of its suitability for the
intended purpose, is an important part of the registration application for a
new pharmaceutical product. The ICH has harmonized these requirements
in the Q2(R1) guideline document [16].

Since impurities are usually present in relatively small quantities compared
to the drug substance, an analytical technique capable of separating a
mixture containing highly varied concentrations of analytes with sensitive
and specific detection is required. Today, high-performance liquid
chromatography (HPLC) with UV detection is the most commonly used
analytical technique for purity testing of in-process intermediates and drug
substances. HPLC has been the most important analytical method for
determination of impurities in pharmaceutical products for over two
decades [11]. However, it is recognized that HPLC can not guarantee that all
impurities are resolved from the target compound usually present in excess
compared to any impurity. It is therefore desirable to evaluate one or more
complementary analytical methods to increase confidence that all impurities
are detected and identified. The addition of further dimensions to
chromatographic separations by hyphenated techniques offers unique
opportunities for so-called peak-purity examination of the target compound.
HPLC with diode array detection (HPLC-DAD) is a commonly used method
to conduct peak-purity examination. However, many impurities are
structurally related to the drug substance, and their structure may contain
very similar chromophores, making purity assessment based solely on
HPLC-DAD data difficult and unreliable. Coupling mass spectrometry (MS)
to liquid chromatography (LC-MS) adds a more selective dimension to the
chromatographic separation. Since MS separates compounds by their
respective mass-to-charge ratios (m/z), any difference in the m/z values
between the impurities and the active drug substance will allow an
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unambiguous detection regardless of similarities in their UV spectra.
Therefore an impurity co-eluting with the target peak will be separated in
MS as long as their m/z values are different and ionization of the impurity is
not suppressed by the target compound. LC-MS may also facilitate correct
assignment of new peaks arising at the same retention time as known ones,
which potentially are wrongly assigned with UV detection. Furthermore
identification is improved by the use of LC-MS, as molecular masses are
assigned to impurity peaks. In this way verification can also be provided as
to whether impurities are really ‘new’ or whether they were already present
in previous batches in lower amounts. This might help in the toxicological
evaluation when taking, for example, safety factors into account.

2.2 Current monitoring systems

The requirement to show process and batch consistency demands an array
of in-process analysis, which consequently generates a huge amount of data
containing hundreds or even thousands of variables. These routinely
measured data are automatically recorded in historical databases for the
purposes of product monitoring, process control, and potentially process
improvement/optimization.

For example, during the production of each batch, process operators and
quality-control departments normally assess these analytical data to ensure
the product quality and take appropriate corrective actions when needed.
However, it is generally not a trivial task to assess these analytical data and
utilize all the available information. Therefore, many pharmaceutical
processes face a well known problem, i.e., “data rich but information poor’,
despite that significant potential benefits may be gained from these data

Analytical data, if based on HPLC, usually consists of integrated areas of a
number of well known peaks (the target compound and related impurity
compounds). Most commonly batch-to-batch variation is analyzed on a less
frequent basis (weekly, monthly, quarterly or once a year) to asses the long-
term quality and stability of the product. Here, the concentration of each
compound of interest is monitored with a separate control chart, which is a
simple plot of the compound concentration vs. time, sample or batch.
However, control chart monitoring of an in-process analysis containing
several impurity compounds will force the practitioner to inspect a large
number of control charts, and the risk of making mistakes is larger when
several control charts are to be checked [17]. When special events occur in a
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process they affect not only the magnitude of the compounds but also their
relationship to each other. These events are often difficult to detect by
charting one compound at a time because the correlations between the
compounds is not directly affected in the individual control charts [PAPER
I]. Another problematic issue is the use of generic peak detection algorithms
which often suffer from inconsistent reliability towards unknown peaks
with low signal to noise ratio and overlapping peaks of different shapes.
Thus, it is common practice to assess the results of peak integration by visual
inspection of the HPLC chromatogram. As mentioned previously visual
inspection of chromatograms is a valid procedure for identification of
protein samples recognized by the regulatory authorities [2,3]. Although
simple, this partly manually method is quite laborious, extremely time
consuming, seldom quantitative and prone to subjective decision-making
probably causing additional errors [PAPER II]. As for HPLC data, generic
peak detection algorithms used for LC-MS data may also suffer from
inconsistent reliability and thus manual interpretation is often necessary.
However, manual interpretation of LC-MS data is extremely tedious;
particularly in reference to applications where pharmaceutical product
purity is monitored and unknown peaks are to be registered if present
[PAPER III].

Obviously there are needs for more automatic and timely tools that can
monitor these chromatographic data objectively, quantitatively, and in a
statistically reliable way. Furthermore, these tools should automate the less
frequent review of batch-to-batch variation and turn it into a continuous
review. These needs are strongly supported by the increased focus on
process analytical technology (PAT) [18] and quality by design (QbD) [4],
which aims for enhanced process understanding that improves process
control moving towards continuous quality verification and real-time
release of an end product.

2.3 Multivariate monitoring scheme

In standard statistical process control (SPC) as well as multivariate SPC
(MSPC) terminology the monitoring scheme is carried out in two distinct
phases, Phase I and Phase II. In Phase I, a statistical model is constructed
from a historical data set, which is assumed to be in control. In Phase II, the
future observation is checked to see whether it fits well in the model. An
extension to this standard monitoring scheme was proposed by H.J.
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Ramaker et al. [19]. They carry out MSPC in three phases: The Initial,
Training and Application phase, also referred to as ITA trajectory. Here, the
training and application phase refer to respectively Phase I and Phase II
from the standard terminology. In this study the multivariate statistical
monitoring scheme of chromatographic data follows a modified version of
the ITA trajectory as illustrated in Figure 2.

. e Initial phase ------------ oo -

#—»[ Data collection ]—»[ Signal preprocessing ]‘

——»[ PCA modeling ]—»[ MSPC charts ]—~

T ————— Application phase - .

—‘—»[ Monitoring ]—»[ Detection & diagnosis ]——>

Figure 2. The three phases according to the ITA trajectory (Initial, Training and
Application phase).

The three phases according to the ITA trajectory are described briefly in the
following subsections.

2.3.1 Initial phase

In the initial phase, appropriate and representative historical
chromatographic data are collected and preprocessed (described in Chapter
4). This historical dataset is one in which the process has been running
consistently, under normal operation conditions (NOC), and only acceptable
high quality products have been obtained. Normally, data are spread in
various systems and are not always accessible in an easy manner. For
instance the raw chromatographic signals most often have to be collected
directly from the chromatographic instruments or a dedicated
chromatographic database system. Quality measurements of the product,
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including integrated peak areas, are usually stored in LIMS (Laboratory
Information Management System). Therefore, the initial phase may often be
a time consuming step if not automated.

2.3.2 Training phase

In the training phase a PCA model based on extracted and prepared NOC
data is developed (describing common cause variation) and MSPC charts are
constructed. Since this NOC model serves as a reference distribution and
exclusively determines whether a new sample is similar or deviates
significantly from the NOC samples, the monitoring performance depends
very much upon adequacy and representativity of these NOC
chromatograms. If e.g. a faulty chromatogram is included in the NOC
model, the total amount of chromatographic variation increases, and the
reference distribution now consists of non-representative NOC samples.
Consequently, the model becomes less capable of detecting differences in
variation between the NOC chromatograms and a new faulty
chromatogram. Therefore, validation is an essential part of model
development (described in subsection 5.4) to avoid false correlations, and to
ensure that the estimated model reflects only NOC.

The number of samples needed to construct an adequate NOC model
depends on the application. The effect of the size of the training set on the
false alarm rate in statistical process monitoring have been investigated by
Ramaker et al. [20].

2.3.3 Application phase

Finally, in the application phase new independent chromatographic data are
prepared, fitted to the NOC model, and monitored using the control charts
developed in the training phase. Deviating samples are diagnosed using
contribution plots to determine causes of the deviating behavior. However,
contribution plots do not automatically reveal the actual cause of the fault.
Therefore, incorporation of chemical and technical process knowledge may
be necessary to diagnose the problem and discover the root causes of the
fault [21]. The NOC model can be updated periodically by including new
samples already accepted by the NOC model (lying within the control
limits) and with acceptable high product quality. In this way variations du
to e.g. seasonal changes or different raw material suppliers can be
incorporated in the NOC model, making it more robust against false positive
alarms. However, if a consistent fault is detected and this fault is caused by
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e.g. a permanent process change or a new raw material quality, the NOC
model should be recalculated based on new NOC samples to reflect the
present process conditions.
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3 Chromatography

Testing, monitoring and evaluation of impurity profiles in pharmaceutical
products are important regulatory requirements which, of course, require
suitable and powerful analytical methods. Although HPLC is the most
widespread analytical tool for purity testing, it is recognized that HPLC can
not guarantee that all impurities are resolved from the target compound
usually present in excess compared to any impurity. It is therefore desirable
to add a further dimension to the chromatographic separation to increase
confidence that all impurities are detected. Here liquid chromatography
coupled to mass spectrometry (LC-MS) is a powerful and widely used
analytical technique in the characterization and identification of impurities
in pharmaceutical products.

The aim of this chapter is not to present chromatographic or mass
spectrometric basic theory and instrumental setup or deal with how to
optimize the chromatographic and mass spectral conditions for proper
resolution and detection. This can be found in more dedicated textbooks [22-
26]. The focus will be on chromatographic data representation and how to
take full advantage of the available information hidden in the data structure
and dimensionality of HPLC data (univariate UV detection) and LC-MS data
(multivariate mass detection). Additionally, some aspects of peak co-elution
and peak purity will be touched upon. To begin with a brief historic
perspective on the development of HPLC and LC-MS is given.

3.1 Brief chromatographic history

The Russian botanist Mikhail Tswett is generally referred to as the father of
chromatography. His work, originally presented in 1903 and then published
in 1906 [27], described the separation of plant pigments by column liquid
chromatography. Tswett defined the term chromatography, which
originates from the two Greek words, chroma (color) and graphein (to write)
[28]. Initially, not much attention was given to chromatography but, after a
few decades, Tswett’'s discovery was re-considered by a few scientists and
various modalities of chromatography emerged. Still, though the great
discovery of Tswett, was not widely recognized. In 1941 Martin and Synge
[29] published their Nobel Prize-winning article in which they introduced
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liquid-liquid (or partition) chromatography and the accompanying theory
that became known as plate theory. Later, Alm [30] reported the method of
gradient elution in 1952. After these early developments, applications of
liquid chromatography appeared more rapidly between 1960 and 1970 when
high performance liquid chromatography (HPLC) was developed as an
analytical tool in addition to gas chromatography [31]. Around 1973,
packing technologies and development of reversed phase silica gel led to the
first reversed phase HPLC columns [32]. Since then, several advancements
have been developed for HPLC. Today reversed phase HPLC is a powerful
tool for the modern laboratory and has played a key role as an analytical
method in the development and control of pharmaceuticals.

For decades, the liquid chromatograph has been a working horse in the
separation of compounds. At the same time the mass spectrometer has been
an important and sensitive tool for structure elucidation. By hyphenating the
two techniques, a very powerful instrumental set-up is achieved. Liquid
chromatography-mass spectrometry (LC-MS) is an analytical technique that
couples high resolution chromatographic separation with sensitive and
specific mass spectrometric detection.

One of the first attempts at LC-MS was reported in 1968 by Talroze et al.
[33], using a capillary inlet interface. In the 1980s several other type of
interfaces was suggested, including, e.g., thermospray [34] and fast atom
bombardment [35]. The breakthrough for LC-MS was, however, the
development in the 1990s of two techniques for atmospheric pressure
ionisation: the electrospray ionisation (ESI) [36] and the atmospheric
pressure chemical ionization [37]. With ESI it is possible to obtain multiply
charged ions for large molecules [38], e.g. proteins and carbohydrates.
Thereby the detection of high molecular weight compounds is facilitated for
instruments with limited m/z range. The technique is still developing,
particularly in the mass spectrometry area, with vastly improved sensitivity
and resolution. Today LC-MS is probably the most powerful technique
available for pharmaceutical analysis, and the most common mass analyzers
are those used in quadrupole, time of flight (TOF) and ion trap instruments
[39].

3.2 Chromatographic data structure and dimensionality

In the case of HPLC, the separation and subsequent detection of compounds
in a sample delivers a chromatogram. A chromatogram is a graphical
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representation of all peaks eluting from the column superimposed on the
baseline. The areas and heights of the peaks usually increase linearly with
the amount of injected component [26]. Typical purity analysis in industrial
processes deals with a manageable amount of compounds at relatively high
concentrations. The original data obtained from the instrument can be
transformed by integration of the peaks and the integrated data of selected
peaks can then be used for subsequent data analysis. This can easily be
handled automatically with available software packages suitable for routine
analysis of chromatograms [40]. This is illustrated in Figure 3 where selected
peaks of interest are marked and integrated in a HPLC chromatogram
obtained for purity analysis of a biopharmaceutical in-process sample.

Target compound

AU

Minutes

Figure 3. Analytical HPLC chromatogram of a biopharmaceutical in-process
sample. Selected peaks are marked and integrated automatically [PAPER I].

However, generic peak detection algorithms often suffer from low reliability
towards smaller peaks with low signal to noise ratio and overlapping peaks
of different shapes. Hence, this data reduction can lead to a loss of
information since the quality of the data relies on peak detection and on how
the peaks are selected and integrated [41]. In other words, any error in the
measurement of peak size will produce a subsequent error in the reported
result. Therefore, it is common practice to assess the results of peak
integration by visual inspection of the chromatogram. Although simple, this
partly manual method is quite laborious, extremely time consuming, seldom
quantitative and prone to subjective decision-making probably causing
additional errors. As yet another alternative to automated peak detection
and the laborious manual inspection, whole chromatographic profiles
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collected from the instrument can be used mathematically, without first
integrating a set of selected peaks. The result is that not only peak size is
included but also its shape (peak overlap and peak shoulders). However,
this requires uniform representation of the chromatographic signals in
matrix form. As any other instrumental signal, the chromatographic profile
contains three major components: the analytical relevant signal;, the
background or baseline; the noise. These are illustrated in Figure 4.

—— Overall signal
—— Relevant signal

Background
—— Noise

AU

Retention time

Figure 4. Components of the chromatographic analytical signal: (a) overall signal;
(b) relevant signal; (c) background; and, (d) noise (visualization inspired by
Daszykowski and Walczak (2006) [42]).

On top of these three different types of variation, there are also additional
problems with chromatographic data. For example, the retention time of
specific peaks can vary slightly from run to run for various reasons.
Retention time shifts are problematic since they severely obscure
comparison of chromatographic profiles. When whole chromatographic
profiles are compared, these non-relevant components of Figure 4, and the
shifting of chromatographic peaks need to be handled by the data analysis
approach. In many cases, it is possible that the unwanted variation can be
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corrected for prior to multivariate statistical monitoring. This can be done
using suitable preprocessing as explained in Chapter 4.

Both peak tables and chromatographic profiles are considered two-way data
and can be organized as an MxN data matrix, with M samples and N peak
areas or elution time points (also referred to as retention time points). This
matrix structure can readily be used as input for two-way multivariate
statistical monitoring, described in Chapter 5.

In the case of LC-MS, the separation and subsequent mass spectral detection
of compounds in a sample delivers a data matrix characterized by the
intensity as a function of retention time and m/z (Figure 5A). Analysis by
LC-MS can generate huge amounts of data, especially when the MS is
operated in the full-scan mode over large regions in m/z.
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Figure 5. Different LC-MS data structure presentations: (A) intact LC-MS
landscape; (B) total ion chromatogram (TIC); (C) base peak chromatogram (BPC);
(D) unfolded LC-MS chromatogram (modified from PAPER III).

As shown in Figure 5, different data structures can be extracted from a
single LC-MS sample:

(A) Intact landscape holding all available information

(B) Elution time profile (summed MS dimension - denoted total ion
chromatogram (TIC))

(C) Mass spectral profile (summed LC dimension — denoted base peak
chromatogram (BPC))

(D) Unfolded LC-MS chromatogram (the sample matrix is rearranged into
a vector by concatenating the rows or column; here the m/z rows are
concatenated)

As for HPLC data, automatic peak detection algorithms for LC-MS data may

also suffer from low reliability and thus manual interpretation is often

necessary. However, manual interpretation of LC-MS data is extremely
tedious, particularly in reference to applications where pharmaceutical
product purity is monitored and unknown peaks are to be registered if
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present. If LC-MS data are to be compared by two-way multivariate
statistical monitoring, then one dimension must be reduced either by
summing or unfolding as illustrated in Figure 5. By summing, the amount of
data points is simply reduced, whereas with unfolding the amount of data
points is kept intact. Alternatively the intact LC-MS landscapes can be
compared by advanced so-called multiway statistical methods (also referred
to as factor models) such as PARAFAC [43]. These methods give new
possibilities with regard to the information that can be extracted, but are not
as widespread and user-friendly as two-way methods, due to their more
sophisticated nature.

3.3 Peak detection and integration errors

The detection of peaks in a chromatogram is crucial for both qualitative and
quantitative analyses, for the amount of information increases as more peaks
are detected. However, peak overlap and baseline noise make the detection
of peaks rather problematical. For instance a false peak may be detected
when baseline noise might be taken for a minor peak, or a peak may be lost
when the occurrence of overlapping is not recognized. Most routinely used
detection methods do not employ any assumption for peak shapes or
baseline noise. Most often the derivatives of the signal are analyzed and a
peak is detected when a threshold is exceeded. All the information these
peak detection methods use is that a peak is a signal that goes up and comes
down [44]. Quantitative determination of the individual compounds can
simply be done by integration of the peak area. For a correct area
determination, the location of the baseline, the values of peak height and
peak width must be measured with high precision. Baseline noise, drifting
baseline, peak tailing or fronting, and peak overlap, all influence the
accuracy and precision of the measurements made on chromatographic
peaks. For high-purity pharmaceutical products, the target compound is
present in excess compared to a potential impurity. Specifically, small peak
size ratios from about 5% to less than 0.5% of the target peak commonly
occur in the determination of impurities in pharmaceutical products [45].
When such a small impurity peak elute near the much larger target peak,
situations will occur in which the small peak cannot be integrated as a
separate peak because a valley no longer appears between the peaks. In such
situations, careful examination of the baseline is necessary to determine the
correct location for the integration start-stop positions. However, the use of
rather simple and inappropriate integration methods (often implemented in

33



commercial chromatographic software) may result in underestimation or
overestimation of peak areas. The integration errors are likely to occur due
to asymmetry of one or both peaks (e.g. tailing) [45]. Mathematical peak
models can be used to resolve the overlapping peaks into pure peak profiles
(also referred to as peak deconvolution). Several peak fitting algorithms and
procedures are available, but they are outside the scope of this thesis.

3.4 Peak resolution

The resolution expresses the extent of separation between the components in
a sample, and is a useful measure of the separation properties of the column
for a particular sample. The higher the resolution of peaks in the
chromatogram, the better separation of the components the column
provides. The separation ability of a column is characterized by the plate
number, which determines the peak width relative to the retention time. A
simplified method to calculate the resolution of a chromatogram is to use the
plate model [46]. The plate model assumes that the column can be divided
into a certain number of plates, and the mass balance can be calculated for
each individual plate. This approach approximates a typical chromatogram
curve as a Gaussian distribution curve. By doing this, the curve width is
estimated as four times the standard deviation of the curve (40). Sigma can
be estimated by calculating the segment of the peak base (wv) intercepted by
the tangents drawn to the inflection points on either side of the peak. The
inflection points can be found by calculating max and min of the first
derivative chromatogram [47]. The parameter O is calculated as wv divided
by four. This is illustrated in Figure 6.
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Figure 6. Width of a Gaussian peak, as a function of the standard deviation of the
peak (modified from Ettre (1993) [47].

To define to what extent an impurity is hidden under the target peak; the
peak resolution (Rs) is used. Rs expresses the efficiency of separation of two
peaks in terms of their average peak width at base [47]:

Rs =2 (tkz _tRl) (1)

(Wyy + Wp2)

where tr1 and tr2 are the retention time of solute 1 and 2 respectively (tr2 >
tr1) and we and wrw are the Gaussian curve width of solute 1 and 2
respectively (the retention time is the time from the start of signal detection
to the time of the peak height of the Gaussian curve). Usually, in
chromatography the plate number is approximately constant for similar
components with similar retention times. The plate number N for a Gaussian
peak is given by [47]:

)
o
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With similar retention times and plate numbers the peak width of the
impurity and the target component is hence similar and a reasonable
assumption is [47]:

RS ~ M 3)

Wha

In Figure 7 different degrees of chromatographic resolution is illustrated.
Impurity peaks at 0.1% of the target peak area were simulated based on the
assumptions in Equation 6. The impurity peaks were generated as pure
Gaussian peaks using o estimated from the target peak. Impurities were
simulated with varied resolutions (Rs) from 1 to 2 (eluting after the target
peak) and added the target peak chromatogram. In the upper plots in Figure
7 (Al to A3) a symmetric target peak is added a 0.1% impurity peak with
resolutions from 1 to 2, whereas in the lower plots (B1 to B3) an asymmetric
(tailing) target peak is added a 0.1% impurity peak with resolutions from 1
to 2.
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Figure 7. Different degrees of peak resolution. (A1 to A3): Symmetric target peak
(blue) and 0.1% impurity peak (green) added together (red). (B1 to B3):
Asymmetric (tailing) target peak and 0.1% impurity peak added together (red).

Common chromatographic practice often suggests that the minimum
resolution between two peaks must be at least 1.5 to ensure sufficient
separation. However, as illustrated in Figure 7 there is a remarkable
difference in the actual peak separation depending on whether the target
peak is symmetric or not. In Figure 7A2 the impurity peak is fairly separated
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from the symmetric target peak at resolution 1.5, but in Figure 7B2 the
impurity peak is partly hidden under the tailing edge of the asymmetric
target peak. It is often difficult or impossible to detect such low resolution
impurity peaks visually or to identify them by peak integration using
existing commercial chromatographic software. Generic peak detection
algorithms commonly seek instants of rapid increase or decrease in signal
intensity above a critical threshold. However, setting the threshold is a
problem because too low a threshold generates a large number of
meaningless peaks and too high a threshold might miss an actual one [40]. In
PAPER 1II this challenge is addressed by monitoring the entire
chromatographic profile both quantitatively and in a statistically reliable
way. The automated multivariate statistical tool demonstrated in PAPER II
is capable of detecting subtle changes in the chromatographic profile,
specifically shoulders on the target peak as illustrated in Figure 7. These
shoulders originate from small non-resolved impurity peaks, which would
risk not to be detected by visual inspection and potentially be integrated as
one peak using common generic peak detection and integration methods.

3.5 Peak purity

Detecting the occurrence of an unknown impurity co-eluting with the target
compound is a particular problematic challenge. Therefore, purity analysis
of a biopharmaceutical product often entails purity examination of the target
peak. Peak-purity examination should prevent co-eluting impurities to
escape detection in the conventional HPLC analysis [48]. HPLC with diode
array detection (HPLC-DAD) is a commonly used method to conduct peak-
purity examination. However, many impurities are structurally related to
the drug substance, and their structure contains very similar chromophores,
making purity assessment based solely on HPLC-DAD data difficult and
unreliable. Coupling a mass spectrometer to a liquid chromatograph (LC-
MS) brings more selective signals to the table. Since a mass spectrometer
(MS) separates compounds by their respective mass-to-charge ratios (m/z),
any difference in the m/z values between the impurities and the drug
substance will allow an unambiguous detection regardless of similarities in
their UV spectra. Therefore an impurity co-eluting with the target peak will
be separated in MS as long as their m/z values are different and ionization of
the impurity is not suppressed by the target compound. This is illustrated in
Figure 8 where an insulin intermediate DesB30 is spiked with human insulin
drug product at a 0.05% level [PAPER III]. Human insulin is co-eluting with
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the structurally related target compound DesB30-insulin, but has a different
molecular weight and thus different m/z values. The ion trace signals from
human insulin have maximum intensity at m/z 1453. Plotting an extracted
ion chromatogram (EIC) for this m/z value, the co-eluting profile of human
insulin is provided (Figure 8).
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Figure 8. Plot of TIC and EIC (m/z 1453) of sample spiked with 0.05% HI [PAPER
I11].

It would be difficult or impossible to detect a co-eluting 0.05% impurity peak
if measured with HPLC. However, with LC-MS this challenge is possible to
meet and becomes practicable if assisted by automated multivariate
statistical methods (described in Chapter 5).
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4 Preprocessing

In the initial phase of the monitoring scheme applied in this study
(subsection 2.3), historical chromatographic data are collected and
preprocessed. In chromatography, the original data obtained from the
instrument can be transformed into (possibly relative) concentrations of
specific chemical analytes by integration of the peaks and the integrated data
of selected peaks can then be monitored by multivariate statistical analysis
[PAPER I]. However, this data reduction leads to a loss of information since
the quality of the data relies on peak detection and on how the peaks are
selected for the monitoring. Alternatively, the whole chromatographic data
matrices collected from the instrument can be used, without first integrating
a set of selected peaks [PAPER II and III]. The result is that not only peak
magnitude is included but also its shape (peak overlap and peak shoulders).
However, when monitoring whole chromatographic profiles or landscapes,
instead of information on a limited set of peaks, some of the additional
variation may obscure the relevant information. This extra unwanted
variation is for example the variation originating from uninduced chemical
variance, such as product sampling, sample work-up in the laboratory, and
instrumental variation. For instance instrumental variation such as pressure,
temperature and flow rate fluctuations may cause an analyte to elute at a
different elution time in replicate runs. Additionally, matrix effects and
stationary phase decomposition may also cause elution time shifting. Before
multivariate statistical monitoring can be performed, the data should be
corrected for this unwanted variation, since it largely influences the outcome
of the monitoring and disturbs monitoring of the chemical variation. Using
mathematical preprocessing methods, this unwanted variation can be
removed or handled. Several methods can be applied to prepare the
chromatographic signal for subsequent multivariate statistical monitoring.
So far only few preprocessing methods are implemented in commercial
chromatographic software and they often tend to be too simple and generic.
Here the focus will be on selected preprocessing methods that have found
their usefulness for the applications described in PAPER I, II, and III. The
preprocessing methods are described in the order that they preferably
should be applied to chromatographic data.
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4.1 Baseline correction

Baseline correction in chromatography is commonly employed. Baseline
variation has been an issue in chromatography for decades, and one of the
tirst descriptions on how to remove baseline drifts was presented already in
1965 [49]. Nowadays most methods are based on subtracting a fitted
polynomial following the baseline curvature, and several such methods are
available in the literature [50,51]. Among the different approaches of
baseline correction, this thesis favors an approach proposed by van den Berg
[52]. This baseline correction method operates in local regions of the
chromatogram and uses B-splines constructed from polynomial pieces
joined at certain positions (knots). The method operates by gradually
eliminating points in the signal furthest (northern distance) away from the
fitted polynomial until the number of selected supporting points (baseline
points) is reached. Since the method works in local regions it is required that
the number of knots and their position are set. This is actually an advantage
as local changes in baseline can be corrected by placing more knots in the
problematic regions. The method also requires input for the order of the
polynomial that is fitted between the knots. In PAPER II the baseline
correction method by van den Berg [52] was applied even though only
minor baseline drifts were observed. Nevertheless, the developed
monitoring approach should be capable of handling more severe baseline
drifts if such appear. The baseline correction is illustrated in Figure 9
(modified data from PAPER II), where a chromatogram with minor (A + B)
and major (C + D) baseline drift is corrected, using the same settings.
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Figure 9. Illustration of baseline correction method by van den Berg (2008) [52].
(A) Raw data with minor baseline drift, knot positions, and fitted baseline
between knot positions. (B) Data with minor baseline drift before and after
baseline correction. (C) Raw data with major baseline drift, knot positions, and
fitted baseline between knot positions. (D) Data with major baseline drift before
and after baseline correction.

By inspection of Figure 9 it can be confirmed that the baseline correction is
capable of handling various degrees of baseline drifts using the same
settings. Thus, upon selecting the settings from initial data investigation,
baseline correction can be an objective and automatic preprocessing step.

For LC-MS data a variety of techniques for baseline correction are applicable
and these are reviewed by Listgarten et al. [53] among others. In PAPER III
an efficient and rather simple method for baseline correction was applied.
The method works by fitting a global polynomial (of a user-defined order) to
each extracted ion chromatogram of the LC-MS landscape and, through an
iterative routine, down-weighting points belonging to the signal. A baseline
is then constructed and subtracted from the original extracted ion
chromatogram [PAPER III]. The baseline correction method is similar to a
previously described method by Gan et al. [51].

4.2 Normalization

Normalization of chromatographic data is another possible step in the
preprocessing procedure. Normalization is a sample-wise standardization of
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data, usually applied to remove a source of unwanted variation. In
chromatography it is common to apply normalization to minimize the effect
of variation of sample size that actually hits the column, possible sample
carry-over, and drifts in e.g. detector efficiencies. Normalization procedures
enable a more accurate matching and quantification between multiple
samples. Different procedures for normalization can be applied, such as
setting maximum peak height to the same value for all samples, or dividing
each signal value for one sample by the sum, mean, or median of all signal
values for that sample. In Figure 10 the effect of different normalization
procedures are illustrated on LC-MS data (modified from PAPER III).
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Figure 10. Illustration of raw LC-MS TIC data and the effect of different
normalization procedures (modified from PAPER III).

The different normalization procedures illustrated in Figure 10 all correct for
the bias between samples in the raw data. The only real difference between
the procedures is the scale to which the data are normalized. For the
application described in PAPER III it was assumed that the target peak
purity might vary but the overall signal intensity should ideally be the same
for each sample. Therefore the sum of all intensities was used as
normalization value for each sample.

Although normalizing the data generally improves comparison of samples
across instrument runs, the applied approaches are independent of or
“blind” to the actual compound level in the sample. Ideally, the use of
spiking controls would be an appropriate option for addressing the
instrumental variability. However, this approach is rather laborious.

4.3 Alignment

As with every laboratory experiment, chromatographic separation is stable
and reproducible only to a certain extent. The retention time often shows
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large shifts, and distortions of elution profiles can be observed when
different runs are compared. For LC-MS data even the MS (m/z) dimension
might show (typically smaller) deviations. Alignment of shifted peaks can be
performed in various ways. During the past decades, several kinds of useful
alignment approaches have been developed for chromatographic profiles
[50,54-62]. Very reproducible chromatographic data often need only a
movement of the whole chromatogram a certain integer sideways for proper
alignment. This is characterized by a systematic or linear shift and can easily
be handled by the so-called correlation-shifting (coshift) algorithm [63] or
the faster interval-correlation-shifting (icoshift) algorithm [64] described in
subsection 4.3.1. Yet, if the column is changed between runs or if samples are
measured over a long period of time, this may cause the peaks to shift
independently from one another in the same chromatogram, and more
complex shift correction is needed to correct for this non-systematic shift.
One of the most popular and efficient methods, which can handle this non-
systematic shifts in chromatographic data, is the piecewise alignment
algorithm correlation optimized warping (COW) [57,61] described in
subsection 4.3.2. The algorithms mentioned here all use a target or reference
chromatogram that each chromatogram is aligned towards. The choice of
reference chromatogram is an important aspect of the alignment methods
considered here, and will be described further in subsection 4.3.3.

4.3.1 Systematic shift correction by interval-correlation-shifting

The icoshift algorithm is originally developed for alignment of nuclear
magnetic resonance (NMR) spectra [64], but has proven to be well suited for
alignment of chromatographic data as well [PAPER II and III]. The
algorithm independently aligns each chromatogram to a reference by
maximizing the cross-correlation between user-defined intervals and
employs a fast Fourier transform engine that aligns all chromatograms
simultaneously. The icoshift algorithm is demonstrated to be faster than
similar methods found in the literature making full-resolution alignment of
large datasets feasible [64]. Several options are available depending on how
the alignment problem is to be solved. For instance, it is possible to define
intervals to be aligned separately (e.g., allowing a full chromatographic
alignment with regularly spaced intervals, or adjacent intervals of user-
defined length, or customized interval boundaries). Furthermore it is
possible to set a boundary for the maximum local correction allowed for
each interval. Finally, the fill-in value is defined for the reconstruction part
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(a missing value or the first/last point in the interval). In Figure 11 the result
of icoshift alignment of a shifted chromatographic profile (one interval)
towards a reference is illustrated (modified from PAPER II).
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Figure 11. Alignment of a profile chromatogram (blue) towards a reference
chromatogram (red). Chromatograms before (A) and after (B) alignment using the
icoshift algorithm (modified from PAPER II).

The icoshift alignment illustrated in Figure 11 clearly handles the major
systematic shift. However, some non-systematic shifts still remain
uncorrected, especially for the minor peaks. To solve this more complex shift
correction is needed. Even though the icoshift alignment could not correct
for the entire retention time shift, it still serves a purpose. Most often both a
preliminary systematic shift correction is needed before a non-systematic
shift correction can be handled successfully.

4.3.2 Non-systematic shift correction by correlation optimized warping

The Correlation Optimized Warping technique (COW) was originally
introduced by Nielsen et al. [57] as a method to correct for shifts in
vectorized data signals. COW is a piecewise or segmented data alignment
technique that uses dynamic programming to align a sample chromatogram
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towards a reference chromatogram by stretching or compression of sample
segments using linear interpolation [61,62]. Two input parameters are
required and the first parameter is a number of sections into which the
chromatograms is divided (by knots). The second parameter, the so-called
warping parameter, defines the degree of alignment (slack). For the larger
values of the warping parameter the larger time shifts can be corrected [42].
The performance of COW alignment is illustrated on the chromatographic
profile after icoshift alignment as described in subsection 4.3.1. Here the
profile was divided into four sections as indicated by the knots.
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Figure 12. Alignment of a profile chromatogram (blue) towards a reference
chromatogram (red) divided into four sections indicated by the knots.
Chromatograms after icoshift alignment (A) and after icoshift and COW
alignment (B) (modified from PAPER II).

As illustrated in Figure 12 the COW algorithm offers much better alignment,
but the selection of sections and the warping parameter is crucial. The
computational time of COW is exponentially influenced by the warping
parameter. If the alignment is unsatisfactory, more sections or a larger
warping parameter value can be considered. However, it is often possible to
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achieve good alignment at a low warping parameter, thus ensuring
reasonable computation time [42].

4.3.3 Selection of reference chromatogram

Several methods can be used for finding a proper reference chromatogram
for alignment. Among these are, the average chromatogram, the first loading
of a PCA model, the most inter-similar or representative chromatogram
containing the highest number of common peaks [61,65,66], or the sample
run in the middle of a sequence [59,67]. Furthermore, using the
chromatogram with the highest correlation coefficient with respect to the
remaining chromatograms as reference has also been suggested [62,68]. This
approach was favored in both PAPER II and PAPER II. However, the choice
depends on the homogeneity of the samples, on the degree of missing peaks
across the chromatograms and many other things, which should be
considered in each individual application [62,68].

4.4 Data reduction

To make chromatographic samples even more comparable, data reduction
(binning or bucketing) can be applied. Binning can be performed in various
ways, e.g. by summing or averaging all intensities within a user-specified
bin level. This may reduce small uncorrected chromatographic artifacts, such
as shifts. Furthermore binning simplifies subsequent multivariate statistical
analysis, as the huge amount of data points per sample is reduced.

In PAPER III the data reduction puts all the intensities on a (time, m/z) grid
and sum the intensities within each bin. The effect of LC-MS data reduction
using different bin sizes is illustrated in Figure 13.
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Figure 13. Illustration of LC-MS data reduction using different bin sizes. (A)
Before data reduction (60.000 data points); (B) bin size: 10 seconds and 2 m/z (3000
data points); (C) bin size: 30 seconds and 4 m/z (500 data points); (D) bin size: 60
seconds and 5 m/z (200 data points (modified from PAPER III).

The bin size should be selected based on experience and the sample being
tested. However, in PAPER III the optimal bin size was selected based on
testing. The impurity detection level was tested using different selections of
bin size and consequently bin number. The lowest detection level was
obtained with a bin size from 30 to 60 seconds and 1 to 2 m/z value, resulting
in 500 to 2000 bins [PAPER III].

4.5 Scaling

Scaling is a variable-wise standardization and the choice of scaling method
is crucial for performance of the subsequent multivariate statistical
monitoring. Scaling methods divide variables by a factor, which is different
for each variable. The aim is to adjust for the disparity in fold differences
between various signals (i.e. to bring all variables into the same range), and
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to correct for a non-constant signal variance. For instance a fold difference in
concentration for the target compound and a related impurity may not be
proportional to the chemical relevance of these compounds [69].

Mean centering may solve this problem by subtracting the average variable
pattern from each sample. This removes a common offset, and brings each
variable to vary around zero. However, mean centering may not always be
sufficient, hence autoscaling, also referred to as unit variance scaling, can
solve the problem by dividing all mean centered numbers of a variable by
the standard deviation of that variable [70]. After autoscaling, all variables
have mean values zero and a standard deviation of one. Therefore the data is
analyzed on the basis of correlations instead of covariances, as is the case
with mean centering [71]. The effect of mean centering and autoscaling is
illustrated (Figure 14) on a peak table dataset (15 samples x 20 peak areas)
obtained from integration of one major target peak and nineteen related
minor peaks (modified from PAPERI).
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Figure 14. Illustration of a peak table dataset (15 samples x20 peak areas) before
(A) and after mean centering (B) and autoscaling (C) (modified from PAPER I).

After mean centering (Figure 14B), all variables will have mean values zero.
Mean centering is normally recommended for data where the variables have
same units. After autoscaling (Figure 14C), all variables have equal length
and mean values zero. Autoscaling is recommended for data where the
variables have different units or if the variation in range of different
variables is large. For the example illustrated in Figure 14 (modified from
PAPER 1), variable 1 (target peak) originates from the high concentration
target compound, with large absolute fluctuations between samples. This is
not desired since the other related compounds giving rise to smaller peaks
and peak variation are equally interesting for the application in PAPER L
When processing full chromatographic profiles, however, the use of
autoscaling magnifies the baseline variation since variables (i.e. retention
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time points) representing only noise will also be transformed to the same
scale as all the other variables (Figure 15B). Baseline variation will thus
become equally important as variation in chromatographic peaks. This also
holds true for components with very low concentrations and variation. One
effective way to reduce the relative importance of large values without
blowing up noise is square root mean scaling (Figure 15C). This scaling
method uses the square root of the mean (of individual variables) as scaling
factor. In PAPER II square root mean scaling turned out to be the most
appropriate scaling method, as it first of all increased the sensitivity on
detecting small unknown peaks partly hidden under the target peak.
Secondly, the characteristic appearance of the chromatogram was kept
intact, which was helpful when interpreting a faulty chromatogram detected
by the multivariate statistical model.

Scaling may also be crucial in order to bring the distribution of data points
close to a normal distribution. This is especially important when multiple
testing (like Student’s t-test) is used for difference analysis as in PAPER III.
In many cases, a logarithmic transformation is used for stabilization of the
variance. Logarithmic transformation can also be a solution to the problem
of difference in range of variables; however, it may result in the same noise
drawback as autoscaling when processing full chromatographic profiles
(Figure 15D). Furthermore, log transformation of zeros and negative values
is a problem. The different scaling methods mentioned here were applied to
fifty chromatographic profiles and the effect is illustrated for one profile in
Figure 15 (modified from PAPER II).
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Figure 15. Effect of different scaling methods applied to fifty chromatographic
profiles. Here one profile is plotted before scaling (A), after autoscaling (B), after
square root mean scaling (C), and after logarithmic (logl0) transformation (D)
(modified from PAPER II).

There are several other centering, scaling and transformation methods which
not are mentioned here, some of them are well described in a paper by van
den Berg et al. [69].
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5 Multivariate statistical monitoring

This chapter covers all the elements in the training phase and application
phase of the monitoring scheme (subsection 2.3). These include modeling of
preprocessed normal operation condition (NOC) chromatographic data,
construction of multivariate control charts, monitoring of new
chromatographic data, and diagnosis of deviating chromatographic data
using contribution plots.

To be able to explain the multivariate statistical monitoring to a broad
audience, the confusion between process monitoring and process control
needs to be clarified. From a chemical engineering point of view, process
control is about automated surveillance with well-defined control actions of
a process. However, in multivariate statistical process control (MSPC) the
‘normality’ of the process is statistically determined and monitored. The
underlying concept of MSPC is based on a comparison of what is happening
today with what happened previously. Hence, MSPC is actually a technique
for statistical monitoring of processes in spite of the fact that the designation
suggests that actual control actions are performed. Therefore, MSPC is
referred to as multivariate statistical monitoring in the ongoing to avoid
misunderstandings.

This work advocates the use of latent variables-based MSPC [72], specifically
MSPC based on principal component analysis (PCA) [73]. The PCA-based
MSPC approach developed here, considers all the noisy and highly
correlated chromatographic variables, but project this information down
onto low dimensional subspaces which contain the relevant information.
The chromatographic data is then monitored in this latent subspace by using
a few multivariate control charts built from multivariate statistics. PCA-
based MSPC is suitable for monitoring two-way data, such as tables of peak
areas or chromatographic profiles where each sample is a vector of values
collected in a data matrix. However, MSPC based on PCA cannot handle so-
called three-way chromatographic data structures, such as LC-MS data,
where each sample is a matrix of values collected in a data cube or tensor. If
PCA-based MSPC should be applied to LC-MS data, then one dimension
must be reduced either by summing or unfolding (see subsection 3.2).
Alternatively MSPC based on multiway methods, such as PARAFAC [43]
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(an extension of PCA to multiway data) or PARAFAC2 [74] (handles
retention time shifts), can handle the additional mass spectral dimension of
LC-MS data without reducing the three-way structure. These multiway
methods give new possibilities with regard to the information that can be
extracted, but are not as widespread and user-friendly as two-way methods,
due to their more sophisticated model nature. In situations where both
process variables and product quality data are available, multivariate
predictive models based on projection to latent structures like partial least
squares (PLS) [75] can be applied. These multivariate predictive models can
be used to develop a predictive relationship between the process variables
and the product quality (if present). In this way PLS-based MSPC can
monitor the measured process variables and from these estimate the product
quality. However, none of these multiway or predictive methods have found
their use in this PhD project, and are therefore out of the scope of this thesis.

This chapter will include different aspects of MSPC based on PCA in
chromatography. The usefulness of bringing PCA-based MSPC and
chromatographic data together will be discussed and examples will be given
from the papers prepared during this thesis. For chromatographic data,
PCA-based MSPC can either be applied to integrated peak areas in peak
tables (discrete data), or to fingerprints or whole chromatographic profiles
(continuous data). The first paper [PAPER I] in this thesis deals with
multivariate statistical monitoring of peak tables, whereas PAPER II and
PAPER III cover the monitoring of chromatographic fingerprints. In the
previous chapter it was described how preprocessing of the
chromatographic data can be applied to generate ‘cleaner” data so relevant
variation is more predominant in the data. Preprocessing is the first step and
a prerequisite for monitoring relevant information. For the following
discussion, it is assumed that the chromatographic data is properly pre-
processed.

Since the theory of MSPC originates from statistical process control (SPC), it
is relevant to give a brief introduction to the concepts of SPC and the link to
MSPC.

5.1 Statistical process control

The basic idea of statistical process control (SPC) is to monitor the
performance of a process over time in a so-called control chart. The greatest
developments of statistical process control have taken place during the 20th
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century. In the 1920’s statistical theory began to be applied effectively to
quality control as a result of the development of sampling theory. W.A.
Shewhart [76] was the first to develop and describe the fundamentals of SPC
in the early 1930’s, and the control chart found widespread use during
World War II and has been employed, with various modifications ever since.
Shewhart's work pointed out the importance of reducing variation in a
manufacturing process for improvement of the end-product quality. The
process variation can be well monitored with the use of control charts, which
eventually leads to adjustments of the process. Shewhart distinguishes
between variation that is normally expected of the process due chance or
common-causes (the usual, historical, quantifiable variation in a system), and
variation that changes over time due to assignable or special-causes (unusual,
not previously observed, non-quantifiable variation) [17].

The Shewhart X -chart (from now on referred to as control chart) is a simple
plot of the quality characteristic vs. time or sample. The control chart makes
assumptions about the data, namely that it is independent, and it is normally
distributed. Usually the control chart consists of a centerline (mean value),
two warning limits (mean + 20), and two control limits (mean + 30) which
indicate the range of variation of the quality characteristic (Figure 16).
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Figure 16. Control chart with warning and control limits.

Different so-called run-rules help interpret the control chart in order to
distinguish between out-of-control and in-control situations. However, the
most important rule and a basic criterion is that one or more observations
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outside of the control limits is considered rare, and indicates that the
variation is due to an assignable cause and the process is out-of-statistical
control.

Alternative control charts have been developed to detect small shifts of the
mean. These are e.g. the CUSUM chart [77,78] and the EWMA chart [79].
These alternative control charts will not be explained here.

Most SPC approaches are based upon the control charting of a small number
of variables, and examining them one at a time (univariate). This is
inappropriate for many process applications where several variables of
importance are available. The practitioner cannot reliably study more than
two or three charts to maintain overview of the process. The risk of making
mistakes is larger when many control charts are to be checked [17].
Furthermore, the univariate control charts do not account for the correlation
structure in the data. This is exemplified in Figure 17.
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Figure 17. Outline of different situations in univariate control chart monitoring
(modified from Nijhuis et al. [80]).

In Figure 17 a two-dimensional data set composed of the areas of two
chromatographic peaks is presented in both a univariate- and a multivariate
way. The ellipse in the scatterplot represents the correlation structure in the
data. In order to compare the univariate statistical approach with the
multivariate approach, the univariate control charts of peak 1 and peak 2 are
given. All nine ® observations are describing common-cause variation both in
a univariate- and a multivariate sense. The A observation does not deviate
from the correlation structure but is clearly an extreme both in a univariate
and a multivariate sense. The m observation seems to be within common-
cause variation in a univariate sense, but clearly deviates in a multivariate
sense. This is caused by the fact that the m observation departs from the
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correlation structure in the data. The univariate charts are clearly missing a
faulty situation as a consequence of the correlation structure in the data
which is not taken into account. The principle of multivariate control charts
is of course of more interest when one has to deal with a higher dimensional
data set.

5.2 Multivariate statistical process control

Contrary to univariate SPC which typically deals with single observations,
multivariate SPC (MSPC) techniques can handle many and correlated
variables. This is often relevant in industrial processes, where relationships
between the variables have to be taken into account. Univariate control
charts applied to multivariate systems are often inadequate at detecting and
handling a fault or an abnormality in the operation. This is because the
process variables often are correlated, and a special cause can affect more
than one variable at the same time. MSPC takes this correlation into account
in monitoring the mean vector or variance-covariance matrix. In MSPC,
historical data are used to calculate empirical statistical models that describe
the acceptable trends of the whole system, using latent variables instead of
every measured variable. When a problem appears, it changes the
covariance structure of the model and this can be detected using
multivariate statistics.

Hotelling [81] was one of the first who introduced a multivariate approach
for SPC of a process in the 1940’s. He applied his procedures to bombsight
data during World War II. In the late 1950’s Jackson [82] applied principal
component analysis (PCA) to reduce the dimensionality of several related
variables and introduced the control chart for T2 of principal components. In
the late 1970’s Jackson and Mudholkar [83] investigated PCA as a tool of
MSPC and introduced a residual analysis. The control chart was introduced
for the sum of squared residuals Q as well as T? of principal components
retained in a PCA model. In the early 1990’s the main concepts behind the
development and use of latent variable-based multivariate SPC for
monitoring continuous processes were provided by Kresta et al. [84], Wise et
al. [85], Kourti and MacGregor [86]. [llustrations of the methods along with
the algorithms and details on estimating control limits are well described by
Kourti [87,88], Montgomery [17], Bersimis et al. [89], Ferrer [21], and
Westerhuis et al. [90].
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Nijhuis et al. [91] were some of the first to apply MSPC in chromatography
in the late 1990’s. Since then, there are several examples where a PCA based
MSPC scheme has found its use in the chromatographic discipline [92,93].
These were all based on monitoring the analytical signals, i.e. peak areas or
peak tables. Additionally, MSPC has also been applied for the surveillance
of chromatographic instrument systems where instrument-related
parameters were modeled [94,95]. Here focus is thus not only put on post
run checks of peak areas but rather on monitoring of the analytical process
itself.

In the following, the concepts of MSPC based on PCA will be explained
using in terms of analytical chromatographic signal data.

5.3 PCA

Principal component analysis (PCA) is a common technique used for
dimensionality reduction and is implemented in all multivariate data
analysis software packages and also in some instrument software. PCA was
originally developed by Pearson in 1901 [96], though it is more often
attributed to Hotellings work from 1933 [73], where he described and
developed PCA to its present stage. Since then PCA has been used for
several applications in different scientific disciplines, amongst others in the
area of chemometrics (defined as the application of mathematical and
statistical methods to chemical measurements [97]). Comprehensive
information on the principles and applications of PCA can be found in
several good reviews [97-99] and text books [71,100].

PCA is a bilinear model that finds combinations of variables that describe
common patterns in a given data set X (MxN) with M rows of samples and N
columns of variables. Mathematically, PCA is based on decomposition of the
covariance or correlation matrix of the variables along the directions that
explain the maximum variation of the data. The matrix X can be
decomposed by either the NIPALS or the singular value decomposition
(SVD) algorithm [98]. For a given data matrix X the covariance matrix of X is
defined as:

X'X

M -1
This assumes that the matrix X has been mean centered (i.e. adjusted to have
zero mean by subtracting the mean of each column). If the columns of X
have been autoscaled (i.e. adjusted to zero mean and unit variance by

cov(X) =

(4)

59



dividing each column by its standard deviation), Equation 4 gives the
correlation matrix of X [101]. PCA establishes new directions in the original
data cloud; so-called latent variables or loadings (P), which are constructed
as linear combinations of the original variables. The first new direction is
found so that the maximum variance in the original data is explained. For
the first direction, each sample (from its original position) can be projected
onto this, providing a score value (T). These score values then describe the
amount of the latent variable/loading found in each sample, whereas the
loadings contain information on how variables relate to each other. A set of a
score and loading vector constitutes what is denoted a principal component
(tp") or PC. The direction of a principal component in relation to the original
variables is given by the cosine of the angles a1, a2, and as (loading
coefficients) as illustrated in (Figure 18). The second new direction in the
data is found orthogonal (the mathematical constraint used for PCA) with
respect to the first direction and the second score value for each sample is
found in a similar fashion as described above. This is continued as long as
systematic (descriptive) variation is described by the successive principal
components. The variance explained in each principal component decreases
for successive extracted components.
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Figure 18. Illustration of the first and second PC, representing maximum variation
in the mean centered data (yellow circles). Both PC1 and PC2 are passing through
the average point (red circle). Each sample may be projected onto the PC to get a
score value. The direction of PC1 in relation to the original variables is given by
the cosine of the angles a1, a2, and as (loading coefficients for PC1).

Figure 18 shows the new axes PC1 and PC2 created by PCA. There is greater
variance on the PC1 axis than on the PC2 axis. This is not surprising as PC1
is constructed to lie on the direction of the greatest variance in the data. By
ignoring higher-order components, a new version of the data with fewer
variables than the original data is generated. The variance left in the data
(unexplained variance) is usually related to unsystematic variation or noise
and is termed the residuals (E). Mathematically, PCA decomposes the data
matrix X as the sum of the outer product of the score vectors ti and the
loading vectors pi plus a residual matrix E:

X=tp, +t,p,/ +..+t,p; +E=TP" +E=X+E (5)
where T (MxR) is the score matrix and P (NxR) is the loading matrix, with R
components. Here R must be less than or equal to the smaller dimension of

X, i.e. R <= min (M,N). X is the matrix of predicted or reconstructed values.
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Applications of PCA rely on its ability to reduce the dimensionality of the
data matrix while capturing the underlying relationship between the
variables. To illustrate this from chromatography a simple two-peak system
is depicted in Figure 19:
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Figure 19. Illustratrion of Principal Component Analysis (PCA) of a simple
chromatographic two-peak system for three samples. X is the original data matrix,
p1 is the first loading vector (common profile) and t: the score vector holding the
amount of the first loading. No noise is present in the data and thus one principal
component (PC1) will explain all variance; i.e. the residual matrix E is zero
(modified from PAPER II).
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The two-peak chromatographic profiles depicted in Figure 19 are rather
simple, as the only difference between the three samples is the peak heights,
i.e. the ratio between the two peaks, and thus the chromatographic profile, is
the same for all three samples. The PCA model captures the maximum
variation, which follows the chromatographic profile and therefore, the first
loading resembles the original data. The score value is then simply a
measure of the magnitude of the chromatographic profile and can be used as
a direct measure of relative peak area or concentration. Because PCA is a
bilinear model, twice as high concentration (peak area) gives twice as high a
score value (assuming no noise and baseline is present and similar peak
shape regardless of the concentration).

If the chromatographic profile also varies between the samples, a more
comprehensive PCA model is needed. This is illustrated in Figure 20.
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Figure 20. Illustratrion of PCA of a chromatographic two-peak system for three
samples. X is the original data matrix, p1 and p: is the first loading vectors
(common profiles). t: and t: are the score vectors holding the amount of the first
two loadings respectively. No noise is present in the data and thus two principal
components (PC1 and PC2) will explain all variance; i.e. the residual matrix E is
zero (modified from PAPER II).

In Figure 20 both the peak heights and the peak ratio varies between the
three samples. The PCA model includes this variation by using two
principal components to describe both the magnitude and the different
chromatographic profiles. Now the two loadings together describe the
common profile.

The correct number of significant principal components can be determined
in several ways. An obvious method is to select those components that
together account for a large percentage of the total variance captured. In
addition, the inspection of loadings can verify whether the components
seem to reflect any clear systematic variation or just noise. This is
exemplified in Figure 21, where the first two loadings, from a PCA model on
unfolded LC-MS data, is folded back and plotted in 3D to help interpretation
[PAPER III]. The inspection of loadings confirmed that the first two
components reflect real systematic chemical variation.
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Figure 21. 3D plot of the first two PCA loadings [PAPER III].

Another possibility to determine the correct number of principal
components is the evaluation of the prediction error during validation,
which is described in subsection 5.4.

Once the samples in the data matrix (X) have been modeled with PCA, new
samples (xnew) can be fitted to the model. This is illustrated in Figure 22.

S | e ":
| t b e,

Figure 22. Prediction of a new sample (xnew) using the model loadings to generate
new score values (t: and t2) and residuals (e) (modified from PAPER II).

In Figure 22 a new sample is predicted using the already defined model
loadings, and consequently new score values and residuals are generated.
Most of the chromatographic profile for the new sample is described by the
model loadings. However, the small third peak in the new sample is not
described by the components retained in the model. Accordingly the third
peak shows up as an abnormal residual variability. This information can be
utilized when monitoring the chromatographic profile, as published in
PAPER IL
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5.4 Validation

An important element in multivariate statistical analysis is the validation of
the calculated models. This is to avoid false correlations, determine the
optimal number of components to use in the model and to ensure that the
estimated model reflects reality. The integrity and applicability of the
derived model are totally dependent on the set of data used to build the
model. Hence, model validation is a critical aspect to ensure that the model
is representative of the variations to be encountered in future samples.

Cross-validation [102] is an internal re-sampling method and the most often
used method for error estimation in PCA. In cross-validation new data sets
are created by systematically removing samples from the data set, either in
small segments or individually as in leave-one-out cross-validation. The
residuals for the samples that were left out, using the model built with the
remaining samples, serve as a measure for the overall prediction error.
Cross-validation is typically used in preliminary studies of data and if a data
set is limited to very few objects (less than 50). More details on the most
commonly used generic PCA cross-validation methods can be found in a
review by Bro el al. [103].

Test set validation is a method for validation of a model by another data set,
which can be either dependent or independent. A truly independent data set
represents a separate selection from the entire population e.g. samples
collected from another period of time where all possible sampling errors and
sample variations are present. This kind of validation is the ultimate
validation of any model and is also referred to as external validation. If an
independent test-set is not available, the validity of the PCA model is
usually tested by splitting the sample set into two sets; one set for calibration
and the other for internal validation (dependent test-set).

The estimation of the prediction error is in terms of the Root Mean Square
Error (RMSE):

RMSE = 6)

where x, and X, are a measurement of the nth variable and its predicted

(reconstructed) value, respectively. D denotes the number of degrees of
freedom. The RMSE values are in the same units and scale as the reference
values. Depending on how the model is used for estimating the predicted
values, the following terms are used:
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-RMSEC (Root Mean Square Error of Calibration)
-RMSECYV (Root Mean Square Error of Cross Validation)
-RMSEP (Root Mean Square Error of Prediction)

How to divide a sample set into test set and calibration set as well as when
to use cross validation and test set validation will always be related to the
data set at hand and the purpose of the modeling. When choosing the
number of components in the PCA model, one should try to avoid under-
titting, i.e. too few components, and over-fitting, i.e. too many components.
If an insufficient number of principal components are chosen, the prediction
is not reliable because useful information has been omitted. If too many
components are chosen, however, more uncertainty is included in the
calibration set which results in errors in prediction. When calibrating a
model the RMSECV or RMSEP is usually calculated for every addition of the
next component to the model. Normally, the optimal number of components
is found at the first local minimum of the RMSECV or RMSEP curve.

5.5 Bootstrapping

Bootstrapping [104] is a method for estimating the distribution of a statistic
that is otherwise difficult to determine because of e.g. small sample size or
awkward distribution. Bootstrap methods repeatedly analyze new so-called
bootstrap data sets which are created by resampling with replacement from
the original data. Hence, each bootstrap data set is a random distribution of
samples from the full data set. The bootstrap data set have the same number
of samples as the original data set.

A wide variety of adaptations of the bootstrap have been proposed over the
years, each tailored to a specific application or goal. Many of them are
reviewed by Wehrens et al. (2000) [105]. In PAPER I a bootstrapping
procedure was set up to empirically estimate the false positive rate, i.e. the
probability of a sample being outside normal operation condition (NOC)
when it is actually a NOC sample. In Figure 23 the average false positive rate
is plotted against bootstrap iterations to check for convergence.
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Figure 23. Average false positive rate plotted against number of bootstrap
iterations. Convergence is obtained after approximately 600 bootstrap iterations
[PAPERI].

The bootstrap exercise presented in Figure 23 reveals that the false positive
rate estimate seems to be estimated accurately after approximately 600
iterations [PAPER I] and it seems that the rate is approximately 2%.

5.6 MSPC charts

From the PCA model two complementary multivariate monitoring statistics
are commonly derived: the Hotelling T? (D-statistic) and the squared
prediction error (Q-statistic). These two statistics can be implemented by
graphical and numerical ways in two separate MSPC charts to monitor if the
samples are in the accepted NOC region monitored. The sensitivity of fault
detection towards changes in the NOC region depends on the historical
NOC data, number of data points, preprocessing methods, and number of
components included in the NOC PCA model. For both the D- and Q-
statistics confidence levels can be obtained and used as control limits. There
is only one limit for the D- and Q-chart instead of two for the univariate
charts, and this upper control limit (UCL) can be used to detect changes
from the NOC model for new independent samples. It should be noticed
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that randomly induced false alarms are inherent within MSPC because of the
definition of the control limits. For example, the 99% control limit states that
statistically 1% of the normal operating samples will fall outside this limit
and incorrectly be identified as faulty. The presence of false alarms is one of
the major reasons that the process operators are skeptical of employing
MSPC charts for process fault detection. Consequently, various heuristic
run-rules have been suggested to signal the onset of the process fault [106].
However, for the applications described in PAPER I, II, and III, a 99.87%
(~30) confidence level has been used as the control limit similar to the 30
control limits used in ordinary univariate Shewart control charts. This
preferably makes the control chart more reliable, despite the loss of
sensitivity. If a new sample falls outside the control limit in the D- and/or Q-
chart, it is characterized as a special cause and the sample is considered to
deviate significantly from the NOC samples included in the PCA model.

5.6.1 D-statistic

The D-statistic is a measure of the variation in the PCA model, and faults
detected in the D-chart could in chromatography mean that there is a
deviation from the target value for one or more peak areas. However, the
correlation structure of the peak areas remains the same. In Figure 17 this is
represented as the A observation showing an extreme increase in the area of
both peak 1 and peak 2. In this case the correlation structure is maintained
and therefore only the D-chart will detect this event. The D-statistic is
described by the scores in the T? for principal components, introduced by
Hotelling (1947) [81], and is a distance between the center of model space
and the new obtained scores:

R 42

D, =2 5" 7)

r=1 t

where tuwr is the rth principal component score for the new sample, s is the

variance of the calibration model scores ¢: of the rth component and R denote
the number of principal components retained in the PCA model.
The D-statistic follows the F-distribution and the upper control limit for the
D-statistic can be calculated according to Jackson [71]:

R(M -1)
UCL, :ﬂﬂ_a (R,M - R) ®)
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Where M is the number of samples, R is the number of principal components
retained in the PCA model, and F is the F-distribution with a confidence
level 1-a and (R,M-R) degrees of freedom.

5.6.2 Q-statistic

The Q-statistic is a measure of the amount of variation not captured by the
PCA model, and faults detected by being extreme in the Q-chart are caused
by events that break the correlation structure described by the model. An
event related to the example in Figure 17 is the m observation where the area
of peak 1 is decreased while the area of peak 2 is increased. Under NOC the
area of peak 1 also had to increase, so in this case the new event is no longer
described by the model and there will be a faulty situation only in the Q-
chart represented in the residuals of the new sample calculated according to
Jackson & Mudholkar (1979) [83]:

O = 2, (%, = %) =D (e,)’ )

where x, and X, are a new measurement of the nth variable and its
predicted (reconstructed) value, respectively, which result in the residual e, .

N denotes the number of variables. Several ways to determine the UCL for
the Q-chart is described [88,107]. Most commonly, a normal distribution to
approximate a weighted chi-square distribution is used from which the UCL
for the Q-chart can be calculated according to Jackson & Mudholkar (1979)
[83]:

1

- Jz, (20,n2) |
ucL, =6, 1—92110(1 h°]+ 2o 20:1y) (10)

2 91

1

To understand this, V is defined as the covariance matrix of the residuals E
(after performing PCA on the NOC samples), 01 is the trace (the sum of the
elements on the main diagonal) of V, 02 the trace of V?, 0s the trace of V3,
ho=1-((26103)/(361?)), and z« is the standardized normal variable with a (1-a)
confidence level. Alternatively, an approximation based on the weighted
chi-squared distribution (gx?) can be used proposed by Box [108], with the
weight ¢=0>/01 and h=012/02 degrees of freedom.

In Figure 24 examples of the D- and Q-chart is presented for monitoring
chromatographic profiles [PAPER II]. The chart statistics are derived from a
PCA model based on forty NOC calibration samples and prediction of ten
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independent NOC validation samples. The 95%, 99% and 99.73% (UCL ~30)
confidence levels are derived from the PCA model based only on the
calibration samples.

{A) D-chart
ED T T T T T T T T T T
QO Calibration set
A0k O “alidation set 4
2 Al 95% conf. level
% - _———ELJJEs;fE conf. Iivel i
ow
& (99.73%)
20F .
10 [ a. __________________________ ™------- _
(o] o O
0 0 o5 000 coogoonosang P oy ot

{B) O-chart
Dz T T T T T T T T T T
O Calibration et
O “alidation set
£ 1LY f [ 95% conf. level 7
% ————099% conf. level
g UCL (99.73%)
o O01F i
po&fF b
N AT S ST,
500%™~ on, 00Pg009, o 9n 00ed? e o, o
0 5 10 15 20 25 30 35 40 45 a0

Sample
Figure 24. D-chart (A) and Q-chart (B) of calibration (circle) and validation
(square) sample sets. 95%, 99% and 99.73% (~30) confidence levels are indicated
(modified form PAPER II).

By inspection of the D- and Q-chart it can be confirmed that the PCA model
based on the calibration sample set describe the common-cause variation
(Figure 24). All 50 NOC samples are within the 95% confidence interval in
the D-chart, whereas in the Q-chart two samples (~5%) are outside the 95%
confidence interval as expected from a normal distribution point of view
[PAPER II].
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5.7 Contribution plots

It is not only important to detect that there is other variation in a new
sample than the common-cause variation captured in the NOC samples It is
also important to search for the original chromatographic cause of the fault.
The D- and Q-charts do not give information on what is wrong with the
detected sample, or which chromatographic signals caused the sample to be
out of control. Once an MSPC chart signals an alarm, the model can be
scrutinized to understand the cause of the alarm. One of the most widely
used approaches is using contribution plots [109-111]. Contribution plots
compute a list of each single chromatographic signal (peak area, retention
time etc.) that contribute numerically to the D- and Q-statistics respectively.
In this way contribution plots may reveal the group of chromatographic
signals making the highest contribution to the model (D) or to the residuals
(Q). If a new sample exceeds the control limit in one of the statistics or both,
the contributions of each chromatographic signal to the respective statistic
should be examined. In Figure 25 the residual contributions (green) of a
faulty chromatogram is plotted together with the actual faulty
chromatogram (red) and a NOC chromatogram (blue) (modified from
PAPER II).
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Figure 25. Plot of the faulty residual contribution (green), plotted together with a
NOC (blue) and the faulty chromatogram (red) on the secondary y-axis (modified
from PAPER II).

Clear indication of a new peak or a shoulder on the fronting target peak is
given in Figure 25. Apparently, this variability is not described by the
principal components retained in the NOC model. Another example is given
in Figure 26 from PAPER I, where the integrated areas of twenty peaks are
monitored. Here, a new sample is deviating in a multivariate sense, and is
detected in the Q-chart exceeding the UCL. The chromatographic variables
(peak areas) responsible for the signal in the Q-chart can be inspected in the
residual contribution plot (Figure 26).
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Figure 26. Q residual contribution plot of twenty peak areas obtained from a
faulty sample exceeding the UCL in the Q-chart [PAPER I].

The contribution plot (Figure 26) allows us to diagnose the problem with the
faulty sample, and indications of which (possibly pattern of) peaks that
contribute to the deviating behavior are given.

5.8 Enhanced MSPC charts

In PAPER II the conventional MSPC D- and Q-chart is used for monitoring
the chromatographic data. However, in PAPER I and PAPER III enhanced

MSPC charts are developed. These are briefly described in the following
subsections.

5.8.1 Comprehensive control charting (PAPER I)

The derived MSPC statistics (D and Q) may suffer from lack of sensitivity if
only one or a few variables deviate from the common-cause variation in a
given situation. This is simply due to the properties of PCA where a change
in correlation structure is amplified over single variable changes. To comply
with this phenomenon a new comprehensive control (COCO) chart
procedure is developed. The COCO chart considers both univariate statistics
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and multivariate statistics derived from PCA in a single plot that allows easy
visualization of the combined data from a univariate and multivariate point
of view. The methodology simply normalizes each control chart value (both
single variables and D- and Q-values) with its respective control limit such
that a value greater than one indicates deviation from normal operating
conditions (NOC), whereas a value between zero and one indicates NOC.
This is exemplified in Figure 27 showing three univariate control charts (one
for each variable 1, 2, and 3) and the two derived multivariate control charts
(D- and Q-chart), before (upper charts) and after normalization (lower
charts) [PAPER I]. The control charts are based on a simulated dataset
(autoscaled). The first twenty samples have been used as NOC samples,
whereas the two last samples are new independent samples to be monitored.
The D- and Q-charts are derived from a two component PCA model
explaining approximately 80% of the common-cause variation in the first
twenty NOC samples. The control limits correspond to the 30 confidence
level, and are estimated from the NOC samples.

Chart 1 Chart 2 Chart 3 D-chart Q-chart

Value

Normalized value

0 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Sample Sample Sample Sample Sample

Figure 27. Simulated example of univariate- and multivariate control charts,
before and after normalization with the respective control limit [PAPER I].

The two last samples (21 and 22) plotted in Figure 27 simulate two different
types of special causes. Sample 21 is within common-cause variation in all
three univariate charts, but clearly deviates in a multivariate sense as it
exceeds the control limit in the Q-chart. In contrast sample 22 exceeds the
control limit in the univariate Chart 1; in spite of this none of the
multivariate charts detects this deviation as being faulty. Consequently,
detection of these two different types of special causes would require
inspection of both univariate and multivariate control charts simultaneously.
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This can be an overwhelming and inefficient task and the risk of missing an
out-of-control situation is obvious.

Therefore a more orderly control chart procedure is devised here. As
depicted in Figure 27, Z normalized control values (Z is the number of
control charts including the D- and Q-chart, here Z=5) is produced for each
sample, where the largest value reflects the control chart in which the
sample is most deviating. As a condensed measure across all control charts
(including the D- and Q-chart) the maximum normalized value is used for
COCO charting as exemplified in Figure 28.
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Figure 28. Simulated example of how univariate- and multivariate control charts
can be condensed in one COCO chart monitoring the maximum normalized value
for each sample [PAPER II.

In the COCO chart (Figure 28) the maximum fault contributions are
monitored, allowing both univariate and multivariate statistics to be
accounted for at the same time. As opposed to either using MSPC or using
multiple SPC charts, this comprehensive control chart strategy covers the
detection capabilities of both [PAPERI].

5.8.2 MSPC based on PCA combined with multiple testing (PAPER III)

As an enhancement to the way the faults are typically detected and source
determined it is possible to calculate confidence intervals for the residuals of
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individual variables, rather than only the overall residual [90,112,113]. In
PAPER III MSPC is applied to LC-MS data for detection of unknown
impurities. However, the huge amount of data points combined with the
discrete nature of LC-MS signals (i.e. sharp signals in MS direction) makes
detection of unknown impurities a case of needle-in-the-haystack
expedition. That is, if a few discrete residuals are related to an unknown
impurity they are simply masked when calculating the sum of squared
residuals (Q), making Q a non-sensitive measure. Therefore a new method
was devised to monitor the relative size of the residuals, compared to the
NOC residuals, rather than just considering the absolute size of the
residuals. This enhanced MSPC methodology is based on PCA in
conjunction with variable wise (multiple) testing [PAPER III].

PCA and variable wise (multiple) testing offers two different dimensions to
statistical data analysis. Multiple testing aims at separating the variable
space into variables with a significant or non-significant change, where PCA
separates data into a systematic part (D) and a non-systematic part (Q). In
Figure 29 this is schematized.

[ Multiple testing ] [ PCA ]
p>a p<a D-statistics Q-statistics
(noise) (changes + new features) (changes) (noise + new features)

Figure 29. Shematic overview of two different data analytical approaches for
extraction of information from multivariate data. p refers to test probability, a is
significance level [PAPER III].

Experiments where a high number of variables are evaluated on possibly
several outcomes involve testing of numerous hypotheses where handling of
error rates is of crucial importance. This discipline is referred to as multiple
testing. Multiple testing is widely used for biomarker discovery in
proteomics, and has been applied in several analyses of LC-MS data
intensities [53,114,115]. However, if multiple testing is applied directly to
preprocessed LC-MS data it would result in detection of all intensity
differences (i.e. both known according to normal operating conditions and
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unknown features). Multiple testing applied to PCA residuals would only
result in detection of unknown features, as the known features are described
by the model and expressed in the D-statistics. In PAPER III the huge
amount of data points per sample are binned into a (time, m/z) grid, where
each binned value represents the sum data points within that bin. In order to
detect the needle in the haystack, multiple testing is based on a simple t-test
for each bin (n) as:

t = enew,n _Eref,n (12)
s N+ MT
where
2 1 < 2
Sn = (ei n Ere ' n) (13)
M -1 Z e
and
1 M
Ere o B ei n (14)
o =0y 2
where e, , is the residual from the new sample for bin n, e, , is the mean

of the residuals from the reference samples for bin n. M is the number of
reference samples. s» is the standard deviation of residuals from reference
samples for bin n.

The critical value of t is dependent on sample size. In order to remove this
dependency, t is transformed to a z-value through a p-value:

P(Tdf <t,)=P(z,) (15)

where T is the t-distribution with df degrees of freedom, df=M-1. @ is the
cumulative distribution function of the standard Gaussian distribution. This
z-value is used as diagnostic measure for the corresponding (time, m/z) bin.
The z-value and p-value reflects the same statistics (Equation 15) and hence
the behavior of the system. In PAPER II the Q value was used for a new
sample as a measure for detecting subtle differences in the chromatographic
pattern. The methodology devised in PAPER III produces not one but K
significance tests where K is the number of bins. These are expressed as a list
of z-values; z1, z2, .., zx,. The largest values of zi, z2, .., zk reflect the variables
where the new sample is most deviating. Impurities are in excess and hence
only large positive z-values are of interest. The present method proposes use

of the maximum z-value across all bins as a measure in control chart
monitoring [PAPER III].
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6 Conclusions and perspectives

This thesis has focused on solutions providing more comprehensive
monitoring capabilities of analytical chromatographic data in the
pharmaceutical industry. The research presented in this thesis has
demonstrated the unique potentials of assessing chromatographic data using
novel multivariate statistical tools. These tools utilize the available
information contained in multiple measured chromatographic signals
simultaneously in an objective (numerical) and statistically reliable way.

Methods and algorithms have been developed to automate and optimize the
many aspects present, when setting up an industrial reliable monitoring
scheme. This includes:

e Collection of data from commercial chromatographic instruments to
numerical software (MATLAB)

e Application of necessary preprocessing steps to generate ‘clean” data
e Multivariate statistical modeling based on PCA and multiple testing
e Comprehensive control chart monitoring and detection

e Interpretable visualizations providing diagnostic information on
deviating chromatographic data

These new and useful tools have been presented, explained and visualized
on actual pharmaceutical analytical chromatographic data and published in
three scientific papers.

In PAPER I it was demonstrated how multivariate statistical process control
(MSPC) based on principal component analysis (PCA) is a much more
powerful tool for detecting variations, due to special causes than
conventional single variable statistical process control (SPC). Furthermore,
the PCA based SPC simplifies monitoring as it limits the number of control
charts to typically two charts rather than one for each signal. However, the
derived MSPC statistics may suffer from lack of sensitivity if only one or a
few variables deviate in a given situation. A new comprehensive control
(COCO) chart procedure was developed that considers both univariate
statistics and multivariate statistics derived from PCA in a single plot that
allows easy visualization of the combined data from a univariate and
multivariate point of view. The method was exemplified using integrated
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areas of twenty chromatographic peaks obtained for purity analysis of a
biopharmaceutical in-process sample. The new control chart procedure may
serve as a powerful supplement to the current univariate chromatographic
data approach used in the industry.

PAPER II proposes a PCA-based MSPC approach for monitoring subtle
changes in the chromatographic profile, providing clear diagnostics of
subtly deviating chromatograms due to new impurities co-eluting with the
target compound (usually present in excess compared to any impurity).
Different chromatographic data preprocessing methods such as time
alignment, baseline correction and scaling were applied to historical
chromatograms from a biopharmaceutical in-process analysis to correct for
non-relevant analytical variation, since it largely influences the outcome of
the monitoring. The procedure can be implemented and operated as the
chromatographic analysis runs, and support the current practiced visual
inspection of chromatograms. In this way an automated and timely tool for
continuous quality verification of the chromatographic data is conducted in
an objective and statistically reliable way.

PAPER III describes how LC-MS adds a new selective dimension to the
chromatographic separation in order to increase confidence that all
impurities are detected. The study demonstrates how the relevant chemical
information can be extracted from the huge amount of data generated with
LC-MS analysis. This is particularly helpful when the presence of unknown
impurities is investigated. In PAPER III a new tool, based on PCA combined
with multiple testing, was developed to adapt MSPC based monitoring to
the nature of LC-MS data. The tool was applied to LC-MS data from in-
process analysis of industrial insulin intermediate samples. The study
demonstrated, how low spike-levels (0.05%) of a structurally related
compounds co-eluting with the target compound was detected by the tool
and further how clear diagnostics of the co-eluting compound was provided.
This tool makes a fully automated monitoring of LC-MS data possible,
where only relevant areas in the LC-MS data are highlighted for further
interpretation.

By developing and demonstrating ways to improve assessment of
chromatographic data, this thesis is a step in the direction of better
utilization of available information present in the data-rich pharmaceutical
industry. The applications described in PAPER I-Ill may all serve as
complementary and equally important approaches for assessment of various
types of chromatographic data. This will be a step toward effectiveness and

80



robustness, and consequently enhance the overall chromatographic analysis
significantly. Of course, these new MSPC tools are not just plug and play, but
may need increased allocation of resources, compared to common SPC tools,
for development, implementation, and maintenance. This will require close
interaction between analytical chemists, process operators, and experts of
advanced data analytical techniques. However, regulatory requirements on
documentation and validation of non-commercial MSPC systems can be
quite extensive, and a rather laborious task to fulfill. Therefore, the
pharmaceutical industry should push for improved validated commercial
instrumentation software where these MSPC tools are integrated.

Future pharmaceutical process analysis will continuously develop towards
handling more complex samples at increasingly higher speed. This will
require even more advanced analytical instruments. Consequently, the
amount and complexity of the acquired analytical data will increase, and the
role of multivariate statistical tools may become a necessity for optimal use
of such new sophisticated analytical instrumentation. This PhD thesis
encourages to speed up the inclusion of more advanced data analytical tools
in validated commercial instrumentation software or database management
systems. In this way advanced tools such as MSPC will become more user-
friendly, familiar to a broader range of end-users, and ultimately facilitate
optimal utilization of available information.
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Multivariate statistical process control (MSPC) based for example on principal component analysis (PCA) can
make use of the information contained in multiple measured signals simultaneously. This can be much more
powerful in detecting variations due to special causes than conventional single variable statistical process
control (SPC). Furthermore, the PCA based SPC simplifies monitoring as it limits the number of control charts
to typically two charts rather than one for each signal. However, the derived MSPC statistics may suffer from
lack of sensitivity if only one or a few variables deviate in a given situation. In this paper we develop a new
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Multivariate statistical process control comprehensive control (COCO) chart procedure that considers both univariate statistics and multivariate
(MSPC) statistics derived from PCA in a single plot that allows easy visualization of the combined data from a

univariate and multivariate point of view. The method is exemplified using twenty analytical chromato-
graphic peak areas obtained for purity analysis of a biopharmaceutical drug substance. The new control chart
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procedure detected two different types of faulty events in this study.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Typical purity analysis based on high performance liquid chroma-
tography (HPLC) in biopharmaceutical processes usually deals with a
number of well known peaks of the target compound and related
impurity compounds. Commonly the concentration of each com-
pound of interest is investigated with a separate control chart. A
univariate statistical process control (SPC) chart can e.g. be of the
Shewart type [1], which is a simple plot of the compound vs. time,
sample or batch. Such a chart usually consists of two control limits
(target or mean value 4 30) which indicate the range of acceptable
variation of the compound. Applying univariate SPC charts to an in-
process analysis containing several impurity compounds will force the
practitioner to inspect a large number of control charts. The risk of
making mistakes is higher when several control charts are to be
checked [2]. When special events occur in a process they affect not
only the magnitude of the compounds but also their relationship to
each other. These events are often difficult to detect by charting one
compound at a time because the correlations between the compounds
is not directly affected in the individual charts.

The major benefit of Multivariate SPC (MSPC) compared to
univariate SPC is that the correlation between the original variables
is considered, which decreases the risk of missing an out-of-control
situation due to a change in the pattern of variation. In MSPC the
information contained within all of the variables is reduced down to a

* Corresponding author at: Department of Food Science, Faculty of Life Sciences,
University of Copenhagen, Rolighedsvej 30 DK-1958, Frederiksberg C, Denmark.
E-mail address: krfl@novonordisk.com (K. Laursen).

0169-7439/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.chemolab.2011.04.002

few common dimensions through the application projection methods
such as principal component analysis (PCA) [3]. In the chromato-
graphic discipline, MSPC based on PCA has also found its use [4-8].
Using the information contained in all the measured signals
simultaneously, MSPC charts have shown to be much more powerful
in detecting special causes than conventional single variable SPC
charts [9,10]. Special causes detected in the derived MSPC charts can
either be due to deviation from common-cause variation (detected in
Q-statistic) and/or in the magnitude of the common cause variation
(detected in D-statistic). However, these derived statistics may suffer
from lack of sensitivity if only one or a few variables deviate from the
common-cause variation. This is simply due to the properties of PCA
where a change in correlation structure is amplified over single
variable changes. To comply with this phenomenon there is a need for
a comprehensive monitoring tool, that take all kinds of special causes
into account. This study devises a single overall control chart for
comprehensive monitoring of individual levels as well as common
cause level. The method is applied to twenty defined peaks in
analytical chromatography obtained for purity analysis of a biophar-
maceutical drug substance.

2. Theory and methods
2.1. SPC vs. MSPC

Most statistical process control (SPC) approaches are based upon
the control charting of a small number of variables, and examining

them one at a time (univariately). This is inappropriate for many
process applications where several variables are generated and where
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the variations in these variables are correlated. The practitioner can
not really study more than two or three charts to maintain overview
of the process. Furthermore, the univariate control charts do not
explicitly account for the correlation structure in the data. This is
exemplified in Fig. 1.

In Fig. 1, a two-dimensional data set composed of the areas of two
chromatographic peaks is presented in both a univariate- and a
multivariate manner (one plotted vs. the other in a scatter plot to
reveal correlations). The ellipse in the scatter plot represents the
common correlation structure in the data. In order to compare the
univariate statistical approach with the multivariate approach, the
univariate control charts of peak 1 and peak 2 are given. All nine @
samples are describing common-cause variation both in a univariate-
and a multivariate sense. The A sample does not deviate from the
correlation structure but is clearly an extreme both in a univariate and
a multivariate sense. The B sample seems to be within common-cause
variation in a univariate sense, but clearly deviates in a multivariate
sense. This is caused by the fact that the B observation departs from
the correlation structure in the data. The univariate charts are clearly
missing a faulty situation as a consequence of the correlation structure
in the data which is not accounted for in the univariate approach. The
principle of multivariate control charts is of course of more interest
when one has to deal with a higher dimensional data set, for instance
several chromatographic peaks.

2.2. MSPC based on PCA

The basis of MSPC is to collect a set of historical data when the
process is running under normal operating condition (NOC). Then the
multivariate statistical technique PCA is applied to the historical data
to model and extract the correlation structure of several correlated
variables. The data matrix X (with M rows of samples and N columns
of variables) is decomposed into R (R<min(M,N)) principal compo-
nents TPT and a residual part E (Mx N):

X=t;p] +t,p) + ... + tpr +E=TP' + E=X +E 1)
where T (M xR) is the score matrix and P (N xR) is the loading matrix,

with R components. X is the PCA approximation of the original data.

Peak 2

T Xead

«— il

Fig. 1. Outline of different situations in univariate control chart monitoring (modified
from Nijhuis et al., 1999 [5]).

The number of significant principal components can be determined by
cross-validation [11]. In this way the dimensionality of the data matrix
is reduced while capturing the underlying relationship between the
variables. From the PCA model two complementary multivariate
monitoring statistics are produced, the D-statistic and the Q-statistic.
These two statistics can be monitored in separate MSPC charts.

Faults detected in the D-chart could in chromatography mean that
there is a deviation from the target value for one or more peak areas.
However, the correlation structure of the peak areas (the peak
‘pattern’) remains the same. In Fig. 1 this is represented as the A
sample showing an extreme increase in the area of both peak 1 and
peak 2. In this case the correlation structure is maintained and
therefore only the D-chart will detect this event. The D-statistic is
described by the scores in the T2 for principal components, introduced
by Hotelling (1947) [12], and is a Mahalanobis distance between the
center of model space and the new obtained scores:

R tﬁew.r
Dpew = > (2)

2
r=1 St,

where ¢, is the rth principal component score for the new sample,sﬁ is
the variance of the model scores t, of the rth component and R denote
the number of principal components retained in the PCA model. The D-
statistic follows the scaled F-distribution and the upper control limit
(UCL) for the D-statistic can be calculated according to Jackson [13]:

R(M—1)

Ullr = “y—r

F;_o(R,M—R) 3)

Where M is the number of samples, R is the number of principal
components retained in the PCA model, and F is the F-distribution
with a confidence level 1-a and (R,M-R) degrees of freedom.

Faults detected in the Q-chart are caused by events that break the
correlation structure described by the model. An event related to the
example in Fig. 1 is the B sample where the area of peak 1 is decreased
while the area of peak 2 is increased. Under NOC the area of peak 1
and peak 2 are positively correlated, so this event is not described by
the model. Hence, there will be a faulty situation only in the Q-chart
represented in the residuals of the new sample calculated as:

N

Qrew = > (xn_)?n)z = ngl (en)z (4)

n=1

where x, and &, are a new measurement of the nth variable and its
predicted (reconstructed) value, respectively, which result in the
residual e,,. N denotes the number of variables. There are several ways
to determine the confidence limits for the Q-statistic [14,15]. In the
present paper, a normal distribution to approximate a weighted
x-square distribution is used from which the UCL for the Q-chart can
be calculated according to Jackson & Mudholkar [16]:

03 0, ®)

_ 2, (20,03 a
UCL, = 6, {1_02%(1 h0>+ ol 20)}

The matrix V is defined as the covariance matrix of the residuals E
(after performing PCA on the NOC samples), 6, is the trace (the sum of
the elements on the main diagonal) of V, 6, the trace of V2, 65 the trace
of V3, hg=1—((26105)/(363)), and z, is the standardized normal
variable with a (1 — «) confidence level.

In standard two-sided SPC charts an observation more than three
standard deviations (30) from normal operating conditions is often
used as the control limit. This corresponds to a coverage probability of
0.9973 (1—2d(—3)=0.9973), where &(-) refers to the standard
normal distribution operator. In the application described here the
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Fig. 3. Simulated example of how univariate- and multivariate control charts can be condensed in one COCO chart monitoring the maximum normalized value for each sample.

one-sided D and Q control chart upper control limit should reflect the
same coverage probability, i.e. a 99.73% confidence limit (~30) is used.

Note that the use of PCA is under the assumption of a low rank PCA
model being adequate. If the variables are independent it suffices to
look at the variables individually. The correlation structure in
chromatography can be very weak, and if there are only a few (low
correlated) variables it would make more sense to use the original
approach as proposed by Hotelling [12], instead of using the dimension
reduced approach resulting in the D-, and Q-chart. This approach is
equivalent to a full rank PCA solution solely evaluating the D-statistics.

For monitoring, the PCA model is applied by projecting a new
sample onto the model hyperplane, and calculating the residuals of
the PCA model. Then, the associated values of the D- and Q-statistics
are calculated for this new sample and the MSPC charts are updated. If
a new sample violates the control limit of either statistic the sample is
considered to deviate significantly from the samples included in the
PCA model, and it is indicative of abnormal process behavior. Once an
MSPC chart signals an alarm, the model can be scrutinized to
understand the cause of the alarm. One of the most widely used
approaches for this is using contribution plots [10,17,18]. Contribution
plots compute a list of each single chromatographic peak that
contributes numerically to the D- and Q-statistics respectively.
However, contribution plots do not automatically reveal the actual
reason for the faulty condition. Therefore, those peaks responsible for
the faulty signal should be investigated, and incorporation of chemical
and technical process knowledge may be necessary to diagnose the
problem and discover the root causes of the fault [9].

2.3. Comprehensive control (COCO) charting — monitoring normalized
control chart values

The methodology devised here considers both the univariate
statistics and the two MSPC statistics (D and Q). Each control chart
value is normalized by division with the respective control limit (here
30). For the univariate and scaled control values the absolute values
and control limits are used. In this way values greater than one
indicate deviation from normal operating conditions (NOC), whereas
values between zero and one indicate NOC. This is exemplified in
Fig. 2 showing three univariate control charts (one for each variable 1,
2, and 3) and the two derived multivariate control charts (D- and Q-
chart), before (upper charts) and after normalization (lower charts).
The control charts are based on a simulated dataset (autoscaled). The
first twenty samples have been used as NOC samples, whereas the two
last samples are new independent samples to be monitored. The D-
and Q-charts are derived from a two component PCA model
explaining approximately 80% of the common-cause variation in the
first twenty NOC samples. The control limits corresponds to the 30
confidence level, and are estimated from the NOC samples.

The two last samples (21 and 22) plotted in Fig. 2 simulate two
different types of special causes. Sample 21 is within common-cause
variation in all three univariate charts, but clearly deviates in a
multivariate sense as it exceeds the control limit in the Q-chart. In
contrast sample 22 exceeds the control limit in the univariate Chart 1; in
spite of this none of the multivariate charts detects this deviation as
being faulty. Consequently, detection of these two different types of

Target compound

AU

Minutes

Fig. 4. Analytical chromatogram of a biopharmaceutical drug substance. Selected peaks of interest are marked and integrated.


http://dx.doi.org/10.1016/j.chemolab.2011.04.002

Peak area Peak area Peak area Peak area

Peak area

Target peak

0 20 20 60
Peak 12

UCL

Avg

LCL

UCL

Avg

LCL

ucCL

Avg

LCL

UCL

Avg

LCL

Peak 1
5
- [_]
0 [ ] [ ]
0 20 40 60
Peak 5
5

S0 20 40 60
Peak 17
5
et
0 | ]

-5 L L L

0 20 40 60
Sample

UCL

Avg

LCL

UCL

Avg

LCL

UCL

Avg

LCL

ucCL

Avg

LCL

UCL

Avg

LCL

0 20 40 60

0 20 40 60
Peak 18
0 20 40 60

Sample

ucCL

Avg

LCL

UCL

Avg

LCL

UCL

Avg

LCL

ucCL

Avg

LCL
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Fig. 6. Results of leave-one-out cross-validation, indicating the optimal number of 3 principal components.

special causes would require inspection of both univariate and
multivariate control charts simultaneously. This can be an overwhelm-
ing and inefficient task and the risk of missing an out-of-control
situation is obvious.

Therefore a more orderly control chart procedure is devised here.
As depicted in Fig. 2, Z normalized control values (Z is the number of
control charts including the D- and Q-chart, here Z=5) is produced
for each sample, where the largest value reflects the control chart in
which the sample is most deviating. As a condensed measure across
all control charts (including the D- and Q-chart) the maximum
normalized value is used for COCO charting as exemplified in Fig. 3.

In the COCO chart (Fig. 3) the maximum fault contributions are
monitored, allowing both univariate and multivariate statistics to be
accounted for at the same time. As opposed to either using MSPC or
using multiple SPC charts, this comprehensive control chart strategy
covers the detection capabilities of both.

2.3.1. Estimation of the false positive rate

The presence of false alarms is one of the major reasons that the
process operators are skeptical of employing (M)SPC charts for
process fault detection. However, it should be noticed that randomly
induced false alarms are inherent within (M)SPC. For example, the

(A) D-chart

99% control limit states that statistically 1% of the normal operating
samples will fall outside this limit and incorrectly be identified as
faulty (false positive rate). In SPC an observation more than three
standard deviations (30) from normal operating conditions is often
used as the critical limit. 30" correspond to the upper 0.13% of the
distribution (1—&(3)=0.0013, where &d(-) is the standard normal
distribution with mean zero and variance one). As both abnormally
high and low deviations are considered, a single control chart has a
false positive rate of 0.27%. However, if several confidence intervals
are considered simultaneously, with coverage probability 0.9973
each, the probability that at least one interval will not contain its true
value is greater than 0.0027. Assuming independence between Z
control charts the probability of at least one of the control charts giving
a value greater than one under normal operating conditions can be
calculated as: (1—(1—p)? with p equal one minus the coverage
probability. The independence assumption is indeed not valid as the
D- and Q-statistics are based on the exact same data generating the
univariate statistics. In order not to rely on independence assump-
tions we device a routine for generic estimation of the false positive
rate by bootstrapping the calibration samples [19]. The bootstrap is
based on resampling with replacement. Here we generate B different
datasets based on a defined calibration sample set (50 samples). These
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Fig. 7. MSPC charts of (A) D-statistic and (B) Q-statistic of calibration samples (circle) and validation samples (square).
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Fig. 9. MSPC charts of (A) D-statistic and (B) Q-statistic of calibration samples (circle), validation samples (square), and test samples (diamond).

are called bootstrap samples and have the same number of samples as
the original calibration set. Each of the bootstrap samples is used for
building new control charts including estimation of the individual 30
control limits and estimation of a PCA model and the derived D and Q-
statistics with corresponding control limits. A defined validation
sample set (15 samples) is then referenced against these control
charts. For each validation sample the maximum control chart value is
obtained (across all control charts). This is repeated B times. The
validation dataset is obtained under NOC and therefore assumed to
fall inside the 30 control limit. The bootstrap procedure is set up to
empirically estimate the false positive rate, i.e. the probability of a
sample being outside NOC when it is actually a NOC sample. The false
positive rate is estimated as the frequency of validation samples
obtaining a maximum control value greater than 1 in the COCO chart.
The average false positive rate is plotted against B to check for
convergence (see Fig. 12). A high false positive rate needs to be
accounted for, as otherwise it will result in a loss of confidence in the
control chart. A simple way to adjust for the false positive rate is to
tune the individual control limits in parallel. The bootstrap approach
described above can be applied (with enough iterations) using
different control limits producing estimates of the false positive rate
as a function of the control limit. Of course this is a trade-off between
minimizing the false positive rate without loosing too much
sensitivity. However, this is the price when monitoring several
parameters simultaneously. For a dataset of the given size (number
of variables) it is anticipated that the false positive rate is not going to
be detrimental to the ability of the MSPC approach to detect abnormal
behavior.

3. Experimental

Ninety-five in-process samples of a high-purity drug substance
were collected for routine quality control testing. The first sixty-five
samples were collected under NOG, i.e. the process has been running
consistently and only high quality products have been obtained. The
sixty-five NOC samples represent a substantial time period so as to
represent possible physical changes in the chromatographic system as
well as changes in production arising e.g. from different batches of
raw materials being used. The final thirty samples were collected in a

process period where forced process changes were applied, giving rise
to possible changes in the sample matrix.

The purity, measured by reverse-phase high-performance liquid
chromatography (RP-HPLC), was performed on a Waters Alliance
HPLC system that consists of a Waters 2690 Separation Module
(combined pump and autosampler) and a Waters 2487 Dual-
Wavelength UV detector (Waters, Milford, MA, USA). The detection
wavelength was 214 nm. The separation was performed on a reverse
phase 125 x4 mm id. 5pum 100A column (FeF Chemicals, Koge,
Denmark) by employing an isocratic elution followed by gradient
elution. The mobile phase consisted of Eluent A (10% (v/v) acetonitrile
in sulphate buffer pH 2.5) and Eluent B (60% (v/v) acetonitrile in
water). Chromatographic data was collected using Empower 2
(Waters). The peak areas were integrated and listed in a peak table,
and hereafter exported to Matlab version 7 (Matworks, Natick, MA,
USA) for further analysis. All software was written in Matlab using
tools from PLS_Toolbox (Eigenvector Inc, WA, USA).

Sample 94 (Q Residual = 30.81)
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Fig. 10. Q residual contribution plot of the twenty peak areas obtained from sample 94.
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4. Results and discussion

The control chart monitoring can be divided to three distinct phases
(initial phase, training phase, application phase). In the first phase
(initial phase), historical NOC samples are collected and prepared for
modeling. Sixty-five historical HPLC chromatograms obtained for purity
analysis of a biopharmaceutical drug substance were collected and the
routinely generated peak tables were imported into MATLAB. The peak
tables were organized as an M x N data matrix X, with M samples and N
peak areas. In Fig. 4 the selected peaks of interest in this study are
marked in an analytical chromatogram obtained under NOC.

In addition to the target compound, nineteen impurities are
monitored in this study. The 1000-fold difference in concentration for
the target compound and most of the impurities is not proportional to
the chemical relevance of these compounds. Therefore, all samples
were scaled to adjust for the disparity in fold differences, aiming at
assuring that all peaks contribute equally to the model.

The essence of the second phase (training phase) is to model the
common-cause variation present in the samples obtained under NOC.
Since this NOC model exclusively determines whether a new sample
is similar or deviates significantly from the NOC samples, the
monitoring performance depends very much upon adequacy and
representativity of these NOC samples. The number of samples
needed to construct an NOC model and control charts depends on
the application. In this case study, a calibration set consisting of the
first fifty chronologically ordered NOC samples were selected. To
validate the model adequacy and representativity of these NOC
samples, a validation set consisting of the last fifteen chronologically
ordered NOC samples were selected. The autoscaling of the data was
based only on the calibration set. Accordingly, the validation set was
preprocessed using the parameters determined from the calibration
set. In Fig. 5 the scaled peak areas of both the calibration set and the
validation set are presented in twenty univariate control charts. The
30 UCL and LCL are derived from the calibration set data.

By inspection of the twenty univariate control charts presented in
Fig. 5, it is observed that all calibration samples are within their
respective control limits. Furthermore, the validation samples are all
within common-cause variation in a univariate sense. For multivariate
monitoring, the calibration set was used to develop a three component
PCA model describing 66.14% of the common-cause variation. The
selection of an optimal number of three components was based on the
results of leave-one-out cross-validation [11] plotted in Fig. 6.

The correlation structure in chromatography can be very weak, thus
the number of significant components may be difficult to assess [4].

However, root mean squared error of cross-validation (RMSECV)
plotted against PC number in (Fig. 6) has the first clear local minimum
at three components, indicating that after this point, the components
just reflect noise. The model was validated using the independent
validation set consisting of the last 15 chronologically ordered samples.
In Fig. 7 the D- and Q-statistics of calibration and validation samples are
presented with 30 control limits derived from the calibration samples.

By inspection of the D- and Q-chart (Fig. 7) it can be confirmed that
all sixty-five samples used in the training phase are within the
respective 30 control limits. This confirms that the NOC model
represents common cause variation.

In the third phase (application phase) new samples are fitted to
the model and monitored using the control charts developed in the
training phase. Deviating samples are diagnosed using contribution
plots to determine causes of the deviating behavior. The thirty test set
samples were collected in a period where forced process disturbances
were applied, giving rise to possible changes in the sample matrix. At
first the test set samples are monitored in the univariate control charts
derived from the calibration samples (Fig. 8).

By inspection of Fig. 8, two different types of special causes are
observed. The most notable event is observed for sample 94 and 95,
where several impurities increases in parallel, while the target peak
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Fig. 12. False positive rate plotted against number of iterations. Convergence is obtained
after approximately 600 bootstrap iterations.
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Fig. 13. False positive rate after 600 bootstrap iterations plotted against control limit
(0). Using a 3.50 control limit will cause the false positive rate to stay below 0.027%.

and peak 2 decreases. In sample 95 several peak areas exceeds their
respective control limits, indicating that the process is not running
under NOC. The other special cause is observed for impurity peak 6 in
sample 81, which as the only peak area exceeds its own control limit.

For multivariate monitoring, the test set samples were exposed to
the PCA model, and D- and Q-statistics were derived. As indicated in
Fig. 9 only sample 95 is detected in the D-chart, whereas both samples
94 and 95 are detected in the Q-charts exceeding the 30 control limit.

Sample 94 was not deviating in a univariate sense (Fig. 8) but is
deviating in a multivariate sense, and is therefore detected in the Q-
chart. To determine chromatographic variables (peak areas) respon-
sible for the signal in the Q-chart, a residual contribution plot is
inspected in Fig. 10.

The contribution plot allows us to diagnose the problem with the
faulty sample immediately. Clear indications of which peaks that
contribute to the deviating behavior are given in Fig. 10. Apparently,
this variability is not described by the principal components retained
in the NOC model. Accordingly, sample 94 (and sample 95) show up
as an abnormal residual variability and a faulty signal in the Q-chart.
Sample 81 was previously observed to deviate in a univariate sense as
peak 6 exceeded the upper control limit. However, sample 81 is not
detected in any of the MSPC charts. This lack of sensitivity of PCA
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derived statistics is well known, but rarely mentioned. When only a
few discrete residuals deviate, the information may potentially be
masked when calculating the sum of squared residuals (Q) or T? (D).
This makes both D and Q non-sensitive measures for monitoring and
detection of abnormal situations expressed only in one or a few
variables. Therefore, we devise a comprehensive control (COCO) chart
that considers both the twenty univariate statistics and the two MSPC
statistics (D and Q) as described in Section 2.3. As a condensed
measure across all control charts the maximum normalized control
value is used for comprehensive monitoring of all samples (Fig. 11).

The devised COCO chart presented in Fig. 11 detects both sample
81 and samples 94-95. Furthermore, the COCO chart indicates the
underlying control value causing the faulty signal. In this way
comprehensive monitoring of univariate and multivariate informa-
tion can be conducted, as an overall control chart add-on. However, as
described in Section 2.3, inferences likely occur when several control
statistics are considered simultaneously, leading to increased false
positive rate. Therefore a bootstrap procedure was set up to
empirically estimate the false positive rate, i.e. the probability of a
sample exceeding the control limit when it is actually a NOC sample.
The average false positive rate is plotted against bootstrap iterations
to check for convergence in Fig. 12.

The bootstrap exercise presented in Fig. 12 reveals that the false
positive rate estimate seems constant just below 2% after approxi-
mately 600 iterations. The estimated false positive rate is lower than
the theoretical probability of 5.8% when independence between the
control values is assumed (1 — (1 —p)?=0.0577, for p=0.0027 and
Z=122). This was expected as the D and Q-statistics are based on the
twenty univariate statistics. Nevertheless, a false positive rate of
approximately 2% may not be acceptable, as too many false warnings
will result in a loss of confidence in the control chart and thereby it
becomes less effective. Therefore the false positive rate is controlled
by tuning the individual control limits in parallel. Of course this will
decrease the sensitivity of the COCO chart but preferably makes it
more reliable. The bootstrap approach was applied (with 600
iterations) using different control limits producing estimates of the
false positive rate as a function of the control limit (Fig. 13).

By inspection of Fig. 13, the estimated false positive rate reaches
~0.2% using 3.50 as control limit. Selecting the control limit will always
be a tradeoff between sensitivity and reliability of the control chart. In
this study we aim for a false positive rate below 0.27%, and the 3.50
control limit was applied to the control chart as illustrated in Fig. 14.

The special cause examples presented in this study are still
detected as faulty by the COCO chart after applying a 3.50 control limit
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Fig. 14. COCO chart with maximum normalized values, using a 3.50 control limit.
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as indicated in Fig. 14. However, now sample 94 only barely exceeds
the control limit as a consequence of the loss of sensitivity.

5. Conclusions and some perspectives

This study demonstrates that MSPC based on PCA can provide
early warnings of faulty events in product related analytical
chromatography. The study also demonstrates that PCA suffers from
lack of sensitivity when faulty events are expressed only in one or a
few variables. Therefore a comprehensive control (COCO) chart
procedure is devised, that considers both univariate statistics and
multivariate statistics derived from PCA in a single condensed plot.
This COCO chart allows easy visualization of the combined data from a
univariate and multivariate point of view. Two different types of faulty
events tested in this study were detected by the COCO chart. However,
an increased false positive rate (~2%) was estimated with boot-
strapping. This was an expected consequence of inferences occurring
when several control statistics are considered simultaneously. The
false positive rate was tuned simply by changing the individual
control limits in parallel from 30 to 3.50, resulting in a false positive
rate below 0.27%. This preferably makes the COCO chart more reliable,
at the price of a loss of sensitivity. Applying the COCO chart procedure
to multivariate data makes a fully automatic and manageable
monitoring possible. Furthermore, if implemented and operated
while the chromatographic purity analyses runs, this tool may
considerably reduce time needed for subsequent assessment of data,
and operate according to the PAT concept aiming for real-time release.
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It is common practice in chromatographic purity analysis of pharmaceutical manufacturing processes
to assess the quality of peak integration combined by visual investigation of the chromatogram. This
traditional method of visual chromatographic comparison is simple, but is very subjective, laborious and
seldom very quantitative. For high-purity drugs it would be particularly difficult to detect the occurrence
of an unknown impurity co-eluting with the target compound, which is present in excess compared to
any impurity. We hypothesize that this can be achieved through Multivariate Statistical Process Control
(MSPC) based on principal component analysis (PCA) modeling. In order to obtain the lowest detection
limit, different chromatographic data preprocessing methods such as time alignment, baseline correc-
tion and scaling are applied. Historical high performance liquid chromatography (HPLC) chromatograms
from a biopharmaceutical in-process analysis are used to build a normal operation condition (NOC) PCA
model. Chromatograms added simulated 0.1% impurities with varied resolutions are exposed to the NOC
model and monitored with MSPC charts. This study demonstrates that MSPC based on PCA applied on
chromatographic purity analysis is a powerful tool for monitoring subtle changes in the chromatographic
pattern, providing clear diagnostics of subtly deviating chromatograms. The procedure described in this
study can be implemented and operated as the HPLC analysis runs according to the process analytical
technology (PAT) concept aiming for real-time release.
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1. Introduction

Product purity is of utmost importance in ensuring drug quality;
consequently, impurities must be monitored carefully. In general,
impurities present in excess of 0.1% relative to the target com-
pound in drug substances should be detected and identified as by
the ICH requirements [1]. Analytical separation techniques based
on high performance liquid chromatography (HPLC) are commonly
used for purity analysis in biopharmaceutical manufacturing pro-
cesses. The separation and subsequent detection of compounds in
a sample delivers a chromatogram, which ideally allows to identify
individual peaks and to attribute them to individual compounds.
Typical purity analysis in industrial processes usually deals with
a manageable amount of well known peaks of compounds at rela-
tively high concentrations. This can easily be handled automatically
with available software packages suitable for routine analysis of
chromatograms [2]. However, generic peak detection algorithms
may often suffer from inconsistent reliability towards unknown
peaks with low signal to noise ratio and overlapping peaks of dif-
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ferent shapes. Thus, it is common practice to assess the results of
peak integration by visual inspection of the chromatogram. Visual
inspection of chromatograms has been used for decades [3] and is
a valid procedure for identification of protein samples recognized
by the regulatory authorities [4,5]. Although simple, this partly
manually method is quite laborious, extremely time consuming,
seldom quantitative and prone to subjective decision-making prob-
ably causing additional errors. To comply with increased focus on
process analytical technology (PAT) and quality by design (QbD)
(aiming for enhanced process understanding that improves process
control moving towards continuous quality verification and real-
time release of an end product) there is a need for an automatic
and timely tool for objectively monitoring the chromatographic
pattern. Even though various advanced approaches have been pub-
lished towards automatic peak detection [2,6,7], there still is a need
for a tool to detect relevant subtle differences in the chromato-
graphic pattern both quantitatively and in a statistically reliable
way.

New impurities mainly originate during the synthesis process
from raw materials, solvents, intermediates, and by-products [8].
For high-purity drugs, the target compound is present in excess
compared to any impurity. Hence, occurrence of an unanticipated
impurity co-eluting with the target compound is a particular prob-
lematic challenge. In such cases, it would be difficult or impossible
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to spot the impurity peak visually and the peak integration may
therefore not be able to identify and separate impurity and target
peaks. Commercially available chromatographic pattern matching
software has been studied to differentiate whole chromatograms
objectively and quantitatively [9]. Such pattern matching analy-
sis tool compares chromatograms in pairs, where one is specified
as reference. However, in most processes it would be a difficult
task to identify one representative reference chromatogram. As a
result, several chromatograms representing common-cause vari-
ation should be included for reference. This can be achieved with
multivariate statistical process control (MSPC) based on latent vari-
able methods such as principal component analysis (PCA) [10,11].
MSPC based on latent variable methods have been used over the
last 20 years and has revolutionized the idea of statistical process
control for multivariate purposes [12]. The entire chromatogram
can be monitored by the operator looking at only a few multivari-
ate control charts, which are simple and easy to understand. MSPC
based on PCA has previously been applied on integrated peak tables
derived from chromatographic data and proven as a valuable tool to
compare chromatograms [7,13]. This approach is valid when peaks
are clearly unimodal (one maximum only). Such an approach can-
not handle embedded- or non-resolved peaks, which consequently
would be integrated as one peak. The unimodality assumption is
most often far from reality, and therefore inclusion of as much chro-
matographic information as possible is wanted when applying PCA.
So far, MSPC based on PCA applied directly on raw chromatograms
has not yet been reported. With such a technique historical chro-
matograms can be exploited for empirical modeling to monitor and
diagnose subtle changes in future chromatographic patterns. Nev-
ertheless, multivariate data analysis using the raw chromatogram
as input data is very sensitive to chromatographic artifacts such
as baseline- and retention time drift [14]. Therefore, mathematical
preprocessing of chromatograms is a crucial step in order to gen-
erate as clean data as possible. In addition, it may be necessary to
preprocess the clean data further in order to emphasize the relevant
(chemical) information before PCA is applied [15].

In this study, we develop and investigate the sensitivity of MSPC
based on PCA for monitoring, detection and diagnosis of small and
embedded impurity peaks appearing in analytical chromatography.
The case study considers historical HPLC chromatograms from bio-
pharmaceutical in-process analysis of a high-purity drug substance.

2. Theory and methods

The development of a method for chemometric quality control
of chromatographic purity follows a modified version of a previ-
ously described trajectory [16]. The trajectory is divided in three
phases; the initial phase, the training phase and the application
phase (ITA) as illustrated in Fig. 1.

In the initial phase, appropriate historical chromatograms are
collected and prepared for PCA modeling. In the training phase
a PCA model based on normal operation condition (NOC) chro-
matograms is developed (describing common-cause variation) and
MSPC charts are constructed. Finally, in the application phase new
chromatograms are fitted to the model and monitored using the
control charts developed in the training phase. Deviating chro-
matograms are diagnosed using contribution plots to determine
causes of the deviating behavior.

2.1. Signal preprocessing

The variation in chromatograms from an HPLC analysis is the
sum of uninduced- and induced variations. The uninduced variation
is all the variation originating from uninduced chemical variance,
sampling, sample work-up, and analytical variation. The most sig-

----------------------------------- Initial phase --e-eeemeemee e

Data collection ]—~{

Signal preprocessing

eeesseseeeessneeeenee i enaaas Training phase ----eeeeeemmeeemeeeeeen,

PCA modeling ]——[

ereereree e Application phase ---eeeeeeereermreeeeennees -

]—v[ Detection & diagnosis }—v

Monitoring

Fig. 1. The three phases according to ITA trajectory (initial, training and application
phase).

nificant uninduced variation in chromatography is baseline- and
peak drift. Novel and advanced signal preprocessing algorithms can
be applied to handle these artifacts in order to obtain data appro-
priate for subsequent data analysis. Moreover, it may be important
to scale the data before starting the chemometric analysis. Hereby,
the aim is to focus on the induced variation and emphasize the
chemical relevant information in the samples.

2.1.1. Baseline correction

Baseline correction in chromatography is commonly employed
to eliminate interferences due to baseline drift. Several baseline
correction methods are available in the literature [17,18]. One effi-
cient way of baseline correction operates in local regions of the
chromatogram and uses B-splines constructed from polynomial
pieces joined at certain positions (knots) [19]. The method operates
by gradually eliminating points in the signal furthest (northern dis-
tance) away from the fitted polynomial until the number of selected
support points (baseline points) is reached. Since the method works
in local regions it is required that the number of knots and their
position are set. This is actually an advantage as local changes in
baseline can be corrected by placing more knots in the problem-
atic regions. The method also requires input for the order of the
polynomial that is fitted between the knots. Upon selecting the
baseline-algorithm and its settings from initial data investigation,
baseline correction can be an objective and automatic preprocess-
ing.

2.1.2. Alignment

Alignment of shifted peaks can be performed in various ways.
Very reproducible chromatographic data often need only a move-
ment of the whole chromatogram a certain integer sideways for
proper alignment. This is characterized by a systematic or lin-
ear shift and can easily be handled by the correlation optimized
shifting (coshift) algorithm [20] or the recently published icoshift
algorithm [21]. Yet, if the column is changed between runs or
if samples are measured over a long period of time, more com-
plex shift correction is needed. This non-systematic or non-linear
shift is characterized by a different degree of shifts for multiple
peaks across samples and can be seen as peaks shifting indepen-
dently from one another in the same chromatogram. One effective
method, which can handle non-systematic shifts in chromato-
graphic data, is the piecewise alignment algorithm correlation
optimized warping (COW) [22,23]. Both Coshift and COW algo-
rithms align each chromatogram towards a target. The choice of
a target chromatogram is an important aspect of the alignment
methods considered here. Several methods for how to find a proper
reference chromatogram can be used. Among these are, the average
chromatogram, the first loading of a PCA model, the most inter-
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similar chromatogram among all chromatograms or the sample
run in the middle of a sequence. However, the choice depends on
the homogeneity of the samples, on the degree of missing peaks
across the chromatograms and many other things, which should
be considered in each individual application [24,25].

2.1.3. Scaling

The choice of preprocessing procedure is crucial for perfor-
mance of the subsequent chemometric analysis. For instance a
1000-fold difference in concentration for the target compound and
an impurity is not proportional to the chemical relevance of these
compounds [15]. Thus, an appropriate preprocessing may increase
the sensitivity on detecting small impurity peaks hidden under the
target peak by chemometric analysis and MSPC. Scaling methods
are data preprocessing approaches that divide variables by a factor,
which is different for each variable. The aim is to adjust for the dis-
parity in fold differences between various signals by converting the
data into differences in concentration relative to the scaling factor.
One effective way to reduce the relative importance of large values
without blowing up noise is square root mean scaling. This scaling
method uses the square root of the mean (of individual variables)
as scaling factor.

2.2. MSPC based on PCA

The goal of any statistical process control (SPC) scheme is to
monitor the performance of a process over time. Most SPC schemes
currently in practice are based on charting a single or a small num-
ber of product quality variables in a univariate way. This approach
isinadequate for processes where massive amounts of highly corre-
lated variables are being collected as is the case in chromatograms.

Latent variable methods such as PCA that handle all the vari-
ables simultaneously are required in these data-rich applications.
PCA has previously proven a valuable tool to objectively compare
entire chromatograms [26]. With PCA the information from many
correlated variables in a chromatographic data matrix X (M x N) can
be projected down onto a low-dimensional subspace defined by a
few latent variables or principal components TP’ and a residual part
E (M x N):

X=TP +E 1)

where T (M x A) is the orthogonal score matrix and P (N x A) is the
orthonormal loading matrix. The chromatographic pattern is then
monitored in this A-dimensional subspace by using a few multi-
variate control charts built from multivariate statistics. Using the
information contained in all the measured chromatographic vari-
ables simultaneously, these MSPC charts are much more powerful
in detecting faulty conditions than conventional single variable SPC
charts [27]. Once the MSPC chart signals a faulty alarm, the model
can be scrutinized to understand the cause of the alarm; here-
after a possible corrective action can be taken. Variables responsible
for the faulty signal, due to a disturbance in any of the subspaces
can be projected back to the original variables and thereby iden-
tified. In general, there exist two ways to investigate the nature
of the fault that causes the control chart to signal [28,29]. Faults
that obey the correlation structure, but have an abnormal varia-
tion (i.e. extreme variation within the model) are described by the
scores in Hotelling’s T2 also referred to as D-statistic. Hotelling [30]
introduced the T2 for principal components:
R 2
=5 L (2)

r=1 tr

where t; is the rth principal component score, atzr is the variance
of t; and R denote the number of principal components retained in
the PCA model. The D-statistic can be expected to approximately

follow an F distribution and the confidence limits for the control
chart can be calculated according to Jackson [31].

Faults that break the correlation structure (i.e. variation to
the model) are represented in the sum of squared residuals also
referred to as Q-statistic:

N
Q= (Xn—%n) (3)
n=1

where x, and X, are a measurement of the nth variable and its pre-
dicted (reconstructed) value, respectively. N denotes the number of
process variables. Several ways to determine the confidence lim-
its for the Q-statistic is described [32,33]. In the present paper, a
normal distribution to approximate a weighted chi-square distri-
bution is used from which the confidence limits for the Q chart can
be calculated according to Jackson and Mudholkar [34].

Most commonly 95% or 99% confidence limits are used for both
the D- and Q-statistics to determine whether a sample is considered
an outlier. In the application described here a 99.73% confidence
limit (~30) is used as the upper control limit (UCL) similar to ordi-
nary Shewart control charts. From the D- and Q-statistics, two
complementary multivariate control charts are constructed. Chro-
matographic fault detection in the D-statistics could for example
be caused by an increased load on the analytical column leading
to intensified signals, but intact correlation between the chro-
matographic signals. If necessary, this load-effect may however be
handled using normalization as preprocessing. Fault detection in
the Q-statistics could for example be induced by the presence of
a new peak in the chromatogram resulting in broken correlation
between the chromatographic signals exemplified in Fig. 2. The sen-
sitivity of fault detection towards changes in the chromatogram
depends on the historical NOC data, chromatographic retention
time window, preprocessing methods, and number of components
included in the NOC model. If a new chromatogram falls outside
the UCL in the D- or Q-statistics control chart, it is characterized
as a fault and the chromatogram is considered to deviate signif-
icantly from the chromatograms included in the PCA model. It is
not only important to detect that the chromatographic pattern is
deviating, it is also important to search for the original chromato-
graphic signals responsible for the fault. One of the most widely
used approaches is using contribution plots [35-37]. Contribution
plots compute a list of each single chromatographic signal (reten-
tion time) that contribute numerically to the D- and Q-statistics
respectively. However, contribution plots do not reveal the actual
cause of the fault. Therefore, those variables responsible for the
faulty signal should be investigated, and incorporation of chemi-
cal and technical process knowledge may be necessary to diagnose
the problem and discover the root causes of the fault [27]. As an
enhancement to the way the faults are typically detected and source
determined, it is possible to calculate confidence intervals for the
residuals of individual variables, rather than only the overall resid-
ual [38].

2.3. Chromatographic simulation

The goal of chromatography is to separate different compo-
nents from a solution mixture. The resolution expresses the extent
of separation between the components in a sample, and is a
useful measure of the columns separation properties of that par-
ticular sample. The higher the resolution of the peaks in the
chromatogram, the better extent of separation between the com-
ponents the column provides. A simplified method to calculate the
resolution of a chromatogram is to use the plate model [39]. The
plate model assumes that the column can be divided into a cer-
tain number of plates, and the mass balance can be calculated for
each individual plate. This approach approximates a typical chro-
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Fig. 2. Example of chromatographic pattern monitoring using PCA. (A) PCA modelling on NOC chromatograms using two principal components. (B) Prediction of a new
chromatogram within common-cause variation. (C) Prediction of a new chromatogram deviating from common-cause variation resulting in abnormal residuals.

matogram curve as a Gaussian distribution curve. By doing this,
the curve width is estimated as four times the standard deviation
of the curve (40). Sigma can be estimated by calculating the seg-
ment of the peak base (w},) intercepted by the tangents drawn to
the inflection points on either side of the peak. The inflection points
can be found by calculating max and min of the first derivative
chromatogram [40]. The parameter o is calculated as wy, divided
by four. To define to what extent an impurity is hidden under the
target peak; the peak resolution (Rs) is used [7]. Rs expresses the
efficiency of separation of two peaks in terms of their average peak
width at base [40]:

(trz — tr1) 4)

Ry =2
5T T (Wh1 + W)

where tg; and tg, are the retention time of solute 1 and 2 respec-
tively (tr2 > trq) and wy; and wy, are the Gaussian curve width of
solute 1 and 2 respectively (the retention time is the time from
the start of signal detection to the time of the peak height of the
Gaussian curve). Usually, in chromatography the plate number is
approximately constant for similar components with similar reten-
tion times. The plate number N for a Gaussian peak is given by
[40]:

tr 2
N=(= 5
(2) (5)

With similar retention times and plate numbers the peak width
of the impurity and the target component is hence similar and a
reasonable assumption is [40]:

e —tra
Rs Wiy (6)

Based on these assumptions an impurity peak was generated
as a pure Gaussian peak using o calculated from the target peak
in a randomly chosen chromatogram from the validation sample
set. The generated impurity was subsequently added to the vali-
dated chromatogram. As mentioned previously, impurities present
in excess of 0.1% relative to the target compound should be identi-
fied. Therefore, the relative amount of simulated impurity was kept
constant at 0.1%. To give different degrees of chromatographic sim-
ilarity between the target compound and the related impurity, the
resolution (Rs) was varied from O (completely hidden) to 2 (well
separated).

3. Experimental

Fifty in-process samples of a high-purity drug substance were
collected for routine quality control testing. All samples were col-
lected under NOG, i.e. the process has been running consistently

and only high quality products have been obtained. The 50 sam-
ples represent a substantial time period so as to represent possible
physical changes in the chromatographic system as well as changes
in production arising e.g. from different batches of raw materials
being used. The purity, measured by reverse-phase high perfor-
mance liquid chromatography (RP-HPLC), was performed on a
Waters Alliance HPLC system that consists of a Waters 2690 Sep-
aration Module (combined pump and autosampler) and a Waters
2487 Dual-Wavelength UV detector (Waters, Milford, MA, USA).
The detection wavelength was 214 nm. The separation was per-
formed on a reverse phase 125 mm x 4 mm i.d. 5 um 100 A column
(FeF Chemicals, Kege, Denmark) by employing an isocratic elution
followed by gradient elution. The mobile phase consisted of Elu-
ent A (10%, v/v acetonitrile in sulphate buffer pH 2.5) and Eluent
B (60%, v/v acetonitrile in water). Chromatographic data was col-
lected using Empower 2 (Waters) and exported as the raw signals
vs. time (ASCII/ARW files) to Matlab version 7 (Matworks, Natick,
MA, USA) for further analysis. All software was written in Matlab
using tools from PLS_Toolbox.

4. Results and discussion
4.1. Initial phase

The main goal of the training phase is to collect and pre-
pare historical NOC chromatograms for modeling. Fifty historical
HPLC chromatograms obtained for purity analysis of an indus-
trial high-purity drug substance were collected and imported into
MATLAB. The chromatograms were organized as an M x N data
matrix X, with M rows or samples and N columns or elution times.
A relevant chromatographic retention time window was chosen
around the target peak, resulting in a 50 (samples) x 1500 (reten-
tion times) dataset/matrix. Coshift alignment was applied to handle
larger systematic retention time shifts, followed by COW to han-
dle non-systematic retention time shifts. Both algorithms align the
chromatograms towards a manually chosen inter-similar target
chromatogram as illustrated in Fig. 3 The use of both alignment
methods clearly handles all the retention time shifts and delivers
adequate aligned chromatographic profiles.

To reduce baseline drift, baseline-spline was applied to the
dataset. In this case study a first order polynomial was chosen and
3 knots were positioned at retention time point 200, 1100 and 1300
(not shown).

To increase the sensitivity on detecting small impurities hidden
under the target peak different centering, scaling and transfor-
mation methods were tested. Among these are mean centering,
autoscaling, parato scaling, vast scaling, square root mean scal-
ing, and log transformation. Most of the methods are described
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Fig. 3. Plot of shifted (A) and aligned (B and C) chromatograms (blue) towards a ref-
erence (red) using Coshift- and COW algorithm. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of the article.)

by [15,20]. The application of different preprocessing methods had
very different effects on the resulting data (not shown). The meth-
ods were evaluated both by visual inspection of the resulting data
and on the results obtained when used as input for subsequent
data analysis in the training- and application phase. Square root
mean scaling turned out to be the most appropriate preprocess-
ing method for this particular application, as it first of all manages
to adjust for the variation in fold differences between the tar-
get peak and the minor surrounding peaks without blowing up
noise. Secondly, the characteristic appearance of the chromatogram
is kept intact, which in this case is helpful when interpreting
the contribution plot during the application phase. The result of
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Fig. 4. Plot of chromatograms before (A) and after (B) square root mean scaling.

square root mean scaling applied to the data is illustrated in
Fig. 4.

4.2. Training phase

The essence of the training phase is to model the common-
cause variation present in the chromatograms obtained under
NOC. Since this NOC model exclusively determines whether a
new chromatogram is similar or deviates significantly from the
NOC chromatograms, the monitoring performance depends very
much upon adequacy and representativity of these NOC chro-
matograms. The number of samples needed to construct a NOC
model and control charts depends on the application. In this case
study a calibration set consisting of the first 40 chronologically
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Fig. 5. Plot of cumulative variance captured (A) and results of leave-one-out cross-validation (B).
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ordered chromatograms was used to develop a three component
PCA model describing 99.97% of the common-cause variation. We
have selected an optimal number of three components based on
the variance captured (Fig. 5a) and on the results of leave-one-out
cross-validation (Fig. 5b). Both variance captured and root mean
squared error of calibration (RMSEC) flattens out after three compo-
nents, also root mean squared error of cross-validation (RMSECV)
has the first clear local minimum at three components, indicating
that after this point, the components just reflect noise. In addi-
tion, the inspection of loadings confirmed that only the first three
components reflect real chromatographic variation (Fig. 6b). As the
principal components higher than three are very noisy and do not
seem to contain any clear systematic structure, it is appropriate
to consider them as reflecting noise. Inspection of the scores plot
provided in Fig. 6a showing PC2 vs. PC1, reveal that the calibration
samples are separated in two groups in PC2. The corresponding
loading for PC2 (Fig. 6b) indicated that this was due to an increased
fronting and partly decreased tailing on the target peak. This chro-
matographic difference between the two groups of calibration
samples most likely originate from analytical variation (ex. column,
solvents, pump, temperature) not handled by the preprocessing.
This chromatographicvariationis also observed in Fig. 4b. However,
no systematic pattern was recognized when plotting PC2 scores vs.
chronologically ordered sample number (data not shown), which
lead to the conclusion that the grouping observed in PC2 repre-
sents common-cause-variation. The model was validated using an
independent validation set consisting of the last 10 chronologically
ordered chromatograms. In Fig. 7 D- and Q-statistics of calibration
and validation samples are presented with 95%, 99% and 99.73%
(UCL) confidence limits.

By inspection of the D- and Q-statistics it can be confirmed that
three components describe the common-cause variation (Fig. 7). All
50 NOC samples are within the 95% confidence interval in the D-
statistic chart, whereas in the Q-statistic chart two samples (~5%)
are outside the 95% confidence interval as expected from a normal

distribution point of view. Both D- and Q-statistics are monitored
during the training phase. Nevertheless, as this study focuses on
purity analysis; we are primarily interested in the residuals. We use
the residuals to identify new, unanticipated peaks, which are not
part of the normal chromatographic pattern and thus, the model. On
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Fig.7. Plotof (A) D-statistics and (B) Q-statistics of calibration (circle) and validation
(square) sample sets.
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Fig. 8. Simulated 0.1% area impurity peaks (red) in 9 varied resolutions from 0 to 2
before (A) and after (B) added to a reference chromatogram (blue). (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of the article.)

the other hand, when developing the model in the training phase,
both the D- and Q-statistics are of interest. These statistics may
contribute with important and complementary indications about
samples to exclude from the NOC model as they do not describe
common-cause variation and magnitude. In this case all 50 sam-
ples used in the training phase are within their respective UCL
limits in both D- and Q-statistics charts, and are therefore assumed
to describe common-cause variation. The model can be updated
periodically by including new predicted samples already accepted
(lying within the confidence limits). In this way variations such as
seasonal changes can be incorporated in the model, making it more
robust against false positive alarms.

4.3. Application phase

To demonstrate the sensitivity of this chemometric quality
control of chromatographic data, a validated chromatogram was
manipulated. This was done by adding a 0.1% area impurity peak
hidden under the target peak in nine varied resolutions from O to 2
as illustrated in Fig. 8.

The nine simulated chromatograms were used to evaluate the
methods ability to detect more or less hidden unexpected peaks. As
indicated in the D-statistic chart (Fig. 9) none of the simulated chro-
matograms were detected, whereas in the Q-statistic chart (Fig. 9)
chromatograms added impurity peaks with a resolution down to
1.5 was detected as faulty, falling outside the 30 UCL.

It would be difficult or impossible to detect such an impurity
peakvisually or to identify it by peak integration using existing soft-
ware. Generic peak detection algorithms commonly seek instants of
rapid increase or decrease in signal intensity above a critical thresh-
old. However, setting the threshold is a problem because too low a
threshold generates a large number of meaningless peaks and too
high a threshold might miss an actual one [2].

To determine chromatographic variables (retention time sig-
nals) responsible for the signal in the Q-statistic chart, a residual
contribution plot is inspected in Fig. 10. The contribution plot
allows us to diagnose the problem with the faulty chromatogram
immediately. Clear indication of a new peak or a shoulder on the
fronting target peak is given in Fig. 10. Apparently, this variability
is not described by the principal components retained in the NOC
model. Accordingly the added impurity with resolution 1.4 shows
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Fig. 9. Plot of D-statistics (A) and Q-statistics (B) of chromatograms added 0.1% area
impurity with varying resolution (Rs 0-2). Critical area of detection in Q-statistics is
marked.
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Fig. 10. Plot of the faulty R 1.5 residual contribution (black), plotted together with
the reference (blue) and the faulty Rs 1.5 chromatogram (red) on the secondary y-
axis. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

up as an abnormal residual variability and a faulty signal in the
Q-statistic chart.

5. Conclusions and perspectives

This study demonstrates that MSPC based on PCA applied on
chromatographic purity analysis is a powerful tool for monitor-
ing subtle changes in the chromatographic pattern. In addition it
was illustrated how contribution plots provides clear diagnostics of
faults at a glance. The chemometric quality control proved robust
towards treating chromatographic artifacts such as baseline- and
retention time drift. Applying this procedure for the detection of
new peaks makes a fully automatic monitoring of complex chro-
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matograms possible. Furthermore, if implemented and operating
while the chromatographic purity analyses runs, this tool may con-
siderably reduce time needed for subsequent assessment of peak
integration. Thus, the chemometric quality control will increase
throughputin chromatographic purity analysis and operate accord-
ing to the process analytical technology (PAT) concept aiming for
real-time release. The actual root cause of the alarm is not auto-
matically given when applying chemometric quality control to
HPLC purity analysis. Such an analysis would need incorporation of
chemical and technical process knowledge or even more advanced
analytical techniques e.g. coupled separation systems. Multivari-
ate chromatographic patterns may well be increasingly important
in the pharmaceutical industry. However, if the chemometric qual-
ity control described in this paper where to be integrated within the
pharmaceutical industry, data management including smooth data
accessibility will be a crucial requirement. Future work should be
focused on incorporating the chemometric quality control in com-
mercial software packages for chromatographic instruments or as
part of a corporate database management system.
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LC-MS is a widely used technique for impurity detection and identification. It is very informative and
generates huge amounts of data. However, the relevant chemical information may not be directly acces-
sible from the raw data map, particularly in reference to applications where unknown impurities are to be
detected. This study demonstrates that multivariate statistical process control (MSPC) based on principal
component analysis (PCA) in conjunction with multiple testing is very powerful for comprehensive moni-
toring and detection of an unknown and co-eluting impurity measured with liquid chromatography-mass
spectrometry (LC-MS). It is demonstrated how a spiked impurity present at low concentrations (0.05%
(w/w))is detected and further how the contribution plot provides clear diagnostics of the unknown impu-
rity. This tool makes a fully automatic monitoring of LC-MS data possible, where only relevant areas in
the LC-MS data are highlighted for further interpretation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Analytical monitoring of impurity profiles in biopharmaceu-
tical products (drug substances and drug products) is important
for tracking the product quality. Impurities may potentially have
adverse effects and must be identified, qualified, and reported
according to the respective thresholds [1,2]. Increasing demands
for higher biopharmaceutical product quality has been facilitated
by developments in analytical instrumentation and computer sys-
tems. This trend leads to new and better tools for monitoring,
detection, and identification of new impurities in a timely fashion.

Analytical separation techniques based on high performance lig-
uid chromatography (HPLC) with UV detection are commonly used
for determination of impurities in biopharmaceutical products. The
separation and subsequent detection of compounds in a sample
delivers a chromatogram, which ideally allows separation of peaks
which can be attributed to individual chemical compounds. For
high-purity drugs, the target compound is present in excess com-
pared to a potential impurity. Hence, detecting the occurrence of
an unknown impurity co-eluting with the target compound is a
particular problematic challenge. Therefore, purity analysis of a
biopharmaceutical product often entails purity examination of the

* Corresponding author at: Novo Nordisk A/S, 2880 Bagsverd, Denmark.
Tel.: +45 30795458.
E-mail address: krfl@novonordisk.com (K. Laursen).

0021-9673/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.chroma.2011.04.080

target peak. Peak-purity examination should prevent co-eluting
impurities to escape detection in the conventional HPLC analysis
[3].

HPLC with diode array detection (HPLC-DAD) is a commonly
used method to conduct peak-purity examination. However, many
impurities are structurally related to the drug substance, and
their structure contains very similar chromophores, making purity
assessment based solely on HPLC-DAD data difficult and unreliable.
Coupling a mass spectrometer to a liquid chromatograph (LC-MS)
brings more selective signals to the table. LC-MS is probably the
most powerful technique currently available for pharmaceutical
analysis [4]. The technique is still under fast development, par-
ticularly in the mass spectrometry area, with vastly improved
sensitivity and resolution. However, such state-of-the-art high-
resolution instruments are considered rather costly for routine
analysis in a pharmaceutical manufacturing environment. More-
over, these high-resolution LC-MS instruments may not contribute
with additional required information compared to conventional
low cost LC-MS instruments. Since a mass spectrometer (MS) sep-
arates compounds by their respective mass-to-charge ratios (m/z),
any difference in the m/z values between the impurities and the
drug substance will allow an unambiguous detection regardless of
similarities in their UV spectra. Therefore an impurity co-eluting
with the target peak will be separated in MS as long as their m/z
values are different and ionization of the impurity is not suppressed
by the target compound. The LC-MS technique is very informative
and generates huge amounts of so-called three-way data, where


dx.doi.org/10.1016/j.chroma.2011.04.080
dx.doi.org/10.1016/j.chroma.2011.04.080
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:krfl@novonordisk.com
dx.doi.org/10.1016/j.chroma.2011.04.080

K. Laursen et al. / . Chromatogr. A 1218 (2011) 4340-4348 4341

each sample is characterized by the intensity as a function of reten-
tion time and m/z. However, the relevant information from the
chemical point of view is not directly accessible from the raw data
map, which makes manual interpretation tedious and often gener-
ates a bottleneck in the analysis process [5]. Furthermore manual
inspection of LC-MS data is prone to subjective decision-making
likely to cause additional errors. Several advanced techniques for
the assessment of LC-MS peak purity and co-elution problems have
been reported during the last decades [6-9]. However, to comply
with increased focus on process analytical technology (PAT) and
quality by design (QbD) there is a need for an automatic tool that
routinely monitors, detects, and extracts relevant signals from the
LC-MS data where further interpretation and identification should
be focused. Furthermore, such a tool should detect relevant varia-
tion in the LC-MS map quantitatively and in a statistically reliable
way. This is a relatively unexplored area in LC-MS data analysis. A
powerful tool has recently been demonstrated on chromatographic
purity analysis by Laursen et al. [10]. That study demonstrates that
multivariate statistical process control (MSPC) based on principal
component analysis (PCA)[11,12] applied on chromatographic data
is suitable for monitoring subtle changes in the chromatographic
pattern. Unknown impurities co-eluting with the target compound
were detected in the sum of squared residuals (Q) statistics, and
contribution plots provided clear diagnostics of cause of the sub-
tly deviating chromatograms [10]. However, this approach might
suffer from lack of sensitivity when applied to LC-MS data. The
huge amount of data points combined with the discrete nature of
LC-MS signals (i.e. sharp signals in MS direction) makes detection
of unknown impurities a case of needle-in-the-haystack expedi-
tion. If a new LC-MS sample containing an unknown impurity is
fitted to a PCA model based on normal operation condition (NOC)
LC-MS samples, the resulting residuals would ideally hold infor-
mation about the unknown impurity. However, a few discrete
residuals related to an unknown impurity would simply be masked
when calculating the sum of squared residuals (Q). This makes Q a
non-sensitive measure for monitoring and detection of unknown
impurities present in low concentrations. Therefore, a more dis-
criminative and sensitive measure is needed targeted towards the
nature of LC-MS data. Ralston et al. [13] proposed a statistical
enhancement to the typical application of multivariate statistical
techniques. The statistical enhancement uses confidence limits on
the residuals of each variable for fault detection rather than just
confidence limits on the overall Q residual. The method detected
faults earlier than the basic Q residual contribution method typi-
cally used, but the enhancement proved primarily as a graphical
support tool and not as a single value measure for control chart
monitoring.

In this study, the approach reported by Laursen et al. [10] is
developed to adapt the nature of LC-MS data and to enhance mon-
itoring and detection of unknown impurities in an industrial insulin
intermediate (DesB30). In-process samples are spiked with the
structurally related human insulin drug product co-eluting with
DesB30. MSPC based on PCA is combined with variable wise (mul-
tiple) testing. This would enhance detection of discrete residuals
from unknown impurities, as residuals of each variable are tested
against corresponding model residuals.

2. Theory and methods

The general workflow of MSPC based on PCA follows a previ-
ously described trajectory [10,14]. The trajectory is divided in three
phases; the initial phase, the training phase and the application
phase (ITA). In this modified version, the training phase involving
PCA modeling is extended with multiple testing as shown in Fig. 1.

In the initial phase, appropriate historical LC-MS experiments
are collected and prepared for PCA modeling. In the training phase
a PCA model based on NOC LC-MS samples is developed (describ-
ing common cause variation) and multiple testing is applied on the
residuals. Finally, in the application phase new samples are fitted
to the model and the most significant variable is monitored in con-
trol charts developed in the training phase. Deviating samples are
diagnosed using multiple testing contribution plots to determine
causes of the deviating behavior.

2.1. Signal preprocessing

Once the LC-MS data has been collected, preprocessing methods
are required to correct, refine and filter the data. The quality of sig-
nal preprocessing is crucial in order to extract relevant (chemical)
information. The signal preprocessing was divided into the fol-
lowing steps: baseline correction, normalization, alignment, data
reduction, and scaling. The preprocessing steps are described in
the following subsections. The practical implications of these pre-
processing steps are visualized in the result section.

2.1.1. Baseline correction

Baseline correction is commonly employed to eliminate inter-
ferences due to baseline drift. A variety of techniques for baseline
correction of LC-MS data are applicable and is reviewed by List-
garten and Emili [15] among others. In this study an efficient
and rather simple method for baseline correction is applied. The
method works by fitting a global polynomial (of a user-defined
order) to each extracted ion chromatogram and, through an iter-
ative routine, down-weighting points belonging to the signal. A
baseline is then constructed and subtracted from the original
extracted ion chromatogram. Upon selecting the polynomial order
and fraction of data points to use for determining the baseline, the
algorithm provides an objective and automatic preprocessing. The
baseline correction is similar to a previously described method by
Ganetal. [16].

2.1.2. Normalization

MS signals are frequently corrupted by either systematic or
sporadic changes in abundance measurements. Normalization will
correct for bias due to errors in sample amount, possibly sam-
ple carry-over and drifts in ionization and detector efficiencies.
Normalization procedures enable a more accurate matching and
quantification between multiple samples. Different procedures for
normalization can be applied. Normalization values can be calcu-
lated on the basis of a global distribution for all detected features
(like sum, average or median of all intensities per run), or calcu-
lated from a specific sub-set of features, for instance from a spiked
protein that is used as internal standard [15,17]. In this application
the target peak purity might vary but the overall signal intensity
should ideally be the same for each sample. Therefore the sum of
all intensities is used as normalization value for each sample.

2.1.3. Alignment

As with every laboratory experiment, chromatographic sep-
aration is stable and reproducible only to a certain extent. The
retention time often shows large shifts, and distortions can be
observed when different runs are compared. Even the m/z dimen-
sion might show (typically much smaller) deviations. Pressure
fluctuations or changes in column temperature or mobile phase
may result in shifted peaks.

Alignment of shifted peaks can be performed in various ways.
Very reproducible LC-MS data often need only a movement of the
extracted ion chromatograms a certain integer sideways for proper
alignment. This is characterized by a systematic shift and can eas-
ily be handled by the recently published icoshift algorithm [18].
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Fig. 1. The three phases according to ITA trajectory (initial, training and application phase).

The icoshift algorithm is based on correlation shifting of inter-
vals and employs a fast Fourier transform engine that aligns all
spectra simultaneously. The algorithm is demonstrated to be faster
than similar methods found in the literature making full-resolution
alignment of large datasets feasible [18]. Yet, if peaks shift indepen-
dently from one another in the same extracted ion chromatogram,
more complex shift correction is needed to correct for this non-
systematic shift [19,20].

2.1.4. Data reduction

The LC-MS map of a sample is characterized by a collection of
intensity measurements as a function of retention time and m/z
value. To make the measurements more comparable, and to reduce
the huge amount of data points per sample, all intensities within
a user-specified bin level are summed. This technique puts all the
intensities on a (time, m/z) grid. The bin size is selected based on
experience.

2.1.5. Scaling and centering

Scaling is crucial for the performance of the subsequent multi-
variate statistical analysis. A fold difference in concentration for the
target compound and an impurity is not proportional to the chemi-
cal relevance of these compounds [21]. Therefore scaling is applied
to increase the model sensitivity on detecting small unknown
impurities. Furthermore, scaling is crucial in order to bring the
distribution of data points close to a normal distribution. This is
especially important when multiple testing (like Student’s t-test) is
used for difference analysis [22]. In many cases, a logarithmic trans-
formation is used for stabilization of the variance. Furthermore,
using log-transformed intensities, the disparity in fold differences
in between various signals is adjusted. As the final preprocessing
step the samples are mean centered (the average unfolded chro-
matographic pattern is subtracted) to remove a common offset. This
brings each variable to vary around zero. This procedure is standard
in multivariate modeling that focuses on variability in data.

2.2. MSPC based on PCA modeling combined with multiple testing

PCA and variable wise (multiple) testing offers two different
dimensions to statistical data analysis. Multiple testing aims at
separating the variable space into variables with a significant- or
non-significant change, where PCA separates data into a systematic
part (D) and a non-systematic part (Q). In Fig. 2 this is schematized.

Experiments where a high number of variables are evaluated on
possibly several outcomes involve testing of numerous hypotheses
where handling of error rates is of crucial importance. This disci-
pline is referred to as multiple testing. Multiple testing is widely
used for biomarker discovery in proteomics, and has been applied
in several difference analyses of LC-MS data intensities [15,23,24].
Both Wiener et al. [23] and Listgarten et al. [24] evaluate the inten-
sity differences between samples from two classes using t-tests on
every combination of time and mass to charge ratio, to find regions
of interest for further interpretation. However if multiple testing
is applied directly to preprocessed LC-MS data it would result in
detection of all intensity differences (i.e. both known according
to normal operating conditions and unknown features). Multiple
testing applied to PCA residuals would only result in detection
of unknown features, as the known features are described by the
model and expressed in the D-statistics.

With PCA the variation from many correlated (time, m/z) bins
in a data matrix X (with M rows of samples and N columns of bins),
can be decomposed into R (R < N) linear principal components TPT
and a residual part E (M x N):

X=t;p17T +top T+ + tgprT +E=TPT + E=X+E (1)

where T (M x R) is the score matrix and P (N x R) is the loading
matrix, with R components. X is the matrix of predicted values.
The correct number of significant principal components can be
determined by using cross-validation to eliminate less important
directions in the data matrix [25]. In this way the dimensional-
ity of the data matrix is reduced while capturing the underlying
relationship between the variables. In standard PCA, each sample
is a vector of values. If one sample is a matrix of values (e.g. in
the case of LC-MS data), the sample matrix can be unfolded into a
vector. This allows standard application of PCA, but throws away
some of the information conveyed by storage in a matrix. Using
the information contained in all the measured signals simultane-
ously, MSPC charts are much more powerful in detecting faulty
conditions than conventional single variable SPC charts [26]. Once
the MSPC chart signals an alarm, the model can be scrutinized to
understand the cause of the alarm; hereafter a possible corrective
action can be taken. Faults can be due to deviation from common-
cause variation (detected in Q) and in the magnitude of the common
cause variation (detected in D). Fault detected in the D chart could
for example be caused by an increased amount of already mod-
eled compounds in the sample, and is described by the scores in
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Fig. 2. Schematic overview of two different data analytical approaches for extraction of information from multivariate data. p refers to test probability, « is significance level.

Hotelling’s T2. Hotelling [27] introduced the T2 for principal com-
ponents, also referred to as D:

2
=35 (2)

where t; is the rth principal component score, atzr is the variance
of the rth component and R denotes the number of principal com-
ponents retained in the PCA model. Assuming normality for the
individual scores, the D-statistic can be expected to approximately
follow a weighted F distribution and the upper control limit for the
D-statistic can be calculated according to Jackson [28].

If a new sample, containing an unknown impurity, is predicted
by the model (based on pure samples), the sample is expected to
break the correlation. Indications of the unknown impurity would
then be represented in the residuals and monitored in Q:

N N
Q= (n—) =) (en) (3)
=1

n n=1

where x, and X, are a measurement of the nth variable and its
predicted (reconstructed) value, respectively which result in the
residual e,. N denotes the number of variables. Most commonly, a
normal distribution to approximate a weighted Chi-square distri-
bution is used from which the upper control limit for the Q-statistic
can be calculated according to Jackson and Mudholkar [29].

However, as claimed earlier, a few discrete residuals related to
an unknown impurity would simply drown when calculating Q.
In order to detect the needle in the haystack we device multiple
testing based on a simple t-test for each bin (n) as:

€new,n — éreﬁn

th = W (4)

where

2 1\ 532

Sy = WZ(ei,n — €refin) (5)

i=1

and

_ 1w

Grefn = 17 )i (6)
i=1

where epew,n is the residual from the new sample for bin n, éreﬁn is
the mean of the residuals from the reference samples for bin n. M
is the number of reference samples. sy, is the standard deviation of
residuals from reference samples for bin n.

The critical value of t is dependent on sample size. In order to
correct for this ambiguity t is transformed to a z-value through a
p-value:

P(Tgs < tn) = P(zn) (7)

where Ty is the t-distribution with df degrees of freedom, df=M — 1.
@ is the cumulative distribution function of the standard Gaussian
distribution. This z-value is used as diagnostic measure for the cor-
responding (time, m/z) bin. The z-value and p-value reflects the
same statistics (Eq. (7)) and hence the behavior of the system. When
dealing with signals of interest in the area of p<0.01, changes are
more easily captured by exploring the corresponding z-values e.g.
over production time.

2.2.1. Multiple testing

Handling of issues related to multiple testing is becoming more
important as number of features detectable from modern analytical
instruments is rapidly increasing. For example within the field of
proteomics from different platforms such as micro arrays, LC-MS,
GC-MS, and NMR often numbers in thousands to tens of thousands
or even more is common [30]. Performing numerous univariate
significance tests on such highly multivariate data will lead to a
high false positive rate (FPR). The conservative Bonferroni factor is
a way of controlling the error rate across all tests, known as the
family wise error rate (FWER) [31]. The Bonferroni factor is simply
a proportionality correction of the p-value threshold (o) with the
inverse of the number of test. The Bonferroni correction is a crude
up front correction where all null hypotheses are assumed true i.e.
no difference what so ever. But data is seldom collected under the
assumption that there is no relation with a specified outcome. In
1995 Benjamini and Hochberg [31] developed control of false dis-
covery rate (FDR) as an alternative to Bonferroni factor in multiple
testing. Estimation of the FDR, contrary to FWER, does not assume
that all null hypotheses are true but estimates the proportion of null
cases and non-null cases from data. This procedure is shown more
powerful in detecting true non-null cases than procedures control-
ling the FWER [32]. Where the FPR predicts how many of the truly
null hypotheses are rejected, the FDR predicts how many of the
rejected hypotheses are in fact likely to be truly null. In proteomics
the aim is to discover biomarkers in order to develop biological
understanding. Here a list of significant biomarkers supported by
a FDR is relevant for reporting of results including statistical infer-
ence. In MSPC the primary scope is to deem a sample pure or impure
and secondly if impure to investigate the impurity contribution.
Both cases are dealing with issues related to multiple testing, but
as the scope is different, the estimation and extraction of a relevant
statistics is likewise. In the following subsection we derive a sin-
gle measure statistics, and estimate its distribution under normal
operator conditions.
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2.2.2. Single measure statistic for control chart

In Laursen et al. [10] the Q value was used for a new sample as
a measure for detecting subtle differences in the chromatographic
pattern. The methodology devised here produces not one but N sig-
nificance tests where N is the number of bins. These are expressed
as a list of z-values; z;, z3, . . ., zx. The largest values of zq, z5, . . ., zk
reflect the bins where the new sample is most deviating. Impurities
are in excess and hence only large positive z-values are of interest.
The present method proposes use of the maximum z-value across
all K bins as a measure in control chart monitoring.

2.2.3. Distribution of the maximum z-value across N bins

Under normality assumptions for residuals within each bin, with
equal variance for calibration and new samples, the derived t-test
statistics is T distributed with M — 1 degrees of freedom (M number
of calibration samples). The corresponding z-values are normally
distributed with mean zero and variance one. Assuming indepen-
dence between the K z-values it is easy to compute the distribution
of the maximum z-value:

P(zZmax <z) = P(z1 <2)-P(zp < 2), ...

7 K
JP(zg <z) = (J;?/ e %t dt) (8)

In standard two-sided SPC charts an observation more than
three standard deviations (3¢’) from normal operating conditions is
often used as the critical limit. This correspond to a coverage prob-
ability of 0.9973 (1 — 2&(-3)=0.9973). As only maximum positive
z-values are of interest here, the one-sided control chart thresh-
old should reflect the same coverage probability. In accordance it is
possible to calculate the corresponding threshold for the maximum
z-values (zg 9973) such that P(zmax k < Z0.9973) = 2P(—3). This thresh-
old only depends on number of bins (N). For N=1000, zg 9973 =4.55,
and for N=500, zg 9973 = 4.40. Independence between bins might be
an overly optimistic assumption, especially when chemical com-
pounds give signal in more than one bin. In order not to rely on
assumptions concerning independence we use a heuristic itera-
tive approach on the calibration samples to estimate the critical
threshold. The critical 3o limit is calculated by iteratively testing
onereference sample against the remaining reference samples, cre-
ating a distribution of zmax values (Zmax 1, Zmax.2 - - -»Zmax,25)- From
this a 3o limit is calculated as:

Limit3; = Zmax + 35Zmax 9)
where
1 M
zmax = Mzzmax,i (]0)
i=1

and

1 M
Szrznax = MZ(Zmax,i — Zmax )2 (11)

i=1

M is the number of reference samples.

3. Experimental

Thirty in-process samples of the insulin intermediate DesB30
were collected for routine quality control testing. All samples were
collected under NOG, i.e. the process has been running consistently
and only high quality products have been obtained. The 30 samples
represent a substantial time period representing possible changes
in production. One sample was spiked with human insulin drug
product in five various levels from 0.01% to 0.15%. Human insulin is
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Fig. 3. TIC profiles of all samples before (A) and after (B) preprocessing (baseline
correction, normalization and time alignment).

co-eluting with the structurally related target compound DesB30-
insulin, but has a different molecular weight and thus different m/z
values. Samples were injected into a gradient (0.05% TFA/10% ace-
tonitrile and 0.05% TFA/70% acetonitrile) LC—-MS system consisting
of an Alliance reverse phase HPLC system (Waters, MA, USA), a
Kinetex C18 column (150 mm x 3 mm, 2.6 wm) (Phenomenex, CA,
USA), and a MicroTOF-Q Il mass spectrometer (Bruker Daltonics,
Bremen, D) operated with electrospray (ESI) in the positive ion
mode. ESI provides maximum intentsity of the MH#* ions, why this
charge state was used in the calculations. All 30 NOC samples were
measured in one replicate, whereas the five spiked samples were
measured in five replicates each. The LC-MS data was collected
and exported as text files using a software tool called DataAnalysis
(Bruker Daltonics) and imported to Matlab version 7 (Mathworks,
MA, USA) for further analysis. All software was written in Matlab
using tools from PLS_Toolbox (Eigenvector Research, WA, USA) and
Statistics Toolbox (Mathworks).

4. Results and discussion
4.1. Initial phase

The 55 LC-MS samples (30 NOC samples and 5 x 5 spiked sam-
ples) were collected and organized as an M x N x O dataset X, with
M samples, N elution times, and O m/z values. A relevant LC-MS
window was chosen around the target peak, resulting in a 55
(samples) x 300 (retention times) x 200 (m/z values) dataset. For
baseline correction of the data, a second order polynomial was fit-
ted to each extracted ion chromatogram from each sample, based
on 50% of all data points. The settings were chosen upon ini-
tial investigation of different alternatives. Once the samples were
normalized by the sum of all intensities for each sample, time
alignment using icoshift was sufficient for proper alignment of the
LC-MS data. The corrected time axis was calculated from the total
ion chromatogram (TIC) profiles, and then applied to the extracted
ion chromatograms (EIC) of the corresponding LC-MS sample. The
profile which showed the highest correlation with the remaining
TIC profiles was selected as the target. For illustrative purpose, the
corrected versus the original TIC profiles for all samples is presented
in Fig. 3.
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To make the measurements more comparable, and to reduce
the huge amount of data points per sample, all intensities within a
user-specified bin were summed. In this study, intensities within a
bin size of 0.5 min and 2 m/z were summed. The bin size was cho-
sen so that single peaks were approximately represented within in
a bin. The binning reduced the number of data points from 60.000
to 1000 bin values per sample. Finally, a logarithmic transforma-
tion was used to adjust the variation in fold differences between the
target peak and minor surrounding peaks, and to reduce the het-
eroscedasticity of the noise [33].In Fig. 4, the effect of data reduction
transformation of a NOC sample is illustrated, showing that smaller
features around the target compound are enlarged due to binning
and scaling.

4.2. Training phase

The essence of the training phase is to model the common cause
variation present in the LC-MS samples obtained under normal
operating conditions. The number of samples needed to construct a
representative NOC model and control charts depends on the appli-
cation. In this case study, a calibration set consisting of the first 25
chronologically ordered LC-MS NOC samples was used to develop
a two component PCA model describing nearly 82% of the vari-
ation. The optimal number of PCA components to include in the
model was selected based on the variance captured and on the
results of leave-one-out cross-validation (data not shown). Vari-
ance captured flattens out somewhat after two components, and
root mean squared error of cross-validation (RMSECV) has a clear
local minimum at two components, indicating that after this point,
the components just reflect noise. Furthermore, the inspection of
loadings confirmed that the first two components reflect real chem-
ical variation (Fig. 5).

The model was validated using an independent validation set
consisting of the last five LC-MS samples. By inspection of the D-
and Q-statistics (Fig. 6) it was confirmed that two components
describe the common-cause variation. All 30 NOC samples were
within the 95% quantile in both the D-statistic chart and the Q-
statistic chart.

Both D- and Q-statistics are monitored during the training
phase. Nevertheless, as this study focuses on purity analysis; we
are primarily interested in the residuals. We use the residuals to
identify new, unanticipated peaks, which are not part of the nor-
mal chromatographic pattern and thus, the model. On the other
hand, when developing the model in the training phase, both the
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LC bin (0.5 min)
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Fig. 4. LC-MS maps before (A) and after (B) data reduction of 60.000 data points to
1000 bin values, using a bin size of 0.5 min and 2 m/z.

D- and Q-statistics are of interest. These statistics may contribute
with important and complementary indications about samples to
exclude from the NOC model due to deviation in common-cause
variation (Q) and magnitude (D). In this case all 30 samples used

Loading 2 (2.97% expl. var.)

MS bin 2 m/z) 2 LC bin (0.5 min)

Fig. 5. 3D plot of the first two PCA loadings.
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(square) sample sets.

in the training phase are within their respective 3¢ limits in both
D- and Q-statistics charts, and are therefore assumed to describe
common-cause variation.

4.3. Application phase

To demonstrate the lack of sensitivity of ordinary Q-based MSPC
applied to LC-MS data, a sample from the validation set was spiked
with human insulin drug product in five various levels from 0.01%
to 0.15%. Human insulin is co-eluting with the structurally related
target compound DesB30-insulin, but has slightly different m/z val-
ues. The five spiked samples (measured in five replicates) were
used to evaluate the ability of detecting an unknown impurity co-
eluting with the target compound. As indicated in the Q-statistic
chart (Fig. 7) none of the simulated chromatograms were detected
as faulty by falling outside the 3¢ limit.

As discussed earlier the Q-statistic measure suffers from lack of
sensitivity due to the needle-in-the-haystack expedition. In Fig. 8
the Q contributions are presented for a sample spiked with 0.15%
impurity. Even though the contributions provide indications of an
abnormality around m/z 1450-1454 eluting at 12.5-13 min, the
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Fig. 7. Plot of Q-statistics of calibration- (circle), validation- (square), and test sam-
ples (diamond).
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Fig. 8. Plot of Q contributions from PCA prediction of sample spiked with 0.15% HI.

relevant diagnostics seems to drown when calculating Q. As a con-
sequence the relevant information is not detected and exploited.

Therefore, possible deviations were detected in the individual
bins using multiple testing rather than testing the overall residual
variation. The critical 3o limit was calculated by iteratively testing
one calibration sample against the remaining calibration samples.
In comparison with the theoretically derived critical value (4.55),
the data generated 3o limit is slightly lower (3.75). This controversy
is primarily due to the incorrect independence assumption which
produces a more conservative limit, but maybe also deviation from
the normality assumption in the t-tests. As indicated in Fig. 9, spike
levels down to 0.05% HI was detected as faulty, falling outside the
30 limit.

The detection level was tested using different selections of bin
size and consequently bin number. The detection level is here
defined as the lowest spike level where all five replicate samples
were detected as faulty, falling outside the 3¢ limit. In Fig. 10 the
results of different selections of bin size and corresponding impu-
rity detection level is presented. It appears from Fig. 10 that the
lowest detection level is obtained with a bin size from 30 to 60 s and
1-2 m/zvalue. The number of bins in that region varies from 500 up
to 2000 bins. Clearly too high complexity in terms of number of bins
will result in a higher critical test limit followed by a higher level of
detection. On the other hand in a coarse binning the signal disap-
pears with higher level of detection as a consequence. Though the
same consequence, the origin is different for the two cases. For high
number of bins the detection limit is dependent on the false posi-
tive control in the modeling part, whereas for coarse binning effect

Z-statistics from PCA residuals (2 components)
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Fig. 9. Plot of Z-statistics of calibration- (circle), validation- (square), and test sam-
ples (diamond).
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Fig. 10. Results of different selections of bin size (and number of bins) and corre-
sponding detection level. The total bin numbers are indicated in the figure for each
bin setting and colored according to the impurity detection level.

size vanishes for impure samples. Of course the impurity detection
level examination presented here is optimized for this particular
impurity, and is hence slightly biased downwards due to selection
of bin size. For a true detection level determination an indepen-
dent test set could be applied using the selected bin size. Ideally,
a more objective method for selection of bin size should be con-
sidered. This is more likely an analytical discipline rather than a
mathematical discipline. Future unknown impurities eluting close
to the drug substance are most likely structurally related to the
drug substance, and the impurities can be expected to show up in
a 1000-fold difference compared to the drug substance. Hence, the
examination presented in Fig. 10 may not be that misleading, and
could serve as a preliminary bin-tuning procedure before setting
up a reliable monitoring scheme.

To determine those variables responsible for the faulty detection
the Z contribution plot is examined (Fig. 11). Clear diagnostics of the
detected sample is provided, indicating that an unknown impurity
is found around m/z 1450-1454 eluting around 12.5-13 min. Fur-
ther inspection of the highlighted area (data not shown) revealed
clear ion trace signals with a maximum intensity at m/z 1453. For
more detailed diagnostics an extracted ion chromatogram (EIC) of
m/z 1453 can be examined (Fig. 12).
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Fig. 11. Plot of Z contributions from PCA prediction of sample spiked with 0.05% HI.
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Fig. 12. Plot of TIC and EIC (m/z 1453) of sample spiked with 0.05% HI.

From the EIC the elution profile of the unknown impurity is
provided. It would be difficult or impossible to detect a co-eluting
0.05% impurity peak if measured with HPLC. However with LC-MS
this challenge is possible and becomes practicable if assisted by
the automated methods demonstrated in this study. However, it is
important to clarify that MSPC should not be regarded as a replace-
ment of analytical knowledge when interpreting the LC-MS data.
Instead, MSPC should be seen as the means for creating robust and
highly interpretable multivariate models with the aim of monitor-
ing and detecting unknown features in large and complex LC-MS
data.

5. Conclusion and perspectives

This study demonstrates that MSPC based on PCA in conjunc-
tion with multiple testing is very powerful for monitoring and
detection of unknown and co-eluting impurities measured with
LC-MS. A spiked impurity present at low concentrations (0.05%)
was detected and comprehensible contribution plot containing
clear diagnostics of the unknown impurity was provided. From
examination of contribution plots for lower spike levels than 0.05%
(0.025% and 0.01%) large contributions from the unknown impu-
rity were highlighted, emphasizing the sensitivity of this method.
Trading off false negative signals by lowering of the critical limit
from e.g. 30 to 20 might enhance the detection limit further. This
tool will monitor and highlight only relevant areas in the com-
plex LC-MS data where further effort on interpretation should
be applied. Furthermore the tool proved robust towards treating
instrumental artifacts such as baseline- and retention time drift.
Applying this procedure for the detection of new peaks makes a
fully automatic monitoring of LC-MS data possible. Furthermore,
if implemented and operating while the purity analyses runs, this
tool may considerably reduce time needed for subsequent assess-
ment of data, and operate according to the PAT concept aiming
for real-time release. Obviously the actual root cause of the alarm
is not automatically given when applying this tool. Such an anal-
ysis would need incorporation of chemical and technical process
knowledge and possibly applying MS/MS fragmentation for further
compound identification. Label-free LC-MS data analysis is already
widespread in proteomics and may well be increasingly important
in the pharmaceutical industry. However, many different types of
applications can be developed with LC-MS. Due to such variety of
possible applications and approaches it may also be challenging to
develop and incorporate a generic solution for processing and anal-
ysis of LC-MS data in commercial software. Nevertheless, this study
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point towards development and incorporation of more advanced
multivariate data analysis methods in commercial software solu-
tions.
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