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Abstract 

The use of chromatographic analytical techniques for in-process monitoring 

of impurities is crucial for ensuring the purity of the final pharmaceutical 

product and thereby protecting the patient who ultimately receives it. Today 

it is industrial practice to assess chromatographic data by commercial 

chromatographic software combined with visual inspection of 

chromatograms and peak tables. Although simple, this partly manual 

method is quite laborious, extremely time consuming, seldom quantitative 

and prone to subjective decision-making. Subsequently, the levels of each 

impurity are monitored in separate control charts which make it difficult to 

detect if the relationship between impurities varies. Ultimately to guarantee 

that all impurities are resolved from the target compound and detected, it is 

desirable to add a further dimension to the chromatographic separation such 

as liquid chromatography-mass spectrometry (LC-MS). However, the 

relevant chemical information may not be easily accessible from the huge 

amount of data generated with LC-MS analysis, especially when the 

presence of unknown impurities is investigated. 

The purpose of this PhD study has been to explore the potentials of new 

tools for improved assessment and monitoring of analytical 

chromatographic data from process samples in the pharmaceutical industry. 

This thesis demonstrates how newly developed methods and algorithms can 

ensure better utilization of available information in chromatographic data. 

The approach taken here, includes preprocessing of collected data in 

numerical software to generate ‘clean’ data; followed by multivariate 

statistical modeling that allows comprehensive control chart monitoring; 

and finally interpretable visualizations providing diagnostic information on 

deviating chromatographic data. Consequently, all these new and useful 

tools have been presented, explained and visualized on actual 

pharmaceutical analytical chromatographic data with more detailed 

information found in the attached scientific PAPER I-III. 

In the first PAPER (PAPER I), a new comprehensive control (COCO) chart 

procedure is developed that considers both univariate statistics and 

multivariate statistics derived from PCA in a single plot that allows easy 
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visualization of the combined data from a univariate and multivariate point 

of view. The method is exemplified using integrated areas of analytical 

chromatographic peaks.  

PAPER II proposes a powerful multivariate statistical process control 

(MSPC) approach based on principal component analysis (PCA) for 

monitoring subtle changes in the chromatographic profile. Clear diagnostic 

visualizations indicate subtle chromatographic deviations due to new 

impurities co-eluting with the target compound. The procedure supports the 

current practiced visual inspection of chromatograms by an automated and 

timely tool for continuous quality verification of chromatographic data in an 

objective and statistical reliable way.  

In PAPER III, an MSPC tool based on PCA in conjunction with multiple 

testing is developed to adapt the nature of LC-MS data and applied to in-

process LC-MS analysis of an industrial insulin intermediate. The tool 

detected low spike-levels (0.05%) of a structurally related compound co-

eluting with the target compound and further provided clear diagnostics of 

the co-eluting compound. This tool makes a fully automatic monitoring of 

LC-MS data possible, where only relevant areas in the LC-MS data are 

highlighted for further interpretation. 

In PAPER II and III, different chromatographic data preprocessing methods 

such as time alignment, baseline correction and scaling are applied to correct 

for non-relevant analytical variation, since it largely influences the outcome 

of the monitoring procedure. 

In conclusion the research presented in this thesis has demonstrated the 

unique potentials of assessing chromatographic data using novel 

multivariate statistical tools. These tools utilize the available information 

contained in multiple measured chromatographic signals simultaneously in 

an objective (numerical) and statistically reliable way. The applications 

described in PAPER I-III may all serve as good alternatives or supplements 

to current procedures used in the pharmaceutical industry. 
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Resumé 

Anvendelsen af kromatografiske analyseteknikker til procesovervågning af 

urenheder i lægemidler er af afgørende betydning for at sikre renheden af 

produktet og i sidste ende beskytte patienten. I industrien er det generel 

praksis at vurdere kromatografiske data ved hjælp af instrumentets 

indbyggede software kombineret med visuel vurdering af kromatogrammer 

og tabeller over de integrerede toppe. Denne enkle, delvis manuelle metode 

er meget tidskrævende, sjældent kvantitativ og er desuden påvirket af en 

subjektiv beslutningstagen. Niveauet af de enkelte urenheder overvåges ofte 

i separate kontrol kort, hvilket gør det vanskelig at opdage, hvis forholdet 

mellem urenheder varierer. For i sidste ende at sikre at alle urenheder er 

separeret fra hovedkomponenten og detekteret, er det ønskeligt at tilføje en 

ekstra dimension til den kromatografiske separation, såsom 

væskekromatografi-massespektrometri (LC-MS). Det er dog ikke altid let et 

ekstrahere relevant kemisk information fra den enorme mængde af data der 

genereres ved LC-MS analyse. Dette kan især være et problem når formålet 

er at undersøge tilstedeværelsen af ukendte urenheder. 

Formålet med dette PhD-studium har været at udvikle forbedrede metoder 

til evaluering og overvågning af analytiske kromatografiske data fra 

procesprøver i den farmaceutiske industri. Denne afhandling viser, hvordan 

nyudviklede metoder og algoritmer kan sikre en bedre udnyttelse af den 

tilgængelige information i kromatografiske data. Fremgangsmåden 

indbefatter forbehandling af data for at generere ”rene” data, efterfulgt af 

multivariat statistisk modellering, opsætning af kontrolkort der tillader en 

alsidig overvågning og endelig let fortolkelige visualiseringer, der giver 

diagnostisk information om afvigende kromatografiske data. Disse nye og 

nyttige metoder er blevet præsenteret, forklaret og visualiseret på faktiske 

farmaceutiske analytiske kromatografiske data. Flere detaljer kan findes i de 

vedlagte videnskabelige artikler (PAPER I-III).  

I den første artikel (PAPER I), er en ny alsidig kontrolkort (COCO) 

procedure udviklet, som både håndterer univariat statistik og multivariat 

statistik vha. principal komponent analyse (PCA) i et enkelt plot. Dette 

COCO kontrolkort gør det nemt at visualisere data fra et kombineret 
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univariat og multivariat synspunkt. Metoden er eksemplificeret på 

integrerede arealer af analytiske kromatografiske toppe. 

Den anden artikel (PAPER II) omhandler multivariat statistisk proces 

kontrol (MSPC) som er en fremgangsmåde baseret på PCA til overvågning 

af små ændringer i den kromatografiske profil. Diagnostisk visualisering 

indikerer små afvigelser i kromatogrammet på grund af nye urenheder der 

eluerer samtidigt med hoved komponenten. Artiklen beskriver hvordan den 

praktiserede visuelle inspektion af kromatogrammer kan understøttes med 

denne automatiserede og rettidige procedure til løbende kvalitets 

verifikation af kromatogrammer på en objektiv og statistisk pålidelig måde. 

I den tredje artikel (PAPER III), er et MSPC værktøj baseret på PCA 

kombineret med multipel testning udviklet til LC-MS data, og anvendt til 

procesanalyse af et industrielt insulin mellemprodukt. Værktøjet er i stand 

til at detektere et lavt spike-niveau (0,05%) af et strukturelt beslægtet stof, 

der eluerer samtidigt med hovedkomponenten. Dette værktøj gør en 

fuldautomatisk overvågning af LC-MS data mulig, hvor kun relevante 

områder i data er fremhævet til yderligere fortolkning.  

I den anden og tredje artikel (PAPER II–III), er der anvendt forskellige 

kromatografiske forbehandlingsmetoder såsom justering af tids-aksen, 

basislinie-korrektion og skalering med det formål at korrigere for irrelevant 

analytisk variation, da den i vid udstrækning påvirker resultatet af 

overvågnings-proceduren. 

Resultaterne som er præsenteret i denne afhandling viser hvorledes 

kromatografiske data kan vurderes ved hjælp af nye multivariate statistiske 

redskaber. Disse værktøjer udnytter informationen i de multiple 

kromatografiske signaler på en objektiv, datadrevet og statistisk pålidelig 

måde. Metoderne, beskrevet i de tre artikler er alle udviklet som alternativer 

eller supplementer til de nuværende metoder, der anvendes i den 

farmaceutiske industri. 
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1 Introduction 

This PhD project was driven by a need and desire to develop alternative 

solutions providing simpler yet more comprehensive monitoring capabilities 

of analytical chromatographic data in the pharmaceutical industry. The use 

of chromatographic analytical techniques for in-process monitoring of 

impurities, is crucial for ensuring the purity of the final pharmaceutical 

product, and thereby protecting the patient who ultimately receives it. 

Today, it is industrial practice to monitor each impurity of interest with a 

separate control chart, which indicates the range of acceptable variation in 

concentration of the impurity. However, for in-process analysis, several 

impurities may be of interest and this will necessitate that the practitioner 

inspects a large number of control charts. Moreover, when special events 

occur in a process they affect not only the magnitude of the impurities, but 

also their relationship to each other. These events are often difficult to detect 

by charting one impurity at a time because the correlations between the 

impurities are not directly reflected in the individual control charts [PAPER 

I]. 

Often analytical chemists and laboratory technicians are limited to the 

integration systems available in the commercial chromatographic software. 

This software often suffer from low reliability towards identifying unknown 

peaks when these have low signal to noise ratio and are overlapping with 

other peaks. Thus, it is common practice to assess the results of peak 

integration by visual inspection of the chromatogram. Visual inspection of 

chromatograms have been used for decades  [1], and is a valid procedure for 

identification of protein samples recognized by the regulatory authorities 

[2,3]. Although simple, this partly manual method is quite laborious, 

extremely time consuming, seldom quantitative and prone to subjective 

decision-making [PAPER II]. 

Although high-performance liquid chromatography (HPLC) is the most 

widespread analytical tool for in-process purity testing, it is recognized that 

HPLC can not guarantee that all impurities are resolved from the target 

compound (usually present in excess compared to any impurity). It is 

therefore desirable to add a further dimension to the chromatographic 

separation to increase confidence that all impurities are detected. Coupling 
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mass spectrometry (MS) to liquid chromatography (LC-MS) adds a more 

selective dimension to the chromatographic separation. However, the 

relevant chemical information may not be directly accessible from the huge 

amount of data generated with LC-MS analysis. That is particularly when 

the presence of unknown impurities is investigated, which can be 

considered as a case of needle-in-the-haystack expedition, due to the nature 

of LC-MS data [PAPER III]. 

It would be of major benefit for the pharmaceutical industry if these 

challenges could be handled by new and useful tools, improving assessment 

of chromatographic data and providing more comprehensive monitoring 

capabilities. In the following some motivations for this PhD project are 

described, and finally the aim and outline of this thesis is given. 

1.1 Scientific motivations 

Pharmaceutical process and product monitoring demands an array of in-

process analyses, which consequently generate a huge amount of data, 

containing hundreds or even thousands of variables. Despite significant 

benefits may be gained from such analytical data; it is generally not a trivial 

task to extract relevant information and knowledge from these data. Thanks 

to the development of computer power and multivariate statistical data 

analysis, spectacular progress has been achieved in comprehensively 

extracting relevant information from analytical data. The pharmaceutical 

industry can benefit from the wealth of knowledge accumulated and 

published over the years within the field of multivariate statistical data 

analysis. These methods have been successfully applied in other industries 

and research areas. If the multivariate statistical analysis philosophy is 

adapted by the pharmaceutical industry and further developed into 

industrially reliable on-line monitoring schemes, it can lead to more 

powerful and applicable methods, which can become useful to a broader 

range of users. 

1.2 Industrial motivations 

Today many people depend upon the quality of pharmaceutical products for 

their everyday health care. Pharmaceutical products are expected to be safe 

and efficient whenever needed – day after day, year after year. If the 

pharmaceutical product quality fails, the consequences can be catastrophic 
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leading to annoyance, inconvenience and even more severe effects on the 

customer. It takes a long time for a company to build up a reputation of 

reliability, and only a short time to be branded as "unreliable". Therefore, 

continual assessments of product quality are a critical necessity in the 

pharmaceutical industry. In light of the recent quality by design (QbD) 

initiative by the U.S. Food and Drug Administration (FDA) [4], increasing 

attention has been drawn to the application of the QbD principles [5,6] for 

impurity investigation and control, emphasizing process understanding 

based on sound science and risk management [7-9]. Under the new QbD 

paradigm, impurities should not only be tested for in the end product, but 

rather be proactively controlled by design throughout the manufacturing 

process. This of course, requires powerful analytical techniques and 

comprehensive extraction of relevant information from the analytical data 

that would govern early warnings of deviating product quality. Early 

warnings may lead to timely corrections and consequently a minimization of 

the number of rejected batches, product rework and lengthy failure 

investigations. Moreover, improved monitoring of product purity will lead 

to more effective and less complicated risk management procedures e.g. 

during changes and optimizations of processes. 

For a pharmaceutical company, all of these benefits will ensure license to 

operate and could furthermore result in major savings and additional 

funding for research and development of new and better products for the 

benefit of the patient. 

1.3 Aim of thesis 

This thesis focuses on solutions for more comprehensive monitoring 

capabilities of analytical chromatographic data in the pharmaceutical 

industry, which simply ensure better utilization of available information in 

chromatographic data. Therefore, the aim of this thesis is to develop 

methods and algorithms that improve assessment and monitoring of 

chromatographic data obtained for purity analysis in the pharmaceutical 

industry. The intention is to automate and optimize the many aspects 

present when setting up an industrial reliable monitoring scheme as 

illustrated in Figure 1. This includes: Collection of data from commercial 

chromatographic instruments to numerical software such as MATLAB 

(MathWorks); application of necessary preprocessing steps to generate 

‘clean’ data for subsequent modeling; multivariate statistical modeling 
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representing the critical chromatographic data; comprehensive control chart 

monitoring; and interpretable visualizations providing diagnostic 

information on deviating data. 

Monitoring DiagnosisPreprocessingData collection Modeling

x2

x3

x1

PC1

PC2

 
Figure 1. Aim of thesis; from collection of chromatographic data, preprocessing 

for subsequent multivariate statistical modeling, followed by control chart 

monitoring, and finally diagnostic information. 

1.4 Thesis outline 

The thesis consists of an introductory part followed by three scientific 

papers (PAPER I, II and III). The introductory part serves to introduce the 

reader to pharmaceutical product purity; the methods used in the study as 

well as the major results, and are organized as follows: 

1.4.1 Chapter 2  Pharmaceutical product quality 

Chapter 2 describes the importance of assuring pharmaceutical product 

quality by monitoring impurities. Analytical chromatographic methods 

commonly used for purity analysis in the pharmaceutical industry are 

introduced, and state-of-the-art monitoring systems used to asses the 

qualified status of the product during production are reviewed. Finally, this 

chapter gives an overview of the multivariate monitoring scheme used 

throughout this thesis.  

1.4.2 Chapter 3  Chromatographic data 

This chapter gives a brief historic perspective on the development of 

chromatography, and on the instrumental hyphenation properties with mass 

spectrometry. The data structure and dimensionality of HPLC data 

(univariate UV detection) and LC-MS data (multivariate mass detection) will 

be discussed, and some aspects of chromatographic peak resolution and 

peak purity will be touched upon. 

1.4.3 Chapter 4  Preprocessing 

Chapter 4 describes how various preprocessing methods can prepare the 

raw chromatographic data for subsequent multivariate statistical 
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monitoring. The selected preprocessing methods described here all found 

their usefulness in the papers included in the thesis. Among those are; 

baseline correction, peak alignment, and scaling methods. 

1.4.4 Chapter 5  Multivariate statistical monitoring 

This chapter includes different aspects of multivariate statistical monitoring 

based on principal component analysis (PCA). The usefulness of monitoring 

chromatographic data in a multivariate statistical way will be discussed and 

examples will be given from the papers included in this thesis. Since the 

theory behind multivariate statistical monitoring originates from statistical 

process control (SPC) methodology, a brief introduction is given to the 

concepts of SPC and the link to multivariate SPC (MSPC). 

1.4.5 Chapter 6   Conclusions and perspectives 

Finally, Chapter 6 summarizes the major findings of new and useful tools 

which improve assessment of chromatographic data and provide more 

comprehensive monitoring capabilities in the pharmaceutical industry. The 

topics where additional work and focus is needed will be discussed. 
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2 Pharmaceutical product quality 

Two branches exist in pharmaceutical production: the manufacture of active 

pharmaceutical ingredients (APIs), also known as drug substances, and the 

manufacture of drug products. With drug substance manufacturing, the 

active ingredient is synthesized during the course of many individual 

chemical reactions or process steps. Subsequently drug product 

manufacturing involves carrying out a formulation of the drug substance 

which delivers the drug substance in a stable, non-toxic and acceptable form, 

ensuring its bioavailability and therapeutic activity. This thesis will focus on 

the manufacture of the drug substance, as this branch has been the 

foundation for the scientific work carried out during this PhD project. 

Safety and efficacy of pharmaceutical products are two fundamental quality 

issues of importance in pharmacotherapy (treatment of diseases through the 

use of pharmaceutical products). The safety of a pharmaceutical product is 

dependent not only on the toxicological properties of the active drug 

substance itself, but also, for example, on the impurities that it contains. 

Additionally, these impurities could potentially compromise the efficacy of 

the active drug substance [10]. Thus, the analytical activities concerning 

impurities in pharmaceutical products are among the most important issues 

in modern pharmaceutical analysis [11]. 

An impurity in a drug substance as defined by the International Conference 

on Harmonization (ICH) guideline document Q3A [12] as: “any component of 

the drug substance that is not the chemical entity defined as the drug substance”. 

Impurities in drug substances may originate from various sources and 

phases of the process. The origin of impurities will not be described further 

here, but several reviews offer insights into these matters [13-15]. Regulatory 

agencies also explicitly regulate the control criteria for these impurities in 

drug substances by providing guidance for the pharmaceutical industry. 

These are not discussed here but are outlined in the ICH Q3A guideline 

document [12]. The analytical testing for and evaluation of impurities are 

important requirements. This, of course, requires suitable and powerful 

analytical methods; these are briefly described in the following subsection. 

Finally, in order to maintain the qualified status of the product during 

production, the known impurities have to be monitored, and the unlikely 
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presence of new unknown impurities should preferably be detected as early 

as possible. Such impurity monitoring systems are discussed in the final 

subsection of this chapter. 

2.1 Analytical methods for purity testing 

As stated previously effective testing and monitoring of impurities is crucial 

for the pharmaceutical industry. This, of course, requires suitable and 

powerful analytical methods. Analytical testing of impurities in 

pharmaceutical products is also an important regulatory issue. The 

validation of analytical procedures, i.e., the proof of its suitability for the 

intended purpose, is an important part of the registration application for a 

new pharmaceutical product. The ICH has harmonized these requirements 

in the Q2(R1) guideline document [16].  

Since impurities are usually present in relatively small quantities compared 

to the drug substance, an analytical technique capable of separating a 

mixture containing highly varied concentrations of analytes with sensitive 

and specific detection is required. Today, high-performance liquid 

chromatography (HPLC) with UV detection is the most commonly used 

analytical technique for purity testing of in-process intermediates and drug 

substances. HPLC has been the most important analytical method for 

determination of impurities in pharmaceutical products for over two 

decades [11]. However, it is recognized that HPLC can not guarantee that all 

impurities are resolved from the target compound usually present in excess 

compared to any impurity. It is therefore desirable to evaluate one or more 

complementary analytical methods to increase confidence that all impurities 

are detected and identified. The addition of further dimensions to 

chromatographic separations by hyphenated techniques offers unique 

opportunities for so-called peak-purity examination of the target compound. 

HPLC with diode array detection (HPLC-DAD) is a commonly used method 

to conduct peak-purity examination. However, many impurities are 

structurally related to the drug substance, and their structure may contain 

very similar chromophores, making purity assessment based solely on 

HPLC-DAD data difficult and unreliable. Coupling mass spectrometry (MS) 

to liquid chromatography (LC-MS) adds a more selective dimension to the 

chromatographic separation. Since MS separates compounds by their 

respective mass-to-charge ratios (m/z), any difference in the m/z values 

between the impurities and the active drug substance will allow an 
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unambiguous detection regardless of similarities in their UV spectra. 

Therefore an impurity co-eluting with the target peak will be separated in 

MS as long as their m/z values are different and ionization of the impurity is 

not suppressed by the target compound. LC-MS may also facilitate correct 

assignment of new peaks arising at the same retention time as known ones, 

which potentially are wrongly assigned with UV detection. Furthermore 

identification is improved by the use of LC-MS, as molecular masses are 

assigned to impurity peaks. In this way verification can also be provided as 

to whether impurities are really ‘new’ or whether they were already present 

in previous batches in lower amounts. This might help in the toxicological 

evaluation when taking, for example, safety factors into account. 

2.2 Current monitoring systems 

The requirement to show process and batch consistency demands an array 

of in-process analysis, which consequently generates a huge amount of data 

containing hundreds or even thousands of variables. These routinely 

measured data are automatically recorded in historical databases for the 

purposes of product monitoring, process control, and potentially process 

improvement/optimization.  

For example, during the production of each batch, process operators and 

quality-control departments normally assess these analytical data to ensure 

the product quality and take appropriate corrective actions when needed. 

However, it is generally not a trivial task to assess these analytical data and 

utilize all the available information. Therefore, many pharmaceutical 

processes face a well known problem, i.e., ‘data rich but information poor’, 

despite that significant potential benefits may be gained from these data 

Analytical data, if based on HPLC, usually consists of integrated areas of a 

number of well known peaks (the target compound and related impurity 

compounds). Most commonly batch-to-batch variation is analyzed on a less 

frequent basis (weekly, monthly, quarterly or once a year) to asses the long-

term quality and stability of the product. Here, the concentration of each 

compound of interest is monitored with a separate control chart, which is a 

simple plot of the compound concentration vs. time, sample or batch. 

However, control chart monitoring of an in-process analysis containing 

several impurity compounds will force the practitioner to inspect a large 

number of control charts, and the risk of making mistakes is larger when 

several control charts are to be checked [17]. When special events occur in a 
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process they affect not only the magnitude of the compounds but also their 

relationship to each other. These events are often difficult to detect by 

charting one compound at a time because the correlations between the 

compounds is not directly affected in the individual control charts [PAPER 

I]. Another problematic issue is the use of generic peak detection algorithms 

which often suffer from inconsistent reliability towards unknown peaks 

with low signal to noise ratio and overlapping peaks of different shapes. 

Thus, it is common practice to assess the results of peak integration by visual 

inspection of the HPLC chromatogram. As mentioned previously visual 

inspection of chromatograms is a valid procedure for identification of 

protein samples recognized by the regulatory authorities [2,3]. Although 

simple, this partly manually method is quite laborious, extremely time 

consuming, seldom quantitative and prone to subjective decision-making 

probably causing additional errors [PAPER II]. As for HPLC data, generic 

peak detection algorithms used for LC-MS data may also suffer from 

inconsistent reliability and thus manual interpretation is often necessary. 

However, manual interpretation of LC-MS data is extremely tedious; 

particularly in reference to applications where pharmaceutical product 

purity is monitored and unknown peaks are to be registered if present 

[PAPER III]. 

Obviously there are needs for more automatic and timely tools that can 

monitor these chromatographic data objectively, quantitatively, and in a 

statistically reliable way. Furthermore, these tools should automate the less 

frequent review of batch-to-batch variation and turn it into a continuous 

review. These needs are strongly supported by the increased focus on 

process analytical technology (PAT) [18] and quality by design (QbD) [4], 

which aims for enhanced process understanding that improves process 

control moving towards continuous quality verification and real-time 

release of an end product. 

2.3 Multivariate monitoring scheme 

In standard statistical process control (SPC) as well as multivariate SPC 

(MSPC) terminology the monitoring scheme is carried out in two distinct 

phases, Phase I and Phase II. In Phase I, a statistical model is constructed 

from a historical data set, which is assumed to be in control. In Phase II, the 

future observation is checked to see whether it fits well in the model. An 

extension to this standard monitoring scheme was proposed by H.J. 
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Ramaker et al. [19]. They carry out MSPC in three phases: The Initial, 

Training and Application phase, also referred to as ITA trajectory. Here, the 

training and application phase refer to respectively Phase I and Phase II 

from the standard terminology. In this study the multivariate statistical 

monitoring scheme of chromatographic data follows a modified version of 

the ITA trajectory as illustrated in Figure 2. 

 

Initial phase

Data collection Signal preprocessing

Training phase

PCA modeling MSPC charts

Application phase

Monitoring Detection & diagnosis

 
Figure 2. The three phases according to the ITA trajectory (Initial, Training and 

Application phase). 

The three phases according to the ITA trajectory are described briefly in the 

following subsections. 

2.3.1 Initial phase 

In the initial phase, appropriate and representative historical 

chromatographic data are collected and preprocessed (described in Chapter 

4). This historical dataset is one in which the process has been running 

consistently, under normal operation conditions (NOC), and only acceptable 

high quality products have been obtained. Normally, data are spread in 

various systems and are not always accessible in an easy manner. For 

instance the raw chromatographic signals most often have to be collected 

directly from the chromatographic instruments or a dedicated 

chromatographic database system. Quality measurements of the product, 
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including integrated peak areas, are usually stored in LIMS (Laboratory 

Information Management System). Therefore, the initial phase may often be 

a time consuming step if not automated. 

2.3.2 Training phase 

In the training phase a PCA model based on extracted and prepared NOC 

data is developed (describing common cause variation) and MSPC charts are 

constructed. Since this NOC model serves as a reference distribution and 

exclusively determines whether a new sample is similar or deviates 

significantly from the NOC samples, the monitoring performance depends 

very much upon adequacy and representativity of these NOC 

chromatograms. If e.g. a faulty chromatogram is included in the NOC 

model, the total amount of chromatographic variation increases, and the 

reference distribution now consists of non-representative NOC samples. 

Consequently, the model becomes less capable of detecting differences in 

variation between the NOC chromatograms and a new faulty 

chromatogram. Therefore, validation is an essential part of model 

development (described in subsection 5.4) to avoid false correlations, and to 

ensure that the estimated model reflects only NOC. 

The number of samples needed to construct an adequate NOC model 

depends on the application. The effect of the size of the training set on the 

false alarm rate in statistical process monitoring have been investigated by 

Ramaker et al. [20]. 

2.3.3 Application phase 

Finally, in the application phase new independent chromatographic data are 

prepared, fitted to the NOC model, and monitored using the control charts 

developed in the training phase. Deviating samples are diagnosed using 

contribution plots to determine causes of the deviating behavior. However, 

contribution plots do not automatically reveal the actual cause of the fault. 

Therefore, incorporation of chemical and technical process knowledge may 

be necessary to diagnose the problem and discover the root causes of the 

fault [21]. The NOC model can be updated periodically by including new 

samples already accepted by the NOC model (lying within the control 

limits) and with acceptable high product quality. In this way variations du 

to e.g. seasonal changes or different raw material suppliers can be 

incorporated in the NOC model, making it more robust against false positive 

alarms. However, if a consistent fault is detected and this fault is caused by 
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e.g. a permanent process change or a new raw material quality, the NOC 

model should be recalculated based on new NOC samples to reflect the 

present process conditions. 
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3 Chromatography 

Testing, monitoring and evaluation of impurity profiles in pharmaceutical 

products are important regulatory requirements which, of course, require 

suitable and powerful analytical methods. Although HPLC is the most 

widespread analytical tool for purity testing, it is recognized that HPLC can 

not guarantee that all impurities are resolved from the target compound 

usually present in excess compared to any impurity. It is therefore desirable 

to add a further dimension to the chromatographic separation to increase 

confidence that all impurities are detected. Here liquid chromatography 

coupled to mass spectrometry (LC-MS) is a powerful and widely used 

analytical technique in the characterization and identification of impurities 

in pharmaceutical products. 

The aim of this chapter is not to present chromatographic or mass 

spectrometric basic theory and instrumental setup or deal with how to 

optimize the chromatographic and mass spectral conditions for proper 

resolution and detection. This can be found in more dedicated textbooks [22-

26]. The focus will be on chromatographic data representation and how to 

take full advantage of the available information hidden in the data structure 

and dimensionality of HPLC data (univariate UV detection) and LC-MS data 

(multivariate mass detection). Additionally, some aspects of peak co-elution 

and peak purity will be touched upon. To begin with a brief historic 

perspective on the development of HPLC and LC-MS is given. 

3.1 Brief chromatographic history 

The Russian botanist Mikhail Tswett is generally referred to as the father of 

chromatography. His work, originally presented in 1903 and then published 

in 1906 [27], described the separation of plant pigments by column liquid 

chromatography. Tswett defined the term chromatography, which 

originates from the two Greek words, chroma (color) and graphein (to write) 

[28]. Initially, not much attention was given to chromatography but, after a 

few decades, Tswett’s discovery was re-considered by a few scientists and 

various modalities of chromatography emerged. Still, though the great 

discovery of Tswett, was not widely recognized. In 1941 Martin and Synge 

[29] published their Nobel Prize-winning article in which they introduced 
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liquid-liquid (or partition) chromatography and the accompanying theory 

that became known as plate theory. Later, Alm [30] reported the method of 

gradient elution in 1952. After these early developments, applications of 

liquid chromatography appeared more rapidly between 1960 and 1970 when 

high performance liquid chromatography (HPLC) was developed as an 

analytical tool in addition to gas chromatography [31]. Around 1973, 

packing technologies and development of reversed phase silica gel led to the 

first reversed phase HPLC columns [32]. Since then, several advancements 

have been developed for HPLC. Today reversed phase HPLC is a powerful 

tool for the modern laboratory and has played a key role as an analytical 

method in the development and control of pharmaceuticals. 

For decades, the liquid chromatograph has been a working horse in the 

separation of compounds. At the same time the mass spectrometer has been 

an important and sensitive tool for structure elucidation. By hyphenating the 

two techniques, a very powerful instrumental set-up is achieved. Liquid 

chromatography-mass spectrometry (LC-MS) is an analytical technique that 

couples high resolution chromatographic separation with sensitive and 

specific mass spectrometric detection.  

One of the first attempts at LC-MS was reported in 1968 by Talroze et al. 

[33], using a capillary inlet interface. In the 1980s several other type of 

interfaces was suggested, including, e.g., thermospray [34] and fast atom 

bombardment [35]. The breakthrough for LC-MS was, however, the 

development in the 1990s of two techniques for atmospheric pressure 

ionisation: the electrospray ionisation (ESI) [36] and the atmospheric 

pressure chemical ionization [37]. With ESI it is possible to obtain multiply 

charged ions for large molecules [38], e.g. proteins and carbohydrates. 

Thereby the detection of high molecular weight compounds is facilitated for 

instruments with limited m/z range. The technique is still developing, 

particularly in the mass spectrometry area, with vastly improved sensitivity 

and resolution. Today LC-MS is probably the most powerful technique 

available for pharmaceutical analysis, and the most common mass analyzers 

are those used in quadrupole, time of flight (TOF) and ion trap instruments 

[39]. 

3.2 Chromatographic data structure and dimensionality 

In the case of HPLC, the separation and subsequent detection of compounds 

in a sample delivers a chromatogram. A chromatogram is a graphical 
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representation of all peaks eluting from the column superimposed on the 

baseline. The areas and heights of the peaks usually increase linearly with 

the amount of injected component [26]. Typical purity analysis in industrial 

processes deals with a manageable amount of compounds at relatively high 

concentrations. The original data obtained from the instrument can be 

transformed by integration of the peaks and the integrated data of selected 

peaks can then be used for subsequent data analysis. This can easily be 

handled automatically with available software packages suitable for routine 

analysis of chromatograms [40]. This is illustrated in Figure 3 where selected 

peaks of interest are marked and integrated in a HPLC chromatogram 

obtained for purity analysis of a biopharmaceutical in-process sample. 

 

A
U

1

T
ar

g
et

 c
o

m
po

u
nd

Minutes

2

3

4

5

7

6

8
9

11

10

12

13 14

15 16

17
18

19

A
U

1

T
ar

g
et

 c
o

m
po

u
nd

Minutes

2

3

4

5

7

6

8
9

11

10

12

13 14

15 16

17
18

19

 
Figure 3. Analytical HPLC chromatogram of a biopharmaceutical in-process 

sample. Selected peaks are marked and integrated automatically [PAPER I]. 

However, generic peak detection algorithms often suffer from low reliability 

towards smaller peaks with low signal to noise ratio and overlapping peaks 

of different shapes. Hence, this data reduction can lead to a loss of 

information since the quality of the data relies on peak detection and on how 

the peaks are selected and integrated [41]. In other words, any error in the 

measurement of peak size will produce a subsequent error in the reported 

result. Therefore, it is common practice to assess the results of peak 

integration by visual inspection of the chromatogram. Although simple, this 

partly manual method is quite laborious, extremely time consuming, seldom 

quantitative and prone to subjective decision-making probably causing 

additional errors. As yet another alternative to automated peak detection 

and the laborious manual inspection, whole chromatographic profiles 
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collected from the instrument can be used mathematically, without first 

integrating a set of selected peaks. The result is that not only peak size is 

included but also its shape (peak overlap and peak shoulders). However, 

this requires uniform representation of the chromatographic signals in 

matrix form. As any other instrumental signal, the chromatographic profile 

contains three major components: the analytical relevant signal; the 

background or baseline; the noise. These are illustrated in Figure 4. 

 

Retention time
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U

Overall signal
Relevant signal
Background
Noise

 
Figure 4. Components of the chromatographic analytical signal: (a) overall signal; 

(b) relevant signal; (c) background; and, (d) noise (visualization inspired by 

Daszykowski and Walczak (2006) [42]). 

On top of these three different types of variation, there are also additional 

problems with chromatographic data. For example, the retention time of 

specific peaks can vary slightly from run to run for various reasons. 

Retention time shifts are problematic since they severely obscure 

comparison of chromatographic profiles. When whole chromatographic 

profiles are compared, these non-relevant components of Figure 4, and the 

shifting of chromatographic peaks need to be handled by the data analysis 

approach. In many cases, it is possible that the unwanted variation can be 
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corrected for prior to multivariate statistical monitoring. This can be done 

using suitable preprocessing as explained in Chapter 4. 

Both peak tables and chromatographic profiles are considered two-way data 

and can be organized as an M×N data matrix, with M samples and N peak 

areas or elution time points (also referred to as retention time points). This 

matrix structure can readily be used as input for two-way multivariate 

statistical monitoring, described in Chapter 5. 

In the case of LC-MS, the separation and subsequent mass spectral detection 

of compounds in a sample delivers a data matrix characterized by the 

intensity as a function of retention time and m/z (Figure 5A). Analysis by 

LC-MS can generate huge amounts of data, especially when the MS is 

operated in the full-scan mode over large regions in m/z. 



32 

 
Figure 5. Different LC-MS data structure presentations: (A) intact LC-MS 

landscape; (B) total ion chromatogram (TIC); (C) base peak chromatogram (BPC); 

(D) unfolded LC-MS chromatogram (modified from PAPER III). 

As shown in Figure 5, different data structures can be extracted from a 

single LC-MS sample: 

(A) Intact landscape holding all available information 

(B) Elution time profile (summed MS dimension – denoted total ion 

chromatogram (TIC)) 

(C) Mass spectral profile (summed LC dimension – denoted base peak 

chromatogram (BPC)) 

(D) Unfolded LC-MS chromatogram (the sample matrix is rearranged into 

a vector by concatenating the rows or column; here the m/z rows are 

concatenated) 

As for HPLC data, automatic peak detection algorithms for LC-MS data may 

also suffer from low reliability and thus manual interpretation is often 

necessary. However, manual interpretation of LC-MS data is extremely 

tedious, particularly in reference to applications where pharmaceutical 

product purity is monitored and unknown peaks are to be registered if 
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present. If LC-MS data are to be compared by two-way multivariate 

statistical monitoring, then one dimension must be reduced either by 

summing or unfolding as illustrated in Figure 5. By summing, the amount of 

data points is simply reduced, whereas with unfolding the amount of data 

points is kept intact. Alternatively the intact LC-MS landscapes can be 

compared by advanced so-called multiway statistical methods (also referred 

to as factor models) such as PARAFAC [43]. These methods give new 

possibilities with regard to the information that can be extracted, but are not 

as widespread and user-friendly as two-way methods, due to their more 

sophisticated nature. 

3.3 Peak detection and integration errors 

The detection of peaks in a chromatogram is crucial for both qualitative and 

quantitative analyses, for the amount of information increases as more peaks 

are detected. However, peak overlap and baseline noise make the detection 

of peaks rather problematical. For instance a false peak may be detected 

when baseline noise might be taken for a minor peak, or a peak may be lost 

when the occurrence of overlapping is not recognized. Most routinely used 

detection methods do not employ any assumption for peak shapes or 

baseline noise. Most often the derivatives of the signal are analyzed and a 

peak is detected when a threshold is exceeded. All the information these 

peak detection methods use is that a peak is a signal that goes up and comes 

down [44]. Quantitative determination of the individual compounds can 

simply be done by integration of the peak area. For a correct area 

determination, the location of the baseline, the values of peak height and 

peak width must be measured with high precision. Baseline noise, drifting 

baseline, peak tailing or fronting, and peak overlap, all influence the 

accuracy and precision of the measurements made on chromatographic 

peaks. For high-purity pharmaceutical products, the target compound is 

present in excess compared to a potential impurity. Specifically, small peak 

size ratios from about 5% to less than 0.5% of the target peak commonly 

occur in the determination of impurities in pharmaceutical products [45]. 

When such a small impurity peak elute near the much larger target peak, 

situations will occur in which the small peak cannot be integrated as a 

separate peak because a valley no longer appears between the peaks. In such 

situations, careful examination of the baseline is necessary to determine the 

correct location for the integration start-stop positions. However, the use of 

rather simple and inappropriate integration methods (often implemented in 
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commercial chromatographic software) may result in underestimation or 

overestimation of peak areas. The integration errors are likely to occur due 

to asymmetry of one or both peaks (e.g. tailing) [45]. Mathematical peak 

models can be used to resolve the overlapping peaks into pure peak profiles 

(also referred to as peak deconvolution). Several peak fitting algorithms and 

procedures are available, but they are outside the scope of this thesis. 

3.4 Peak resolution 

The resolution expresses the extent of separation between the components in 

a sample, and is a useful measure of the separation properties of the column 

for a particular sample. The higher the resolution of peaks in the 

chromatogram, the better separation of the components the column 

provides. The separation ability of a column is characterized by the plate 

number, which determines the peak width relative to the retention time. A 

simplified method to calculate the resolution of a chromatogram is to use the 

plate model [46]. The plate model assumes that the column can be divided 

into a certain number of plates, and the mass balance can be calculated for 

each individual plate. This approach approximates a typical chromatogram 

curve as a Gaussian distribution curve. By doing this, the curve width is 

estimated as four times the standard deviation of the curve (4σ). Sigma can 

be estimated by calculating the segment of the peak base (wb) intercepted by 

the tangents drawn to the inflection points on either side of the peak. The 

inflection points can be found by calculating max and min of the first 

derivative chromatogram [47]. The parameter σ is calculated as wb divided 

by four. This is illustrated in Figure 6. 
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Figure 6. Width of a Gaussian peak, as a function of the standard deviation of the 

peak (modified from Ettre (1993) [47]. 

To define to what extent an impurity is hidden under the target peak; the 

peak resolution (Rs) is used. Rs expresses the efficiency of separation of two 

peaks in terms of their average peak width at base [47]: 
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where tR1 and tR2 are the retention time of solute 1 and 2 respectively (tR2 > 

tR1) and wb1 and wb2 are the Gaussian curve width of solute 1 and 2 

respectively (the retention time is the time from the start of signal detection 

to the time of the peak height of the Gaussian curve). Usually, in 

chromatography the plate number is approximately constant for similar 

components with similar retention times. The plate number N for a Gaussian 

peak is given by [47]: 
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With similar retention times and plate numbers the peak width of the 

impurity and the target component is hence similar and a reasonable 

assumption is [47]: 
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In Figure 7 different degrees of chromatographic resolution is illustrated. 

Impurity peaks at 0.1% of the target peak area were simulated based on the 

assumptions in Equation 6. The impurity peaks were generated as pure 

Gaussian peaks using σ estimated from the target peak. Impurities were 

simulated with varied resolutions (Rs) from 1 to 2 (eluting after the target 

peak) and added the target peak chromatogram. In the upper plots in Figure 

7 (A1 to A3) a symmetric target peak is added a 0.1% impurity peak with 

resolutions from 1 to 2, whereas in the lower plots (B1 to B3) an asymmetric 

(tailing) target peak is added a 0.1% impurity peak with resolutions from 1 

to 2. 
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Figure 7. Different degrees of peak resolution. (A1 to A3): Symmetric target peak 

(blue) and 0.1% impurity peak (green) added together (red). (B1 to B3): 

Asymmetric (tailing) target peak and 0.1% impurity peak added together (red). 

Common chromatographic practice often suggests that the minimum 

resolution between two peaks must be at least 1.5 to ensure sufficient 

separation. However, as illustrated in Figure 7 there is a remarkable 

difference in the actual peak separation depending on whether the target 

peak is symmetric or not. In Figure 7A2 the impurity peak is fairly separated 
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from the symmetric target peak at resolution 1.5, but in Figure 7B2 the 

impurity peak is partly hidden under the tailing edge of the asymmetric 

target peak. It is often difficult or impossible to detect such low resolution 

impurity peaks visually or to identify them by peak integration using 

existing commercial chromatographic software. Generic peak detection 

algorithms commonly seek instants of rapid increase or decrease in signal 

intensity above a critical threshold. However, setting the threshold is a 

problem because too low a threshold generates a large number of 

meaningless peaks and too high a threshold might miss an actual one [40]. In 

PAPER II this challenge is addressed by monitoring the entire 

chromatographic profile both quantitatively and in a statistically reliable 

way. The automated multivariate statistical tool demonstrated in PAPER II 

is capable of detecting subtle changes in the chromatographic profile, 

specifically shoulders on the target peak as illustrated in Figure 7. These 

shoulders originate from small non-resolved impurity peaks, which would 

risk not to be detected by visual inspection and potentially be integrated as 

one peak using common generic peak detection and integration methods. 

3.5 Peak purity 

Detecting the occurrence of an unknown impurity co-eluting with the target 

compound is a particular problematic challenge. Therefore, purity analysis 

of a biopharmaceutical product often entails purity examination of the target 

peak. Peak-purity examination should prevent co-eluting impurities to 

escape detection in the conventional HPLC analysis [48]. HPLC with diode 

array detection (HPLC-DAD) is a commonly used method to conduct peak-

purity examination. However, many impurities are structurally related to 

the drug substance, and their structure contains very similar chromophores, 

making purity assessment based solely on HPLC-DAD data difficult and 

unreliable. Coupling a mass spectrometer to a liquid chromatograph (LC-

MS) brings more selective signals to the table. Since a mass spectrometer 

(MS) separates compounds by their respective mass-to-charge ratios (m/z), 

any difference in the m/z values between the impurities and the drug 

substance will allow an unambiguous detection regardless of similarities in 

their UV spectra. Therefore an impurity co-eluting with the target peak will 

be separated in MS as long as their m/z values are different and ionization of 

the impurity is not suppressed by the target compound. This is illustrated in 

Figure 8 where an insulin intermediate DesB30 is spiked with human insulin 

drug product at a 0.05% level [PAPER III]. Human insulin is co-eluting with 
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the structurally related target compound DesB30-insulin, but has a different 

molecular weight and thus different m/z values. The ion trace signals from 

human insulin have maximum intensity at m/z 1453. Plotting an extracted 

ion chromatogram (EIC) for this m/z value, the co-eluting profile of human 

insulin is provided (Figure 8). 
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Figure 8. Plot of TIC and EIC (m/z 1453) of sample spiked with 0.05% HI [PAPER 

III]. 

It would be difficult or impossible to detect a co-eluting 0.05% impurity peak 

if measured with HPLC. However, with LC-MS this challenge is possible to 

meet and becomes practicable if assisted by automated multivariate 

statistical methods (described in Chapter 5). 



39 

4 Preprocessing 

In the initial phase of the monitoring scheme applied in this study 

(subsection 2.3), historical chromatographic data are collected and 

preprocessed. In chromatography, the original data obtained from the 

instrument can be transformed into (possibly relative) concentrations of 

specific chemical analytes by integration of the peaks and the integrated data 

of selected peaks can then be monitored by multivariate statistical analysis 

[PAPER I]. However, this data reduction leads to a loss of information since 

the quality of the data relies on peak detection and on how the peaks are 

selected for the monitoring. Alternatively, the whole chromatographic data 

matrices collected from the instrument can be used, without first integrating 

a set of selected peaks [PAPER II and III]. The result is that not only peak 

magnitude is included but also its shape (peak overlap and peak shoulders). 

However, when monitoring whole chromatographic profiles or landscapes, 

instead of information on a limited set of peaks, some of the additional 

variation may obscure the relevant information. This extra unwanted 

variation is for example the variation originating from uninduced chemical 

variance, such as product sampling, sample work-up in the laboratory, and 

instrumental variation. For instance instrumental variation such as pressure, 

temperature and flow rate fluctuations may cause an analyte to elute at a 

different elution time in replicate runs. Additionally, matrix effects and 

stationary phase decomposition may also cause elution time shifting. Before 

multivariate statistical monitoring can be performed, the data should be 

corrected for this unwanted variation, since it largely influences the outcome 

of the monitoring and disturbs monitoring of the chemical variation. Using 

mathematical preprocessing methods, this unwanted variation can be 

removed or handled. Several methods can be applied to prepare the 

chromatographic signal for subsequent multivariate statistical monitoring. 

So far only few preprocessing methods are implemented in commercial 

chromatographic software and they often tend to be too simple and generic. 

Here the focus will be on selected preprocessing methods that have found 

their usefulness for the applications described in PAPER I, II, and III. The 

preprocessing methods are described in the order that they preferably 

should be applied to chromatographic data. 
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4.1 Baseline correction 

Baseline correction in chromatography is commonly employed. Baseline 

variation has been an issue in chromatography for decades, and one of the 

first descriptions on how to remove baseline drifts was presented already in 

1965 [49]. Nowadays most methods are based on subtracting a fitted 

polynomial following the baseline curvature, and several such methods are 

available in the literature [50,51]. Among the different approaches of 

baseline correction, this thesis favors an approach proposed by van den Berg 

[52]. This baseline correction method operates in local regions of the 

chromatogram and uses B-splines constructed from polynomial pieces 

joined at certain positions (knots). The method operates by gradually 

eliminating points in the signal furthest (northern distance) away from the 

fitted polynomial until the number of selected supporting points (baseline 

points) is reached. Since the method works in local regions it is required that 

the number of knots and their position are set. This is actually an advantage 

as local changes in baseline can be corrected by placing more knots in the 

problematic regions. The method also requires input for the order of the 

polynomial that is fitted between the knots. In PAPER II the baseline 

correction method by van den Berg [52] was applied even though only 

minor baseline drifts were observed. Nevertheless, the developed 

monitoring approach should be capable of handling more severe baseline 

drifts if such appear. The baseline correction is illustrated in Figure 9 

(modified data from PAPER II), where a chromatogram with minor (A + B) 

and major (C + D) baseline drift is corrected, using the same settings. 
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Figure 9. Illustration of baseline correction method by van den Berg (2008) [52]. 

(A) Raw data with minor baseline drift, knot positions, and fitted baseline 

between knot positions. (B) Data with minor baseline drift before and after 

baseline correction. (C) Raw data with major baseline drift, knot positions, and 

fitted baseline between knot positions. (D) Data with major baseline drift before 

and after baseline correction. 

By inspection of Figure 9 it can be confirmed that the baseline correction is 

capable of handling various degrees of baseline drifts using the same 

settings. Thus, upon selecting the settings from initial data investigation, 

baseline correction can be an objective and automatic preprocessing step. 

For LC-MS data a variety of techniques for baseline correction are applicable 

and these are reviewed by Listgarten et al. [53] among others. In PAPER III 

an efficient and rather simple method for baseline correction was applied. 

The method works by fitting a global polynomial (of a user-defined order) to 

each extracted ion chromatogram of the LC-MS landscape and, through an 

iterative routine, down-weighting points belonging to the signal. A baseline 

is then constructed and subtracted from the original extracted ion 

chromatogram [PAPER III]. The baseline correction method is similar to a 

previously described method by Gan et al. [51]. 

4.2 Normalization 

Normalization of chromatographic data is another possible step in the 

preprocessing procedure. Normalization is a sample-wise standardization of 
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data, usually applied to remove a source of unwanted variation. In 

chromatography it is common to apply normalization to minimize the effect 

of variation of sample size that actually hits the column, possible sample 

carry-over, and drifts in e.g. detector efficiencies. Normalization procedures 

enable a more accurate matching and quantification between multiple 

samples. Different procedures for normalization can be applied, such as 

setting maximum peak height to the same value for all samples, or dividing 

each signal value for one sample by the sum, mean, or median of all signal 

values for that sample. In Figure 10 the effect of different normalization 

procedures are illustrated on LC-MS data (modified from PAPER III). 
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Figure 10. Illustration of raw LC-MS TIC data and the effect of different 

normalization procedures (modified from PAPER III). 

The different normalization procedures illustrated in Figure 10 all correct for 

the bias between samples in the raw data. The only real difference between 

the procedures is the scale to which the data are normalized. For the 

application described in PAPER III it was assumed that the target peak 

purity might vary but the overall signal intensity should ideally be the same 

for each sample. Therefore the sum of all intensities was used as 

normalization value for each sample. 

Although normalizing the data generally improves comparison of samples 

across instrument runs, the applied approaches are independent of or 

“blind” to the actual compound level in the sample. Ideally, the use of 

spiking controls would be an appropriate option for addressing the 

instrumental variability. However, this approach is rather laborious. 

4.3 Alignment 

As with every laboratory experiment, chromatographic separation is stable 

and reproducible only to a certain extent. The retention time often shows 
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large shifts, and distortions of elution profiles can be observed when 

different runs are compared. For LC-MS data even the MS (m/z) dimension 

might show (typically smaller) deviations. Alignment of shifted peaks can be 

performed in various ways. During the past decades, several kinds of useful 

alignment approaches have been developed for chromatographic profiles 

[50,54-62]. Very reproducible chromatographic data often need only a 

movement of the whole chromatogram a certain integer sideways for proper 

alignment. This is characterized by a systematic or linear shift and can easily 

be handled by the so-called correlation-shifting (coshift) algorithm [63] or 

the faster interval-correlation-shifting (icoshift) algorithm [64] described in 

subsection 4.3.1. Yet, if the column is changed between runs or if samples are 

measured over a long period of time, this may cause the peaks to shift 

independently from one another in the same chromatogram, and more 

complex shift correction is needed to correct for this non-systematic shift. 

One of the most popular and efficient methods, which can handle this non-

systematic shifts in chromatographic data, is the piecewise alignment 

algorithm correlation optimized warping (COW) [57,61] described in 

subsection 4.3.2. The algorithms mentioned here all use a target or reference 

chromatogram that each chromatogram is aligned towards. The choice of 

reference chromatogram is an important aspect of the alignment methods 

considered here, and will be described further in subsection 4.3.3. 

4.3.1 Systematic shift correction by interval-correlation-shifting 

The icoshift algorithm is originally developed for alignment of nuclear 

magnetic resonance (NMR) spectra [64], but has proven to be well suited for 

alignment of chromatographic data as well [PAPER II and III]. The 

algorithm independently aligns each chromatogram to a reference by 

maximizing the cross-correlation between user-defined intervals and 

employs a fast Fourier transform engine that aligns all chromatograms 

simultaneously. The icoshift algorithm is demonstrated to be faster than 

similar methods found in the literature making full-resolution alignment of 

large datasets feasible [64]. Several options are available depending on how 

the alignment problem is to be solved. For instance, it is possible to define 

intervals to be aligned separately (e.g., allowing a full chromatographic 

alignment with regularly spaced intervals, or adjacent intervals of user-

defined length, or customized interval boundaries). Furthermore it is 

possible to set a boundary for the maximum local correction allowed for 

each interval. Finally, the fill-in value is defined for the reconstruction part 
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(a missing value or the first/last point in the interval). In Figure 11 the result 

of icoshift alignment of a shifted chromatographic profile (one interval) 

towards a reference is illustrated (modified from PAPER II). 
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Figure 11. Alignment of a profile chromatogram (blue) towards a reference 

chromatogram (red). Chromatograms before (A) and after (B) alignment using the 

icoshift algorithm (modified from PAPER II). 

The icoshift alignment illustrated in Figure 11 clearly handles the major 

systematic shift. However, some non-systematic shifts still remain 

uncorrected, especially for the minor peaks. To solve this more complex shift 

correction is needed. Even though the icoshift alignment could not correct 

for the entire retention time shift, it still serves a purpose. Most often both a 

preliminary systematic shift correction is needed before a non-systematic 

shift correction can be handled successfully. 

4.3.2 Non-systematic shift correction by correlation optimized warping 

The Correlation Optimized Warping technique (COW) was originally 

introduced by Nielsen et al. [57] as a method to correct for shifts in 

vectorized data signals. COW is a piecewise or segmented data alignment 

technique that uses dynamic programming to align a sample chromatogram 
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towards a reference chromatogram by stretching or compression of sample 

segments using linear interpolation [61,62]. Two input parameters are 

required and the first parameter is a number of sections into which the 

chromatograms is divided (by knots). The second parameter, the so-called 

warping parameter, defines the degree of alignment (slack). For the larger 

values of the warping parameter the larger time shifts can be corrected [42]. 

The performance of COW alignment is illustrated on the chromatographic 

profile after icoshift alignment as described in subsection 4.3.1. Here the 

profile was divided into four sections as indicated by the knots. 
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Figure 12. Alignment of a profile chromatogram (blue) towards a reference 

chromatogram (red) divided into four sections indicated by the knots. 

Chromatograms after icoshift alignment (A) and after icoshift and COW 

alignment (B) (modified from PAPER II). 

As illustrated in Figure 12 the COW algorithm offers much better alignment, 

but the selection of sections and the warping parameter is crucial. The 

computational time of COW is exponentially influenced by the warping 

parameter. If the alignment is unsatisfactory, more sections or a larger 

warping parameter value can be considered. However, it is often possible to 
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achieve good alignment at a low warping parameter, thus ensuring 

reasonable computation time [42]. 

4.3.3 Selection of reference chromatogram 

Several methods can be used for finding a proper reference chromatogram 

for alignment. Among these are, the average chromatogram, the first loading 

of a PCA model, the most inter-similar or representative chromatogram 

containing the highest number of common peaks [61,65,66], or the sample 

run in the middle of a sequence [59,67]. Furthermore, using the 

chromatogram with the highest correlation coefficient with respect to the 

remaining chromatograms as reference has also been suggested [62,68]. This 

approach was favored in both PAPER II and PAPER II. However, the choice 

depends on the homogeneity of the samples, on the degree of missing peaks 

across the chromatograms and many other things, which should be 

considered in each individual application [62,68]. 

4.4 Data reduction 

To make chromatographic samples even more comparable, data reduction 

(binning or bucketing) can be applied. Binning can be performed in various 

ways, e.g. by summing or averaging all intensities within a user-specified 

bin level. This may reduce small uncorrected chromatographic artifacts, such 

as shifts. Furthermore binning simplifies subsequent multivariate statistical 

analysis, as the huge amount of data points per sample is reduced. 

In PAPER III the data reduction puts all the intensities on a (time, m/z) grid 

and sum the intensities within each bin. The effect of LC-MS data reduction 

using different bin sizes is illustrated in Figure 13. 
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Figure 13. Illustration of LC-MS data reduction using different bin sizes. (A) 

Before data reduction (60.000 data points); (B) bin size: 10 seconds and 2 m/z (3000 

data points); (C) bin size: 30 seconds and 4 m/z (500 data points); (D) bin size: 60 

seconds and 5 m/z (200 data points (modified from PAPER III).   

The bin size should be selected based on experience and the sample being 

tested. However, in PAPER III the optimal bin size was selected based on 

testing. The impurity detection level was tested using different selections of 

bin size and consequently bin number. The lowest detection level was 

obtained with a bin size from 30 to 60 seconds and 1 to 2 m/z value, resulting 

in 500 to 2000 bins [PAPER III]. 

4.5 Scaling 

Scaling is a variable-wise standardization and the choice of scaling method 

is crucial for performance of the subsequent multivariate statistical 

monitoring. Scaling methods divide variables by a factor, which is different 

for each variable. The aim is to adjust for the disparity in fold differences 

between various signals (i.e. to bring all variables into the same range), and 
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to correct for a non-constant signal variance. For instance a fold difference in 

concentration for the target compound and a related impurity may not be 

proportional to the chemical relevance of these compounds [69].  

Mean centering may solve this problem by subtracting the average variable 

pattern from each sample. This removes a common offset, and brings each 

variable to vary around zero. However, mean centering may not always be 

sufficient, hence autoscaling, also referred to as unit variance scaling, can 

solve the problem by dividing all mean centered numbers of a variable by 

the standard deviation of that variable [70]. After autoscaling, all variables 

have mean values zero and a standard deviation of one. Therefore the data is 

analyzed on the basis of correlations instead of covariances, as is the case 

with mean centering [71]. The effect of mean centering and autoscaling is 

illustrated (Figure 14) on a peak table dataset (15 samples × 20 peak areas) 

obtained from integration of one major target peak and nineteen related 

minor peaks (modified from PAPER I). 
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Figure 14. Illustration of a peak table dataset (15 samples ×20 peak areas) before 

(A) and after mean centering (B) and autoscaling (C) (modified from PAPER I). 

After mean centering (Figure 14B), all variables will have mean values zero. 

Mean centering is normally recommended for data where the variables have 

same units. After autoscaling (Figure 14C), all variables have equal length 

and mean values zero. Autoscaling is recommended for data where the 

variables have different units or if the variation in range of different 

variables is large. For the example illustrated in Figure 14 (modified from 

PAPER I), variable 1 (target peak) originates from the high concentration 

target compound, with large absolute fluctuations between samples. This is 

not desired since the other related compounds giving rise to smaller peaks 

and peak variation are equally interesting for the application in PAPER I. 

When processing full chromatographic profiles, however, the use of 

autoscaling magnifies the baseline variation since variables (i.e. retention 
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time points) representing only noise will also be transformed to the same 

scale as all the other variables (Figure 15B). Baseline variation will thus 

become equally important as variation in chromatographic peaks. This also 

holds true for components with very low concentrations and variation. One 

effective way to reduce the relative importance of large values without 

blowing up noise is square root mean scaling (Figure 15C). This scaling 

method uses the square root of the mean (of individual variables) as scaling 

factor. In PAPER II square root mean scaling turned out to be the most 

appropriate scaling method, as it first of all increased the sensitivity on 

detecting small unknown peaks partly hidden under the target peak. 

Secondly, the characteristic appearance of the chromatogram was kept 

intact, which was helpful when interpreting a faulty chromatogram detected 

by the multivariate statistical model. 

Scaling may also be crucial in order to bring the distribution of data points 

close to a normal distribution. This is especially important when multiple 

testing (like Student’s t-test) is used for difference analysis as in PAPER III. 

In many cases, a logarithmic transformation is used for stabilization of the 

variance. Logarithmic transformation can also be a solution to the problem 

of difference in range of variables; however, it may result in the same noise 

drawback as autoscaling when processing full chromatographic profiles 

(Figure 15D). Furthermore, log transformation of zeros and negative values 

is a problem. The different scaling methods mentioned here were applied to 

fifty chromatographic profiles and the effect is illustrated for one profile in 

Figure 15 (modified from PAPER II). 
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Figure 15. Effect of different scaling methods applied to fifty chromatographic 

profiles. Here one profile is plotted before scaling (A), after autoscaling (B), after 

square root mean scaling (C), and after logarithmic (log10) transformation (D) 

(modified from PAPER II). 

There are several other centering, scaling and transformation methods which 

not are mentioned here, some of them are well described in a paper by van 

den Berg et al. [69]. 
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5 Multivariate statistical monitoring 

This chapter covers all the elements in the training phase and application 

phase of the monitoring scheme (subsection 2.3).  These include modeling of 

preprocessed normal operation condition (NOC) chromatographic data, 

construction of multivariate control charts, monitoring of new 

chromatographic data, and diagnosis of deviating chromatographic data 

using contribution plots. 

To be able to explain the multivariate statistical monitoring to a broad 

audience, the confusion between process monitoring and process control 

needs to be clarified. From a chemical engineering point of view, process 

control is about automated surveillance with well-defined control actions of 

a process. However, in multivariate statistical process control (MSPC) the 

‘normality’ of the process is statistically determined and monitored. The 

underlying concept of MSPC is based on a comparison of what is happening 

today with what happened previously. Hence, MSPC is actually a technique 

for statistical monitoring of processes in spite of the fact that the designation 

suggests that actual control actions are performed. Therefore, MSPC is 

referred to as multivariate statistical monitoring in the ongoing to avoid 

misunderstandings. 

This work advocates the use of latent variables-based MSPC [72], specifically 

MSPC based on principal component analysis (PCA) [73]. The PCA-based 

MSPC approach developed here, considers all the noisy and highly 

correlated chromatographic variables, but project this information down 

onto low dimensional subspaces which contain the relevant information. 

The chromatographic data is then monitored in this latent subspace by using 

a few multivariate control charts built from multivariate statistics. PCA-

based MSPC is suitable for monitoring two-way data, such as tables of peak 

areas or chromatographic profiles where each sample is a vector of values 

collected in a data matrix. However, MSPC based on PCA cannot handle so-

called three-way chromatographic data structures, such as LC-MS data, 

where each sample is a matrix of values collected in a data cube or tensor. If 

PCA-based MSPC should be applied to LC-MS data, then one dimension 

must be reduced either by summing or unfolding (see subsection 3.2). 

Alternatively MSPC based on multiway methods, such as PARAFAC [43] 



54 

(an extension of PCA to multiway data) or PARAFAC2 [74] (handles 

retention time shifts), can handle the additional mass spectral dimension of 

LC-MS data without reducing the three-way structure. These multiway 

methods give new possibilities with regard to the information that can be 

extracted, but are not as widespread and user-friendly as two-way methods, 

due to their more sophisticated model nature. In situations where both 

process variables and product quality data are available, multivariate 

predictive models based on projection to latent structures like partial least 

squares (PLS) [75] can be applied. These multivariate predictive models can 

be used to develop a predictive relationship between the process variables 

and the product quality (if present). In this way PLS-based MSPC can 

monitor the measured process variables and from these estimate the product 

quality. However, none of these multiway or predictive methods have found 

their use in this PhD project, and are therefore out of the scope of this thesis. 

This chapter will include different aspects of MSPC based on PCA in 

chromatography. The usefulness of bringing PCA-based MSPC and 

chromatographic data together will be discussed and examples will be given 

from the papers prepared during this thesis. For chromatographic data, 

PCA-based MSPC can either be applied to integrated peak areas in peak 

tables (discrete data), or to fingerprints or whole chromatographic profiles 

(continuous data). The first paper [PAPER I] in this thesis deals with 

multivariate statistical monitoring of peak tables, whereas PAPER II and 

PAPER III cover the monitoring of chromatographic fingerprints. In the 

previous chapter it was described how preprocessing of the 

chromatographic data can be applied to generate ‘cleaner’ data so relevant 

variation is more predominant in the data. Preprocessing is the first step and 

a prerequisite for monitoring relevant information. For the following 

discussion, it is assumed that the chromatographic data is properly pre-

processed. 

Since the theory of MSPC originates from statistical process control (SPC), it 

is relevant to give a brief introduction to the concepts of SPC and the link to 

MSPC. 

5.1 Statistical process control 

The basic idea of statistical process control (SPC) is to monitor the 

performance of a process over time in a so-called control chart. The greatest 

developments of statistical process control have taken place during the 20th 
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century. In the 1920’s statistical theory began to be applied effectively to 

quality control as a result of the development of sampling theory. W.A. 

Shewhart [76] was the first to develop and describe the fundamentals of SPC 

in the early 1930’s, and the control chart found widespread use during 

World War II and has been employed, with various modifications ever since. 

Shewhart's work pointed out the importance of reducing variation in a 

manufacturing process for improvement of the end-product quality. The 

process variation can be well monitored with the use of control charts, which 

eventually leads to adjustments of the process. Shewhart distinguishes 

between variation that is normally expected of the process due chance or 

common-causes (the usual, historical, quantifiable variation in a system), and 

variation that changes over time due to assignable or special-causes (unusual, 

not previously observed, non-quantifiable variation) [17].  

The Shewhart X -chart (from now on referred to as control chart) is a simple 

plot of the quality characteristic vs. time or sample. The control chart makes 

assumptions about the data, namely that it is independent, and it is normally 

distributed. Usually the control chart consists of a centerline (mean value), 

two warning limits (mean ± 2σ), and two control limits (mean ± 3σ) which 

indicate the range of variation of the quality characteristic (Figure 16). 
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Figure 16. Control chart with warning and control limits. 

Different so-called run-rules help interpret the control chart in order to 

distinguish between out-of-control and in-control situations. However, the 

most important rule and a basic criterion is that one or more observations 
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outside of the control limits is considered rare, and indicates that the 

variation is due to an assignable cause and the process is out-of-statistical 

control. 

Alternative control charts have been developed to detect small shifts of the 

mean. These are e.g. the CUSUM chart [77,78] and the EWMA chart [79]. 

These alternative control charts will not be explained here. 

Most SPC approaches are based upon the control charting of a small number 

of variables, and examining them one at a time (univariate). This is 

inappropriate for many process applications where several variables of 

importance are available. The practitioner cannot reliably study more than 

two or three charts to maintain overview of the process. The risk of making 

mistakes is larger when many control charts are to be checked [17]. 

Furthermore, the univariate control charts do not account for the correlation 

structure in the data. This is exemplified in Figure 17. 
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Figure 17. Outline of different situations in univariate control chart monitoring 

(modified from Nijhuis et al. [80]). 

In Figure 17 a two-dimensional data set composed of the areas of two 

chromatographic peaks is presented in both a univariate- and a multivariate 

way. The ellipse in the scatterplot represents the correlation structure in the 

data. In order to compare the univariate statistical approach with the 

multivariate approach, the univariate control charts of peak 1 and peak 2 are 

given. All nine ● observations are describing common-cause variation both in 

a univariate- and a multivariate sense. The ▲ observation does not deviate 

from the correlation structure but is clearly an extreme both in a univariate 

and a multivariate sense. The ■ observation seems to be within common-

cause variation in a univariate sense, but clearly deviates in a multivariate 

sense. This is caused by the fact that the ■ observation departs from the 
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correlation structure in the data. The univariate charts are clearly missing a 

faulty situation as a consequence of the correlation structure in the data 

which is not taken into account. The principle of multivariate control charts 

is of course of more interest when one has to deal with a higher dimensional 

data set. 

5.2 Multivariate statistical process control 

Contrary to univariate SPC which typically deals with single observations, 

multivariate SPC (MSPC) techniques can handle many and correlated 

variables. This is often relevant in industrial processes, where relationships 

between the variables have to be taken into account. Univariate control 

charts applied to multivariate systems are often inadequate at detecting and 

handling a fault or an abnormality in the operation. This is because the 

process variables often are correlated, and a special cause can affect more 

than one variable at the same time. MSPC takes this correlation into account 

in monitoring the mean vector or variance-covariance matrix. In MSPC, 

historical data are used to calculate empirical statistical models that describe 

the acceptable trends of the whole system, using latent variables instead of 

every measured variable. When a problem appears, it changes the 

covariance structure of the model and this can be detected using 

multivariate statistics. 

Hotelling [81] was one of the first who introduced a multivariate approach 

for SPC of a process in the 1940’s. He applied his procedures to bombsight 

data during World War II. In the late 1950’s Jackson [82] applied principal 

component analysis (PCA) to reduce the dimensionality of several related 

variables and introduced the control chart for T2 of principal components. In 

the late 1970’s Jackson and Mudholkar [83] investigated PCA as a tool of 

MSPC and introduced a residual analysis. The control chart was introduced 

for the sum of squared residuals Q as well as T2 of principal components 

retained in a PCA model. In the early 1990’s the main concepts behind the 

development and use of latent variable-based multivariate SPC for 

monitoring continuous processes were provided by Kresta et al. [84], Wise et 

al. [85], Kourti and MacGregor [86]. Illustrations of the methods along with 

the algorithms and details on estimating control limits are well described by 

Kourti [87,88], Montgomery [17], Bersimis et al. [89], Ferrer [21], and 

Westerhuis et al. [90]. 



59 

Nijhuis et al. [91] were some of the first to apply MSPC in chromatography 

in the late 1990’s. Since then, there are several examples where a PCA based 

MSPC scheme has found its use in the chromatographic discipline [92,93]. 

These were all based on monitoring the analytical signals, i.e. peak areas or 

peak tables. Additionally, MSPC has also been applied for the surveillance 

of chromatographic instrument systems where instrument-related 

parameters were modeled [94,95]. Here focus is thus not only put on post 

run checks of peak areas but rather on monitoring of the analytical process 

itself. 

In the following, the concepts of MSPC based on PCA will be explained 

using in terms of analytical chromatographic signal data. 

5.3 PCA 

Principal component analysis (PCA) is a common technique used for 

dimensionality reduction and is implemented in all multivariate data 

analysis software packages and also in some instrument software. PCA was 

originally developed by Pearson in 1901 [96], though it is more often 

attributed to Hotellings work from 1933 [73], where he described and 

developed PCA to its present stage. Since then PCA has been used for 

several applications in different scientific disciplines, amongst others in the 

area of chemometrics (defined as the application of mathematical and 

statistical methods to chemical measurements [97]). Comprehensive 

information on the principles and applications of PCA can be found in 

several good reviews [97-99] and text books [71,100]. 

PCA is a bilinear model that finds combinations of variables that describe 

common patterns in a given data set X (M×N) with M rows of samples and N 

columns of variables. Mathematically, PCA is based on decomposition of the 

covariance or correlation matrix of the variables along the directions that 

explain the maximum variation of the data. The matrix X can be 

decomposed by either the NIPALS or the singular value decomposition 

(SVD) algorithm [98]. For a given data matrix X the covariance matrix of X is 

defined as: 

1
)cov(




M

XX
X

T

                (4) 

This assumes that the matrix X has been mean centered (i.e. adjusted to have 

zero mean by subtracting the mean of each column). If the columns of X 

have been autoscaled (i.e. adjusted to zero mean and unit variance by 
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dividing each column by its standard deviation), Equation 4 gives the 

correlation matrix of X [101]. PCA establishes new directions in the original 

data cloud; so-called latent variables or loadings (P), which are constructed 

as linear combinations of the original variables. The first new direction is 

found so that the maximum variance in the original data is explained. For 

the first direction, each sample (from its original position) can be projected 

onto this, providing a score value (T). These score values then describe the 

amount of the latent variable/loading found in each sample, whereas the 

loadings contain information on how variables relate to each other. A set of a 

score and loading vector constitutes what is denoted a principal component 

(tpT) or PC. The direction of a principal component in relation to the original 

variables is given by the cosine of the angles α1, α2, and α3 (loading 

coefficients) as illustrated in (Figure 18). The second new direction in the 

data is found orthogonal (the mathematical constraint used for PCA) with 

respect to the first direction and the second score value for each sample is 

found in a similar fashion as described above. This is continued as long as 

systematic (descriptive) variation is described by the successive principal 

components. The variance explained in each principal component decreases 

for successive extracted components.  
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Figure 18. Illustration of the first and second PC, representing maximum variation 

in the mean centered data (yellow circles). Both PC1 and PC2 are passing through 

the average point (red circle). Each sample may be projected onto the PC to get a 

score value. The direction of PC1 in relation to the original variables is given by 

the cosine of the angles α1, α2, and α3 (loading coefficients for PC1). 

Figure 18 shows the new axes PC1 and PC2 created by PCA. There is greater 

variance on the PC1 axis than on the PC2 axis. This is not surprising as PC1 

is constructed to lie on the direction of the greatest variance in the data. By 

ignoring higher-order components, a new version of the data with fewer 

variables than the original data is generated. The variance left in the data 

(unexplained variance) is usually related to unsystematic variation or noise 

and is termed the residuals (E). Mathematically, PCA decomposes the data 

matrix X as the sum of the outer product of the score vectors ti and the 

loading vectors pi plus a residual matrix E: 

EXETPEptptptX T  ˆ...2211
T

RR
TT

             (5) 

where T (M×R) is the score matrix and P (N×R) is the loading matrix, with R 

components. Here R must be less than or equal to the smaller dimension of 

X, i.e. R <= min (M,N). X̂  is the matrix of predicted or reconstructed values. 
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Applications of PCA rely on its ability to reduce the dimensionality of the 

data matrix while capturing the underlying relationship between the 

variables. To illustrate this from chromatography a simple two-peak system 

is depicted in Figure 19: 

 

 
Figure 19. Illustratrion of Principal Component Analysis (PCA) of a simple 

chromatographic two-peak system for three samples. X is the original data matrix, 

p1 is the first loading vector (common profile) and t1 the score vector holding the 

amount of the first loading. No noise is present in the data and thus one principal 

component (PC1) will explain all variance; i.e. the residual matrix E is zero 

(modified from PAPER II).  

The two-peak chromatographic profiles depicted in Figure 19 are rather 

simple, as the only difference between the three samples is the peak heights, 

i.e. the ratio between the two peaks, and thus the chromatographic profile, is 

the same for all three samples. The PCA model captures the maximum 

variation, which follows the chromatographic profile and therefore, the first 

loading resembles the original data. The score value is then simply a 

measure of the magnitude of the chromatographic profile and can be used as 

a direct measure of relative peak area or concentration. Because PCA is a 

bilinear model, twice as high concentration (peak area) gives twice as high a 

score value (assuming no noise and baseline is present and similar peak 

shape regardless of the concentration). 

If the chromatographic profile also varies between the samples, a more 

comprehensive PCA model is needed. This is illustrated in Figure 20. 
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Figure 20. Illustratrion of PCA of a chromatographic two-peak system for three 

samples. X is the original data matrix, p1 and p2 is the first loading vectors 

(common profiles). t1 and t2  are the score vectors holding the amount of the first 

two loadings respectively. No noise is present in the data and thus two principal 

components (PC1 and PC2) will explain all variance; i.e. the residual matrix E is 

zero (modified from PAPER II). 

In Figure 20 both the peak heights and the peak ratio varies between the 

three samples. The PCA model includes this variation by using two 

principal components to describe both the magnitude and the different 

chromatographic profiles. Now the two loadings together describe the 

common profile. 

The correct number of significant principal components can be determined 

in several ways. An obvious method is to select those components that 

together account for a large percentage of the total variance captured. In 

addition, the inspection of loadings can verify whether the components 

seem to reflect any clear systematic variation or just noise. This is 

exemplified in Figure 21, where the first two loadings, from a PCA model on 

unfolded LC-MS data, is folded back and plotted in 3D to help interpretation 

[PAPER III]. The inspection of loadings confirmed that the first two 

components reflect real systematic chemical variation. 
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Figure 21. 3D plot of the first two PCA loadings [PAPER III]. 

Another possibility to determine the correct number of principal 

components is the evaluation of the prediction error during validation, 

which is described in subsection 5.4. 

Once the samples in the data matrix (X) have been modeled with PCA, new 

samples (xnew) can be fitted to the model. This is illustrated in Figure 22. 

 

 
Figure 22. Prediction of a new sample (xnew) using the model loadings to generate 

new score values (t1 and t2) and residuals (e) (modified from PAPER II). 

In Figure 22 a new sample is predicted using the already defined model 

loadings, and consequently new score values and residuals are generated. 

Most of the chromatographic profile for the new sample is described by the 

model loadings. However, the small third peak in the new sample is not 

described by the components retained in the model. Accordingly the third 

peak shows up as an abnormal residual variability. This information can be 

utilized when monitoring the chromatographic profile, as published in 

PAPER II. 
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5.4 Validation 

An important element in multivariate statistical analysis is the validation of 

the calculated models. This is to avoid false correlations, determine the 

optimal number of components to use in the model and to ensure that the 

estimated model reflects reality. The integrity and applicability of the 

derived model are totally dependent on the set of data used to build the 

model. Hence, model validation is a critical aspect to ensure that the model 

is representative of the variations to be encountered in future samples. 

Cross-validation [102] is an internal re-sampling method and the most often 

used method for error estimation in PCA. In cross-validation new data sets 

are created by systematically removing samples from the data set, either in 

small segments or individually as in leave-one-out cross-validation. The 

residuals for the samples that were left out, using the model built with the 

remaining samples, serve as a measure for the overall prediction error. 

Cross-validation is typically used in preliminary studies of data and if a data 

set is limited to very few objects (less than 50). More details on the most 

commonly used generic PCA cross-validation methods can be found in a 

review by Bro el al. [103]. 

Test set validation is a method for validation of a model by another data set, 

which can be either dependent or independent. A truly independent data set 

represents a separate selection from the entire population e.g. samples 

collected from another period of time where all possible sampling errors and 

sample variations are present. This kind of validation is the ultimate 

validation of any model and is also referred to as external validation. If an 

independent test-set is not available, the validity of the PCA model is 

usually tested by splitting the sample set into two sets; one set for calibration 

and the other for internal validation (dependent test-set). 

The estimation of the prediction error is in terms of the Root Mean Square 

Error (RMSE): 
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                (6) 

where nx and nx̂ are a measurement of the nth variable and its predicted 

(reconstructed) value, respectively. D denotes the number of degrees of 

freedom. The RMSE values are in the same units and scale as the reference 

values. Depending on how the model is used for estimating the predicted 

values, the following terms are used: 
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-RMSEC (Root Mean Square Error of Calibration) 

-RMSECV (Root Mean Square Error of Cross Validation) 

-RMSEP (Root Mean Square Error of Prediction) 

How to divide a sample set into test set and calibration set as well as when 

to use cross validation and test set validation will always be related to the 

data set at hand and the purpose of the modeling. When choosing the 

number of components in the PCA model, one should try to avoid under-

fitting, i.e. too few components, and over-fitting, i.e. too many components. 

If an insufficient number of principal components are chosen, the prediction 

is not reliable because useful information has been omitted. If too many 

components are chosen, however, more uncertainty is included in the 

calibration set which results in errors in prediction. When calibrating a 

model the RMSECV or RMSEP is usually calculated for every addition of the 

next component to the model. Normally, the optimal number of components 

is found at the first local minimum of the RMSECV or RMSEP curve. 

5.5 Bootstrapping 

Bootstrapping [104] is a method for estimating the distribution of a statistic 

that is otherwise difficult to determine because of e.g. small sample size or 

awkward distribution. Bootstrap methods repeatedly analyze new so-called 

bootstrap data sets which are created by resampling with replacement from 

the original data. Hence, each bootstrap data set is a random distribution of 

samples from the full data set. The bootstrap data set have the same number 

of samples as the original data set.  

A wide variety of adaptations of the bootstrap have been proposed over the 

years, each tailored to a specific application or goal. Many of them are 

reviewed by Wehrens et al. (2000) [105]. In PAPER I a bootstrapping 

procedure was set up to empirically estimate the false positive rate, i.e. the 

probability of a sample being outside normal operation condition (NOC) 

when it is actually a NOC sample. In Figure 23 the average false positive rate 

is plotted against bootstrap iterations to check for convergence. 
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Figure 23. Average false positive rate plotted against number of bootstrap 

iterations. Convergence is obtained after approximately 600 bootstrap iterations 

[PAPER I]. 

The bootstrap exercise presented in Figure 23 reveals that the false positive 

rate estimate seems to be estimated accurately after approximately 600 

iterations [PAPER I] and it seems that the rate is approximately 2%. 

5.6 MSPC charts 

From the PCA model two complementary multivariate monitoring statistics 

are commonly derived: the Hotelling T2 (D-statistic) and the squared 

prediction error (Q-statistic). These two statistics can be implemented by 

graphical and numerical ways in two separate MSPC charts to monitor if the 

samples are in the accepted NOC region monitored. The sensitivity of fault 

detection towards changes in the NOC region depends on the historical 

NOC data, number of data points, preprocessing methods, and number of 

components included in the NOC PCA model. For both the D- and Q-

statistics confidence levels can be obtained and used as control limits. There 

is only one limit for the D- and Q-chart instead of two for the univariate 

charts, and this upper control limit (UCL) can be used to detect changes 

from the NOC model for new independent samples. It should be noticed 
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that randomly induced false alarms are inherent within MSPC because of the 

definition of the control limits. For example, the 99% control limit states that 

statistically 1% of the normal operating samples will fall outside this limit 

and incorrectly be identified as faulty. The presence of false alarms is one of 

the major reasons that the process operators are skeptical of employing 

MSPC charts for process fault detection. Consequently, various heuristic 

run-rules have been suggested to signal the onset of the process fault [106]. 

However, for the applications described in PAPER I, II, and III, a 99.87% 

(~3σ) confidence level has been used as the control limit similar to the 3σ 

control limits used in ordinary univariate Shewart control charts. This 

preferably makes the control chart more reliable, despite the loss of 

sensitivity. If a new sample falls outside the control limit in the D- and/or Q-

chart, it is characterized as a special cause and the sample is considered to 

deviate significantly from the NOC samples included in the PCA model. 

5.6.1 D-statistic 

The D-statistic is a measure of the variation in the PCA model, and faults 

detected in the D-chart could in chromatography mean that there is a 

deviation from the target value for one or more peak areas. However, the 

correlation structure of the peak areas remains the same. In Figure 17 this is 

represented as the ▲ observation showing an extreme increase in the area of 

both peak 1 and peak 2. In this case the correlation structure is maintained 

and therefore only the D-chart will detect this event. The D-statistic is 

described by the scores in the T2 for principal components, introduced by 

Hotelling (1947) [81], and is a distance between the center of model space 

and the new obtained scores: 
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where tnew,r is the rth principal component score for the new sample, 2

rt
s is the 

variance of the calibration model scores tr of the rth component and R denote 

the number of principal components retained in the PCA model. 

The D-statistic follows the F-distribution and the upper control limit for the 

D-statistic can be calculated according to Jackson [71]: 
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Where M is the number of samples, R is the number of principal components 

retained in the PCA model, and F is the F-distribution with a confidence 

level 1-α and (R,M-R) degrees of freedom. 

5.6.2 Q-statistic 

The Q-statistic is a measure of the amount of variation not captured by the 

PCA model, and faults detected by being extreme in the Q-chart are caused 

by events that break the correlation structure described by the model. An 

event related to the example in Figure 17 is the ■ observation where the area 

of peak 1 is decreased while the area of peak 2 is increased. Under NOC the 

area of peak 1 also had to increase, so in this case the new event is no longer 

described by the model and there will be a faulty situation only in the Q-

chart represented in the residuals of the new sample calculated according to 

Jackson & Mudholkar (1979) [83]: 
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where nx  and nx̂  are a new measurement of the nth variable and its 

predicted (reconstructed) value, respectively, which result in the residual ne . 

N denotes the number of variables. Several ways to determine the UCL for 

the Q-chart is described [88,107]. Most commonly, a normal distribution to 

approximate a weighted chi-square distribution is used from which the UCL 

for the Q-chart can be calculated according to Jackson & Mudholkar (1979) 

[83]: 
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To understand this, V is defined as the covariance matrix of the residuals E 

(after performing PCA on the NOC samples), θ1 is the trace (the sum of the 

elements on the main diagonal) of V, θ2 the trace of V2, θ3 the trace of V3, 

h0=1-((2θ1θ3)/(3θ12)), and zα is the standardized normal variable with a (1-α) 

confidence level. Alternatively, an approximation based on the weighted 

chi-squared distribution (gχh2) can be used proposed by Box [108], with the 

weight g=θ2/θ1 and h=θ12/θ2 degrees of freedom.  

In Figure 24 examples of the D- and Q-chart is presented for monitoring 

chromatographic profiles [PAPER II]. The chart statistics are derived from a 

PCA model based on forty NOC calibration samples and prediction of ten 
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independent NOC validation samples. The 95%, 99% and 99.73% (UCL ~3σ) 

confidence levels are derived from the PCA model based only on the 

calibration samples. 

 

 
Figure 24. D-chart (A) and Q-chart (B) of calibration (circle) and validation 

(square) sample sets. 95%, 99% and 99.73% (~3σ) confidence levels are indicated 

(modified form PAPER II). 

By inspection of the D- and Q-chart it can be confirmed that the PCA model 

based on the calibration sample set describe the common-cause variation 

(Figure 24). All 50 NOC samples are within the 95% confidence interval in 

the D-chart, whereas in the Q-chart two samples (~5%) are outside the 95% 

confidence interval as expected from a normal distribution point of view 

[PAPER II]. 
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5.7 Contribution plots 

It is not only important to detect that there is other variation in a new 

sample than the common-cause variation captured in the NOC samples It is 

also important to search for the original chromatographic cause of the fault. 

The D- and Q-charts do not give information on what is wrong with the 

detected sample, or which chromatographic signals caused the sample to be 

out of control. Once an MSPC chart signals an alarm, the model can be 

scrutinized to understand the cause of the alarm. One of the most widely 

used approaches is using contribution plots [109-111]. Contribution plots 

compute a list of each single chromatographic signal (peak area, retention 

time etc.) that contribute numerically to the D- and Q-statistics respectively. 

In this way contribution plots may reveal the group of chromatographic 

signals making the highest contribution to the model (D) or to the residuals 

(Q). If a new sample exceeds the control limit in one of the statistics or both, 

the contributions of each chromatographic signal to the respective statistic 

should be examined. In Figure 25 the residual contributions (green) of a 

faulty chromatogram is plotted together with the actual faulty 

chromatogram (red) and a NOC chromatogram (blue) (modified from 

PAPER II). 
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Figure 25. Plot of the faulty residual contribution (green), plotted together with a 

NOC (blue) and the faulty chromatogram (red) on the secondary y-axis (modified 

from PAPER II). 

Clear indication of a new peak or a shoulder on the fronting target peak is 

given in Figure 25. Apparently, this variability is not described by the 

principal components retained in the NOC model. Another example is given 

in Figure 26 from PAPER I, where the integrated areas of twenty peaks are 

monitored. Here, a new sample is deviating in a multivariate sense, and is 

detected in the Q-chart exceeding the UCL. The chromatographic variables 

(peak areas) responsible for the signal in the Q-chart can be inspected in the 

residual contribution plot (Figure 26). 
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Figure 26. Q residual contribution plot of twenty peak areas obtained from a 

faulty sample exceeding the UCL in the Q-chart [PAPER I]. 

The contribution plot (Figure 26) allows us to diagnose the problem with the 

faulty sample, and indications of which (possibly pattern of) peaks that 

contribute to the deviating behavior are given. 

5.8 Enhanced MSPC charts 

In PAPER II the conventional MSPC D- and Q-chart is used for monitoring 

the chromatographic data. However, in PAPER I and PAPER III enhanced 

MSPC charts are developed. These are briefly described in the following 

subsections. 

5.8.1 Comprehensive control charting (PAPER I) 

The derived MSPC statistics (D and Q) may suffer from lack of sensitivity if 

only one or a few variables deviate from the common-cause variation in a 

given situation. This is simply due to the properties of PCA where a change 

in correlation structure is amplified over single variable changes. To comply 

with this phenomenon a new comprehensive control (COCO) chart 

procedure is developed. The COCO chart considers both univariate statistics 
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and multivariate statistics derived from PCA in a single plot that allows easy 

visualization of the combined data from a univariate and multivariate point 

of view. The methodology simply normalizes each control chart value (both 

single variables and D- and Q-values) with its respective control limit such 

that a value greater than one indicates deviation from normal operating 

conditions (NOC), whereas a value between zero and one indicates NOC. 

This is exemplified in Figure 27 showing three univariate control charts (one 

for each variable 1, 2, and 3) and the two derived multivariate control charts 

(D- and Q-chart), before (upper charts) and after normalization (lower 

charts) [PAPER I]. The control charts are based on a simulated dataset 

(autoscaled). The first twenty samples have been used as NOC samples, 

whereas the two last samples are new independent samples to be monitored. 

The D- and Q-charts are derived from a two component PCA model 

explaining approximately 80% of the common-cause variation in the first 

twenty NOC samples. The control limits correspond to the 3σ confidence 

level, and are estimated from the NOC samples. 
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Figure 27. Simulated example of univariate- and multivariate control charts, 

before and after normalization with the respective control limit [PAPER I]. 

The two last samples (21 and 22) plotted in Figure 27 simulate two different 

types of special causes. Sample 21 is within common-cause variation in all 

three univariate charts, but clearly deviates in a multivariate sense as it 

exceeds the control limit in the Q-chart. In contrast sample 22 exceeds the 

control limit in the univariate Chart 1; in spite of this none of the 

multivariate charts detects this deviation as being faulty. Consequently, 

detection of these two different types of special causes would require 

inspection of both univariate and multivariate control charts simultaneously. 
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This can be an overwhelming and inefficient task and the risk of missing an 

out-of-control situation is obvious. 

Therefore a more orderly control chart procedure is devised here. As 

depicted in Figure 27, Z normalized control values (Z is the number of 

control charts including the D- and Q-chart, here Z=5) is produced for each 

sample, where the largest value reflects the control chart in which the 

sample is most deviating. As a condensed measure across all control charts 

(including the D- and Q-chart) the maximum normalized value is used for 

COCO charting as exemplified in Figure 28. 

 

 
Figure 28. Simulated example of how univariate- and multivariate control charts 

can be condensed in one COCO chart monitoring the maximum normalized value 

for each sample [PAPER I]. 

In the COCO chart (Figure 28) the maximum fault contributions are 

monitored, allowing both univariate and multivariate statistics to be 

accounted for at the same time. As opposed to either using MSPC or using 

multiple SPC charts, this comprehensive control chart strategy covers the 

detection capabilities of both [PAPER I]. 

5.8.2 MSPC based on PCA combined with multiple testing (PAPER III) 

As an enhancement to the way the faults are typically detected and source 

determined it is possible to calculate confidence intervals for the residuals of 
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individual variables, rather than only the overall residual [90,112,113]. In 

PAPER III MSPC is applied to LC-MS data for detection of unknown 

impurities. However, the huge amount of data points combined with the 

discrete nature of LC-MS signals (i.e. sharp signals in MS direction) makes 

detection of unknown impurities a case of needle-in-the-haystack 

expedition. That is, if a few discrete residuals are related to an unknown 

impurity they are simply masked when calculating the sum of squared 

residuals (Q), making Q a non-sensitive measure. Therefore a new method 

was devised to monitor the relative size of the residuals, compared to the 

NOC residuals, rather than just considering the absolute size of the 

residuals. This enhanced MSPC methodology is based on PCA in 

conjunction with variable wise (multiple) testing [PAPER III]. 

PCA and variable wise (multiple) testing offers two different dimensions to 

statistical data analysis. Multiple testing aims at separating the variable 

space into variables with a significant or non-significant change, where PCA 

separates data into a systematic part (D) and a non-systematic part (Q). In 

Figure 29 this is schematized. 
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Figure 29. Shematic overview of two different data analytical approaches for 

extraction of information from multivariate data. p refers to test probability, α is 

significance level [PAPER III]. 

Experiments where a high number of variables are evaluated on possibly 

several outcomes involve testing of numerous hypotheses where handling of 

error rates is of crucial importance. This discipline is referred to as multiple 

testing. Multiple testing is widely used for biomarker discovery in 

proteomics, and has been applied in several analyses of LC-MS data 

intensities [53,114,115]. However, if multiple testing is applied directly to 

preprocessed LC-MS data it would result in detection of all intensity 

differences (i.e. both known according to normal operating conditions and 
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unknown features). Multiple testing applied to PCA residuals would only 

result in detection of unknown features, as the known features are described 

by the model and expressed in the D-statistics. In PAPER III the huge 

amount of data points per sample are binned into a (time, m/z) grid, where 

each binned value represents the sum data points within that bin. In order to 

detect the needle in the haystack, multiple testing is based on a simple t-test 

for each bin (n) as: 
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where nnewe ,  is the residual from the new sample for bin n, nrefe ,  is the mean 

of the residuals from the reference samples for bin n. M is the number of 

reference samples. sn is the standard deviation of residuals from reference 

samples for bin n. 

The critical value of t is dependent on sample size. In order to remove this 

dependency, t is transformed to a z-value through a p-value:  

)()( nndf ztTP                (15) 

where Tdf is the t-distribution with df degrees of freedom, df=M-1. Φ is the 

cumulative distribution function of the standard Gaussian distribution. This 

z-value is used as diagnostic measure for the corresponding (time, m/z) bin. 

The z-value and p-value reflects the same statistics (Equation 15) and hence 

the behavior of the system. In PAPER II the Q value was used for a new 

sample as a measure for detecting subtle differences in the chromatographic 

pattern. The methodology devised in PAPER III produces not one but K 

significance tests where K is the number of bins. These are expressed as a list 

of z-values; z1, z2, .., zK,. The largest values of z1, z2, .., zK reflect the variables 

where the new sample is most deviating. Impurities are in excess and hence 

only large positive z-values are of interest. The present method proposes use 

of the maximum z-value across all bins as a measure in control chart 

monitoring [PAPER III]. 
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6 Conclusions and perspectives 

This thesis has focused on solutions providing more comprehensive 

monitoring capabilities of analytical chromatographic data in the 

pharmaceutical industry. The research presented in this thesis has 

demonstrated the unique potentials of assessing chromatographic data using 

novel multivariate statistical tools. These tools utilize the available 

information contained in multiple measured chromatographic signals 

simultaneously in an objective (numerical) and statistically reliable way. 

Methods and algorithms have been developed to automate and optimize the 

many aspects present, when setting up an industrial reliable monitoring 

scheme. This includes:  

 Collection of data from commercial chromatographic instruments to 

numerical software (MATLAB) 

 Application of necessary preprocessing steps to generate ‘clean’ data 

 Multivariate statistical modeling based on PCA and multiple testing 

 Comprehensive control chart monitoring and detection 

 Interpretable visualizations providing diagnostic information on 

deviating chromatographic data 

These new and useful tools have been presented, explained and visualized 

on actual pharmaceutical analytical chromatographic data and published in 

three scientific papers. 

In PAPER I it was demonstrated how multivariate statistical process control 

(MSPC) based on principal component analysis (PCA) is a much more 

powerful tool for detecting variations, due to special causes than 

conventional single variable statistical process control (SPC). Furthermore, 

the PCA based SPC simplifies monitoring as it limits the number of control 

charts to typically two charts rather than one for each signal. However, the 

derived MSPC statistics may suffer from lack of sensitivity if only one or a 

few variables deviate in a given situation. A new comprehensive control 

(COCO) chart procedure was developed that considers both univariate 

statistics and multivariate statistics derived from PCA in a single plot that 

allows easy visualization of the combined data from a univariate and 

multivariate point of view. The method was exemplified using integrated 
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areas of twenty chromatographic peaks obtained for purity analysis of a 

biopharmaceutical in-process sample. The new control chart procedure may 

serve as a powerful supplement to the current univariate chromatographic 

data approach used in the industry. 

PAPER II proposes a PCA-based MSPC approach for monitoring subtle 

changes in the chromatographic profile, providing clear diagnostics of 

subtly deviating chromatograms due to new impurities co-eluting with the 

target compound (usually present in excess compared to any impurity). 

Different chromatographic data preprocessing methods such as time 

alignment, baseline correction and scaling were applied to historical 

chromatograms from a biopharmaceutical in-process analysis to correct for 

non-relevant analytical variation, since it largely influences the outcome of 

the monitoring. The procedure can be implemented and operated as the 

chromatographic analysis runs, and support the current practiced visual 

inspection of chromatograms. In this way an automated and timely tool for 

continuous quality verification of the chromatographic data is conducted in 

an objective and statistically reliable way. 

PAPER III describes how LC-MS adds a new selective dimension to the 

chromatographic separation in order to increase confidence that all 

impurities are detected. The study demonstrates how the relevant chemical 

information can be extracted from the huge amount of data generated with 

LC-MS analysis. This is particularly helpful when the presence of unknown 

impurities is investigated. In PAPER III a new tool, based on PCA combined 

with multiple testing, was developed to adapt MSPC based monitoring to 

the nature of LC-MS data. The tool was applied to LC-MS data from in-

process analysis of industrial insulin intermediate samples. The study 

demonstrated, how low spike-levels (0.05%) of a structurally related 

compounds co-eluting with the target compound was detected by the tool 

and further how clear diagnostics of the co-eluting compound was provided. 

This tool makes a fully automated monitoring of LC-MS data possible, 

where only relevant areas in the LC-MS data are highlighted for further 

interpretation. 

By developing and demonstrating ways to improve assessment of 

chromatographic data, this thesis is a step in the direction of better 

utilization of available information present in the data-rich pharmaceutical 

industry. The applications described in PAPER I-III may all serve as 

complementary and equally important approaches for assessment of various 

types of chromatographic data. This will be a step toward effectiveness and 
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robustness, and consequently enhance the overall chromatographic analysis 

significantly. Of course, these new MSPC tools are not just plug and play, but 

may need increased allocation of resources, compared to common SPC tools, 

for development, implementation, and maintenance. This will require close 

interaction between analytical chemists, process operators, and experts of 

advanced data analytical techniques. However, regulatory requirements on 

documentation and validation of non-commercial MSPC systems can be 

quite extensive, and a rather laborious task to fulfill. Therefore, the 

pharmaceutical industry should push for improved validated commercial 

instrumentation software where these MSPC tools are integrated. 

Future pharmaceutical process analysis will continuously develop towards 

handling more complex samples at increasingly higher speed. This will 

require even more advanced analytical instruments. Consequently, the 

amount and complexity of the acquired analytical data will increase, and the 

role of multivariate statistical tools may become a necessity for optimal use 

of such new sophisticated analytical instrumentation. This PhD thesis 

encourages to speed up the inclusion of more advanced data analytical tools 

in validated commercial instrumentation software or database management 

systems. In this way advanced tools such as MSPC will become more user-

friendly, familiar to a broader range of end-users, and ultimately facilitate 

optimal utilization of available information. 
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Multivariate statistical process control (MSPC) based for example on principal component analysis (PCA) can
make use of the information contained in multiple measured signals simultaneously. This can be much more
powerful in detecting variations due to special causes than conventional single variable statistical process
control (SPC). Furthermore, the PCA based SPC simplifies monitoring as it limits the number of control charts
to typically two charts rather than one for each signal. However, the derived MSPC statistics may suffer from
lack of sensitivity if only one or a few variables deviate in a given situation. In this paper we develop a new
comprehensive control (COCO) chart procedure that considers both univariate statistics and multivariate
statistics derived from PCA in a single plot that allows easy visualization of the combined data from a
univariate and multivariate point of view. The method is exemplified using twenty analytical chromato-
graphic peak areas obtained for purity analysis of a biopharmaceutical drug substance. The new control chart
procedure detected two different types of faulty events in this study.
ence, Faculty of Life Sciences,
ederiksberg C, Denmark.
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1. Introduction

Typical purity analysis based on high performance liquid chroma-
tography (HPLC) in biopharmaceutical processes usually deals with a
number of well known peaks of the target compound and related
impurity compounds. Commonly the concentration of each com-
pound of interest is investigated with a separate control chart. A
univariate statistical process control (SPC) chart can e.g. be of the
Shewart type [1], which is a simple plot of the compound vs. time,
sample or batch. Such a chart usually consists of two control limits
(target or mean value±3σ) which indicate the range of acceptable
variation of the compound. Applying univariate SPC charts to an in-
process analysis containing several impurity compoundswill force the
practitioner to inspect a large number of control charts. The risk of
making mistakes is higher when several control charts are to be
checked [2]. When special events occur in a process they affect not
only the magnitude of the compounds but also their relationship to
each other. These events are often difficult to detect by charting one
compound at a time because the correlations between the compounds
is not directly affected in the individual charts.

The major benefit of Multivariate SPC (MSPC) compared to
univariate SPC is that the correlation between the original variables
is considered, which decreases the risk of missing an out-of-control
situation due to a change in the pattern of variation. In MSPC the
information contained within all of the variables is reduced down to a
few common dimensions through the application projection methods
such as principal component analysis (PCA) [3]. In the chromato-
graphic discipline, MSPC based on PCA has also found its use [4–8].
Using the information contained in all the measured signals
simultaneously, MSPC charts have shown to be much more powerful
in detecting special causes than conventional single variable SPC
charts [9,10]. Special causes detected in the derived MSPC charts can
either be due to deviation from common-cause variation (detected in
Q-statistic) and/or in the magnitude of the common cause variation
(detected in D-statistic). However, these derived statistics may suffer
from lack of sensitivity if only one or a few variables deviate from the
common-cause variation. This is simply due to the properties of PCA
where a change in correlation structure is amplified over single
variable changes. To comply with this phenomenon there is a need for
a comprehensive monitoring tool, that take all kinds of special causes
into account. This study devises a single overall control chart for
comprehensive monitoring of individual levels as well as common
cause level. The method is applied to twenty defined peaks in
analytical chromatography obtained for purity analysis of a biophar-
maceutical drug substance.

2. Theory and methods

2.1. SPC vs. MSPC

Most statistical process control (SPC) approaches are based upon
the control charting of a small number of variables, and examining
them one at a time (univariately). This is inappropriate for many
process applications where several variables are generated and where

http://dx.doi.org/10.1016/j.chemolab.2011.04.002
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the variations in these variables are correlated. The practitioner can
not really study more than two or three charts to maintain overview
of the process. Furthermore, the univariate control charts do not
explicitly account for the correlation structure in the data. This is
exemplified in Fig. 1.

In Fig. 1, a two-dimensional data set composed of the areas of two
chromatographic peaks is presented in both a univariate- and a
multivariate manner (one plotted vs. the other in a scatter plot to
reveal correlations). The ellipse in the scatter plot represents the
common correlation structure in the data. In order to compare the
univariate statistical approach with the multivariate approach, the
univariate control charts of peak 1 and peak 2 are given. All nine ●
samples are describing common-cause variation both in a univariate-
and a multivariate sense. The ▲ sample does not deviate from the
correlation structure but is clearly an extreme both in a univariate and
amultivariate sense. The■ sample seems to be within common-cause
variation in a univariate sense, but clearly deviates in a multivariate
sense. This is caused by the fact that the ■ observation departs from
the correlation structure in the data. The univariate charts are clearly
missing a faulty situation as a consequence of the correlation structure
in the data which is not accounted for in the univariate approach. The
principle of multivariate control charts is of course of more interest
when one has to deal with a higher dimensional data set, for instance
several chromatographic peaks.

2.2. MSPC based on PCA

The basis of MSPC is to collect a set of historical data when the
process is running under normal operating condition (NOC). Then the
multivariate statistical technique PCA is applied to the historical data
to model and extract the correlation structure of several correlated
variables. The data matrix X (with M rows of samples and N columns
of variables) is decomposed into R (R≤min(M,N)) principal compo-
nents TPT and a residual part E (M×N):

X = t1p
T
1 + t2p

T
2 + … + tRp

T
R + E = TPT + E = X̂ + E ð1Þ

where T (M×R) is the scorematrix and P (N×R) is the loadingmatrix,
with R components. X̂ is the PCA approximation of the original data.
Time

T
im

e

µ

+3

-3

µ +3-3

P
eak

1

Peak 2

Fig. 1. Outline of different situations in univariate control chart monitoring (modified
from Nijhuis et al., 1999 [5]).
The number of significant principal components can be determined by
cross-validation [11]. In this way the dimensionality of the datamatrix
is reduced while capturing the underlying relationship between the
variables. From the PCA model two complementary multivariate
monitoring statistics are produced, the D-statistic and the Q-statistic.
These two statistics can be monitored in separate MSPC charts.

Faults detected in the D-chart could in chromatography mean that
there is a deviation from the target value for one or more peak areas.
However, the correlation structure of the peak areas (the peak
‘pattern’) remains the same. In Fig. 1 this is represented as the ▲
sample showing an extreme increase in the area of both peak 1 and
peak 2. In this case the correlation structure is maintained and
therefore only the D-chart will detect this event. The D-statistic is
described by the scores in the T2 for principal components, introduced
by Hotelling (1947) [12], and is a Mahalanobis distance between the
center of model space and the new obtained scores:

Dnew = ∑
R

r=1

t2new;r

s2tr
ð2Þ

where tnew,r is the rthprincipal component score for thenewsample,str
2 is

the variance of the model scores tr of the rth component and R denote
the number of principal components retained in the PCAmodel. The D-
statistic follows the scaled F-distribution and the upper control limit
(UCL) for the D-statistic can be calculated according to Jackson [13]:

UCLD =
R M−1ð Þ
M−R

F1−α R;M−Rð Þ ð3Þ

Where M is the number of samples, R is the number of principal
components retained in the PCA model, and F is the F-distribution
with a confidence level 1-α and (R,M-R) degrees of freedom.

Faults detected in the Q-chart are caused by events that break the
correlation structure described by the model. An event related to the
example in Fig. 1 is the■ sample where the area of peak 1 is decreased
while the area of peak 2 is increased. Under NOC the area of peak 1
and peak 2 are positively correlated, so this event is not described by
the model. Hence, there will be a faulty situation only in the Q-chart
represented in the residuals of the new sample calculated as:

Qnew = ∑
N

n=1
xn− x̂nð Þ2 = ∑

N

n=1
enð Þ2 ð4Þ

where xn and x̂n are a new measurement of the nth variable and its
predicted (reconstructed) value, respectively, which result in the
residual en. N denotes the number of variables. There are several ways
to determine the confidence limits for the Q-statistic [14,15]. In the
present paper, a normal distribution to approximate a weighted
χ-square distribution is used from which the UCL for the Q-chart can
be calculated according to Jackson & Mudholkar [16]:

UCLQ = θ1 1−θ2h0
1−h0
θ21

 !
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zα 2θ2h

2
0

� �q
θ1

2
4

3
5

1
h0

ð5Þ

The matrix V is defined as the covariance matrix of the residuals E
(after performing PCA on the NOC samples), θ1 is the trace (the sum of
the elements on themain diagonal) of V, θ2 the trace of V2, θ3 the trace
of V3, h0=1−((2θ1θ3)/(3θ12)), and zα is the standardized normal
variable with a (1−α) confidence level.

In standard two-sided SPC charts an observation more than three
standard deviations (3σ) from normal operating conditions is often
used as the control limit. This corresponds to a coverage probability of
0.9973 (1−2Φ(−3)=0.9973), where Φ(∙) refers to the standard
normal distribution operator. In the application described here the
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Fig. 2. Simulated example of univariate- and multivariate control charts, before and after normalization with the respective control limit.
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one-sided D and Q control chart upper control limit should reflect the
same coverage probability, i.e. a 99.73% confidence limit (~3σ) is used.

Note that the use of PCA is under the assumption of a low rank PCA
model being adequate. If the variables are independent it suffices to
look at the variables individually. The correlation structure in
chromatography can be very weak, and if there are only a few (low
correlated) variables it would make more sense to use the original
approach as proposedbyHotelling [12], instead of using the dimension
reduced approach resulting in the D-, and Q-chart. This approach is
equivalent to a full rank PCA solution solely evaluating the D-statistics.

For monitoring, the PCA model is applied by projecting a new
sample onto the model hyperplane, and calculating the residuals of
the PCA model. Then, the associated values of the D- and Q-statistics
are calculated for this new sample and the MSPC charts are updated. If
a new sample violates the control limit of either statistic the sample is
considered to deviate significantly from the samples included in the
PCA model, and it is indicative of abnormal process behavior. Once an
MSPC chart signals an alarm, the model can be scrutinized to
understand the cause of the alarm. One of the most widely used
approaches for this is using contribution plots [10,17,18]. Contribution
plots compute a list of each single chromatographic peak that
contributes numerically to the D- and Q-statistics respectively.
However, contribution plots do not automatically reveal the actual
reason for the faulty condition. Therefore, those peaks responsible for
the faulty signal should be investigated, and incorporation of chemical
and technical process knowledge may be necessary to diagnose the
problem and discover the root causes of the fault [9].
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2.3. Comprehensive control (COCO) charting – monitoring normalized
control chart values

The methodology devised here considers both the univariate
statistics and the two MSPC statistics (D and Q). Each control chart
value is normalized by division with the respective control limit (here
3σ). For the univariate and scaled control values the absolute values
and control limits are used. In this way values greater than one
indicate deviation from normal operating conditions (NOC), whereas
values between zero and one indicate NOC. This is exemplified in
Fig. 2 showing three univariate control charts (one for each variable 1,
2, and 3) and the two derived multivariate control charts (D- and Q-
chart), before (upper charts) and after normalization (lower charts).
The control charts are based on a simulated dataset (autoscaled). The
first twenty samples have been used as NOC samples, whereas the two
last samples are new independent samples to be monitored. The D-
and Q-charts are derived from a two component PCA model
explaining approximately 80% of the common-cause variation in the
first twenty NOC samples. The control limits corresponds to the 3σ
confidence level, and are estimated from the NOC samples.

The two last samples (21 and 22) plotted in Fig. 2 simulate two
different types of special causes. Sample 21 is within common-cause
variation in all three univariate charts, but clearly deviates in a
multivariate sense as it exceeds the control limit in the Q-chart. In
contrast sample 22 exceeds the control limit in the univariate Chart 1; in
spite of this none of the multivariate charts detects this deviation as
being faulty. Consequently, detection of these two different types of
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Fig. 5. Univariate control charts for twenty peak areas of calibration set (circle) and validation set (square).
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special causes would require inspection of both univariate and
multivariate control charts simultaneously. This can be an overwhelm-
ing and inefficient task and the risk of missing an out-of-control
situation is obvious.

Therefore a more orderly control chart procedure is devised here.
As depicted in Fig. 2, Z normalized control values (Z is the number of
control charts including the D- and Q-chart, here Z=5) is produced
for each sample, where the largest value reflects the control chart in
which the sample is most deviating. As a condensed measure across
all control charts (including the D- and Q-chart) the maximum
normalized value is used for COCO charting as exemplified in Fig. 3.

In the COCO chart (Fig. 3) the maximum fault contributions are
monitored, allowing both univariate and multivariate statistics to be
accounted for at the same time. As opposed to either using MSPC or
using multiple SPC charts, this comprehensive control chart strategy
covers the detection capabilities of both.

2.3.1. Estimation of the false positive rate
The presence of false alarms is one of the major reasons that the

process operators are skeptical of employing (M)SPC charts for
process fault detection. However, it should be noticed that randomly
induced false alarms are inherent within (M)SPC. For example, the
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Fig. 7. MSPC charts of (A) D-statistic and (B) Q-statistic of cali
99% control limit states that statistically 1% of the normal operating
samples will fall outside this limit and incorrectly be identified as
faulty (false positive rate). In SPC an observation more than three
standard deviations (3σ) from normal operating conditions is often
used as the critical limit. 3σ correspond to the upper 0.13% of the
distribution (1−Φ(3)=0.0013, where Φ(∙) is the standard normal
distribution with mean zero and variance one). As both abnormally
high and low deviations are considered, a single control chart has a
false positive rate of 0.27%. However, if several confidence intervals
are considered simultaneously, with coverage probability 0.9973
each, the probability that at least one interval will not contain its true
value is greater than 0.0027. Assuming independence between Z
control charts the probability of at least one of the control charts giving
a value greater than one under normal operating conditions can be
calculated as: (1−(1−p)Z, with p equal one minus the coverage
probability. The independence assumption is indeed not valid as the
D- and Q-statistics are based on the exact same data generating the
univariate statistics. In order not to rely on independence assump-
tions we device a routine for generic estimation of the false positive
rate by bootstrapping the calibration samples [19]. The bootstrap is
based on resampling with replacement. Here we generate B different
datasets based on a defined calibration sample set (50 samples). These
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Fig. 10. Q residual contribution plot of the twenty peak areas obtained from sample 94.
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are called bootstrap samples and have the same number of samples as
the original calibration set. Each of the bootstrap samples is used for
building new control charts including estimation of the individual 3σ
control limits and estimation of a PCAmodel and the derived D and Q-
statistics with corresponding control limits. A defined validation
sample set (15 samples) is then referenced against these control
charts. For each validation sample themaximum control chart value is
obtained (across all control charts). This is repeated B times. The
validation dataset is obtained under NOC and therefore assumed to
fall inside the 3σ control limit. The bootstrap procedure is set up to
empirically estimate the false positive rate, i.e. the probability of a
sample being outside NOC when it is actually a NOC sample. The false
positive rate is estimated as the frequency of validation samples
obtaining a maximum control value greater than 1 in the COCO chart.
The average false positive rate is plotted against B to check for
convergence (see Fig. 12). A high false positive rate needs to be
accounted for, as otherwise it will result in a loss of confidence in the
control chart. A simple way to adjust for the false positive rate is to
tune the individual control limits in parallel. The bootstrap approach
described above can be applied (with enough iterations) using
different control limits producing estimates of the false positive rate
as a function of the control limit. Of course this is a trade-off between
minimizing the false positive rate without loosing too much
sensitivity. However, this is the price when monitoring several
parameters simultaneously. For a dataset of the given size (number
of variables) it is anticipated that the false positive rate is not going to
be detrimental to the ability of the MSPC approach to detect abnormal
behavior.

3. Experimental

Ninety-five in-process samples of a high-purity drug substance
were collected for routine quality control testing. The first sixty-five
samples were collected under NOC, i.e. the process has been running
consistently and only high quality products have been obtained. The
sixty-five NOC samples represent a substantial time period so as to
represent possible physical changes in the chromatographic system as
well as changes in production arising e.g. from different batches of
raw materials being used. The final thirty samples were collected in a
process periodwhere forced process changes were applied, giving rise
to possible changes in the sample matrix.

The purity, measured by reverse-phase high-performance liquid
chromatography (RP-HPLC), was performed on a Waters Alliance
HPLC system that consists of a Waters 2690 Separation Module
(combined pump and autosampler) and a Waters 2487 Dual-
Wavelength UV detector (Waters, Milford, MA, USA). The detection
wavelength was 214 nm. The separation was performed on a reverse
phase 125 × 4 mm i.d. 5 μm 100 Å column (FeF Chemicals, Køge,
Denmark) by employing an isocratic elution followed by gradient
elution. Themobile phase consisted of Eluent A (10% (v/v) acetonitrile
in sulphate buffer pH 2.5) and Eluent B (60% (v/v) acetonitrile in
water). Chromatographic data was collected using Empower 2
(Waters). The peak areas were integrated and listed in a peak table,
and hereafter exported to Matlab version 7 (Matworks, Natick, MA,
USA) for further analysis. All software was written in Matlab using
tools from PLS_Toolbox (Eigenvector Inc, WA, USA).

http://dx.doi.org/10.1016/j.chemolab.2011.04.002
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4. Results and discussion

The control chart monitoring can be divided to three distinct phases
(initial phase, training phase, application phase). In the first phase
(initial phase), historical NOC samples are collected and prepared for
modeling. Sixty-five historical HPLC chromatograms obtained for purity
analysis of a biopharmaceutical drug substance were collected and the
routinely generated peak tables were imported into MATLAB. The peak
tables were organized as anM×N data matrix X, withM samples and N
peak areas. In Fig. 4 the selected peaks of interest in this study are
marked in an analytical chromatogram obtained under NOC.

In addition to the target compound, nineteen impurities are
monitored in this study. The 1000-fold difference in concentration for
the target compound andmost of the impurities is not proportional to
the chemical relevance of these compounds. Therefore, all samples
were scaled to adjust for the disparity in fold differences, aiming at
assuring that all peaks contribute equally to the model.

The essence of the second phase (training phase) is to model the
common-cause variation present in the samples obtained under NOC.
Since this NOC model exclusively determines whether a new sample
is similar or deviates significantly from the NOC samples, the
monitoring performance depends very much upon adequacy and
representativity of these NOC samples. The number of samples
needed to construct an NOC model and control charts depends on
the application. In this case study, a calibration set consisting of the
first fifty chronologically ordered NOC samples were selected. To
validate the model adequacy and representativity of these NOC
samples, a validation set consisting of the last fifteen chronologically
ordered NOC samples were selected. The autoscaling of the data was
based only on the calibration set. Accordingly, the validation set was
preprocessed using the parameters determined from the calibration
set. In Fig. 5 the scaled peak areas of both the calibration set and the
validation set are presented in twenty univariate control charts. The
3σ UCL and LCL are derived from the calibration set data.

By inspection of the twenty univariate control charts presented in
Fig. 5, it is observed that all calibration samples are within their
respective control limits. Furthermore, the validation samples are all
within common-cause variation in a univariate sense. Formultivariate
monitoring, the calibration setwas used to develop a three component
PCA model describing 66.14% of the common-cause variation. The
selection of an optimal number of three components was based on the
results of leave-one-out cross-validation [11] plotted in Fig. 6.

The correlation structure in chromatography can be very weak, thus
the number of significant components may be difficult to assess [4].
However, root mean squared error of cross-validation (RMSECV)
plotted against PC number in (Fig. 6) has the first clear local minimum
at three components, indicating that after this point, the components
just reflect noise. The model was validated using the independent
validation set consisting of the last 15 chronologically ordered samples.
In Fig. 7 the D- and Q-statistics of calibration and validation samples are
presented with 3σ control limits derived from the calibration samples.

By inspection of the D- and Q-chart (Fig. 7) it can be confirmed that
all sixty-five samples used in the training phase are within the
respective 3σ control limits. This confirms that the NOC model
represents common cause variation.

In the third phase (application phase) new samples are fitted to
the model and monitored using the control charts developed in the
training phase. Deviating samples are diagnosed using contribution
plots to determine causes of the deviating behavior. The thirty test set
samples were collected in a period where forced process disturbances
were applied, giving rise to possible changes in the sample matrix. At
first the test set samples aremonitored in the univariate control charts
derived from the calibration samples (Fig. 8).

By inspection of Fig. 8, two different types of special causes are
observed. The most notable event is observed for sample 94 and 95,
where several impurities increases in parallel, while the target peak

http://dx.doi.org/10.1016/j.chemolab.2011.04.002
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and peak 2 decreases. In sample 95 several peak areas exceeds their
respective control limits, indicating that the process is not running
under NOC. The other special cause is observed for impurity peak 6 in
sample 81, which as the only peak area exceeds its own control limit.

For multivariate monitoring, the test set samples were exposed to
the PCA model, and D- and Q-statistics were derived. As indicated in
Fig. 9 only sample 95 is detected in the D-chart, whereas both samples
94 and 95 are detected in the Q-charts exceeding the 3σ control limit.

Sample 94 was not deviating in a univariate sense (Fig. 8) but is
deviating in a multivariate sense, and is therefore detected in the Q-
chart. To determine chromatographic variables (peak areas) respon-
sible for the signal in the Q-chart, a residual contribution plot is
inspected in Fig. 10.

The contribution plot allows us to diagnose the problem with the
faulty sample immediately. Clear indications of which peaks that
contribute to the deviating behavior are given in Fig. 10. Apparently,
this variability is not described by the principal components retained
in the NOC model. Accordingly, sample 94 (and sample 95) show up
as an abnormal residual variability and a faulty signal in the Q-chart.
Sample 81 was previously observed to deviate in a univariate sense as
peak 6 exceeded the upper control limit. However, sample 81 is not
detected in any of the MSPC charts. This lack of sensitivity of PCA
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Fig. 14. COCO chart with maximum norma
derived statistics is well known, but rarely mentioned. When only a
few discrete residuals deviate, the information may potentially be
masked when calculating the sum of squared residuals (Q) or T2 (D).
This makes both D and Q non-sensitive measures for monitoring and
detection of abnormal situations expressed only in one or a few
variables. Therefore, we devise a comprehensive control (COCO) chart
that considers both the twenty univariate statistics and the two MSPC
statistics (D and Q) as described in Section 2.3. As a condensed
measure across all control charts the maximum normalized control
value is used for comprehensive monitoring of all samples (Fig. 11).

The devised COCO chart presented in Fig. 11 detects both sample
81 and samples 94–95. Furthermore, the COCO chart indicates the
underlying control value causing the faulty signal. In this way
comprehensive monitoring of univariate and multivariate informa-
tion can be conducted, as an overall control chart add-on. However, as
described in Section 2.3, inferences likely occur when several control
statistics are considered simultaneously, leading to increased false
positive rate. Therefore a bootstrap procedure was set up to
empirically estimate the false positive rate, i.e. the probability of a
sample exceeding the control limit when it is actually a NOC sample.
The average false positive rate is plotted against bootstrap iterations
to check for convergence in Fig. 12.

The bootstrap exercise presented in Fig. 12 reveals that the false
positive rate estimate seems constant just below 2% after approxi-
mately 600 iterations. The estimated false positive rate is lower than
the theoretical probability of 5.8% when independence between the
control values is assumed (1−(1−p)Z=0.0577, for p=0.0027 and
Z=22). This was expected as the D and Q-statistics are based on the
twenty univariate statistics. Nevertheless, a false positive rate of
approximately 2% may not be acceptable, as too many false warnings
will result in a loss of confidence in the control chart and thereby it
becomes less effective. Therefore the false positive rate is controlled
by tuning the individual control limits in parallel. Of course this will
decrease the sensitivity of the COCO chart but preferably makes it
more reliable. The bootstrap approach was applied (with 600
iterations) using different control limits producing estimates of the
false positive rate as a function of the control limit (Fig. 13).

By inspection of Fig. 13, the estimated false positive rate reaches
~0.2% using 3.5σ as control limit. Selecting the control limitwill always
be a tradeoff between sensitivity and reliability of the control chart. In
this study we aim for a false positive rate below 0.27%, and the 3.5σ
control limit was applied to the control chart as illustrated in Fig. 14.

The special cause examples presented in this study are still
detected as faulty by the COCO chart after applying a 3.5σ control limit
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as indicated in Fig. 14. However, now sample 94 only barely exceeds
the control limit as a consequence of the loss of sensitivity.

5. Conclusions and some perspectives

This study demonstrates that MSPC based on PCA can provide
early warnings of faulty events in product related analytical
chromatography. The study also demonstrates that PCA suffers from
lack of sensitivity when faulty events are expressed only in one or a
few variables. Therefore a comprehensive control (COCO) chart
procedure is devised, that considers both univariate statistics and
multivariate statistics derived from PCA in a single condensed plot.
This COCO chart allows easy visualization of the combined data from a
univariate andmultivariate point of view. Two different types of faulty
events tested in this studywere detected by the COCO chart. However,
an increased false positive rate (~2%) was estimated with boot-
strapping. This was an expected consequence of inferences occurring
when several control statistics are considered simultaneously. The
false positive rate was tuned simply by changing the individual
control limits in parallel from 3σ to 3.5σ, resulting in a false positive
rate below 0.27%. This preferably makes the COCO chart more reliable,
at the price of a loss of sensitivity. Applying the COCO chart procedure
to multivariate data makes a fully automatic and manageable
monitoring possible. Furthermore, if implemented and operated
while the chromatographic purity analyses runs, this tool may
considerably reduce time needed for subsequent assessment of data,
and operate according to the PAT concept aiming for real-time release.
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a b s t r a c t

It is common practice in chromatographic purity analysis of pharmaceutical manufacturing processes
to assess the quality of peak integration combined by visual investigation of the chromatogram. This
traditional method of visual chromatographic comparison is simple, but is very subjective, laborious and
seldom very quantitative. For high-purity drugs it would be particularly difficult to detect the occurrence
of an unknown impurity co-eluting with the target compound, which is present in excess compared to
any impurity. We hypothesize that this can be achieved through Multivariate Statistical Process Control
(MSPC) based on principal component analysis (PCA) modeling. In order to obtain the lowest detection
limit, different chromatographic data preprocessing methods such as time alignment, baseline correc-
tion and scaling are applied. Historical high performance liquid chromatography (HPLC) chromatograms
rincipal component analysis (PCA)
ultivariate statistical process control

MSPC)
ignal preprocessing

from a biopharmaceutical in-process analysis are used to build a normal operation condition (NOC) PCA
model. Chromatograms added simulated 0.1% impurities with varied resolutions are exposed to the NOC
model and monitored with MSPC charts. This study demonstrates that MSPC based on PCA applied on
chromatographic purity analysis is a powerful tool for monitoring subtle changes in the chromatographic
pattern, providing clear diagnostics of subtly deviating chromatograms. The procedure described in this
study can be implemented and operated as the HPLC analysis runs according to the process analytical
technology (PAT) concept aiming for real-time release.
. Introduction

Product purity is of utmost importance in ensuring drug quality;
onsequently, impurities must be monitored carefully. In general,
mpurities present in excess of 0.1% relative to the target com-
ound in drug substances should be detected and identified as by
he ICH requirements [1]. Analytical separation techniques based
n high performance liquid chromatography (HPLC) are commonly
sed for purity analysis in biopharmaceutical manufacturing pro-
esses. The separation and subsequent detection of compounds in
sample delivers a chromatogram, which ideally allows to identify

ndividual peaks and to attribute them to individual compounds.
ypical purity analysis in industrial processes usually deals with
manageable amount of well known peaks of compounds at rela-

ively high concentrations. This can easily be handled automatically

ith available software packages suitable for routine analysis of

hromatograms [2]. However, generic peak detection algorithms
ay often suffer from inconsistent reliability towards unknown

eaks with low signal to noise ratio and overlapping peaks of dif-

∗ Corresponding author at: Novo Nordisk A/S, 2880 Bagsværd, Denmark.
el.: +45 30795458.
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021-9673/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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© 2010 Elsevier B.V. All rights reserved.

ferent shapes. Thus, it is common practice to assess the results of
peak integration by visual inspection of the chromatogram. Visual
inspection of chromatograms has been used for decades [3] and is
a valid procedure for identification of protein samples recognized
by the regulatory authorities [4,5]. Although simple, this partly
manually method is quite laborious, extremely time consuming,
seldom quantitative and prone to subjective decision-making prob-
ably causing additional errors. To comply with increased focus on
process analytical technology (PAT) and quality by design (QbD)
(aiming for enhanced process understanding that improves process
control moving towards continuous quality verification and real-
time release of an end product) there is a need for an automatic
and timely tool for objectively monitoring the chromatographic
pattern. Even though various advanced approaches have been pub-
lished towards automatic peak detection [2,6,7], there still is a need
for a tool to detect relevant subtle differences in the chromato-
graphic pattern both quantitatively and in a statistically reliable
way.

New impurities mainly originate during the synthesis process

from raw materials, solvents, intermediates, and by-products [8].
For high-purity drugs, the target compound is present in excess
compared to any impurity. Hence, occurrence of an unanticipated
impurity co-eluting with the target compound is a particular prob-
lematic challenge. In such cases, it would be difficult or impossible

dx.doi.org/10.1016/j.chroma.2010.08.040
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
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o spot the impurity peak visually and the peak integration may
herefore not be able to identify and separate impurity and target
eaks. Commercially available chromatographic pattern matching
oftware has been studied to differentiate whole chromatograms
bjectively and quantitatively [9]. Such pattern matching analy-
is tool compares chromatograms in pairs, where one is specified
s reference. However, in most processes it would be a difficult
ask to identify one representative reference chromatogram. As a
esult, several chromatograms representing common-cause vari-
tion should be included for reference. This can be achieved with
ultivariate statistical process control (MSPC) based on latent vari-

ble methods such as principal component analysis (PCA) [10,11].
SPC based on latent variable methods have been used over the

ast 20 years and has revolutionized the idea of statistical process
ontrol for multivariate purposes [12]. The entire chromatogram
an be monitored by the operator looking at only a few multivari-
te control charts, which are simple and easy to understand. MSPC
ased on PCA has previously been applied on integrated peak tables
erived from chromatographic data and proven as a valuable tool to
ompare chromatograms [7,13]. This approach is valid when peaks
re clearly unimodal (one maximum only). Such an approach can-
ot handle embedded- or non-resolved peaks, which consequently
ould be integrated as one peak. The unimodality assumption is
ost often far from reality, and therefore inclusion of as much chro-
atographic information as possible is wanted when applying PCA.

o far, MSPC based on PCA applied directly on raw chromatograms
as not yet been reported. With such a technique historical chro-
atograms can be exploited for empirical modeling to monitor and

iagnose subtle changes in future chromatographic patterns. Nev-
rtheless, multivariate data analysis using the raw chromatogram
s input data is very sensitive to chromatographic artifacts such
s baseline- and retention time drift [14]. Therefore, mathematical
reprocessing of chromatograms is a crucial step in order to gen-
rate as clean data as possible. In addition, it may be necessary to
reprocess the clean data further in order to emphasize the relevant
chemical) information before PCA is applied [15].

In this study, we develop and investigate the sensitivity of MSPC
ased on PCA for monitoring, detection and diagnosis of small and
mbedded impurity peaks appearing in analytical chromatography.
he case study considers historical HPLC chromatograms from bio-
harmaceutical in-process analysis of a high-purity drug substance.

. Theory and methods

The development of a method for chemometric quality control
f chromatographic purity follows a modified version of a previ-
usly described trajectory [16]. The trajectory is divided in three
hases; the initial phase, the training phase and the application
hase (ITA) as illustrated in Fig. 1.

In the initial phase, appropriate historical chromatograms are
ollected and prepared for PCA modeling. In the training phase
PCA model based on normal operation condition (NOC) chro-
atograms is developed (describing common-cause variation) and
SPC charts are constructed. Finally, in the application phase new

hromatograms are fitted to the model and monitored using the
ontrol charts developed in the training phase. Deviating chro-
atograms are diagnosed using contribution plots to determine

auses of the deviating behavior.

.1. Signal preprocessing
The variation in chromatograms from an HPLC analysis is the
um of uninduced- and induced variations. The uninduced variation
s all the variation originating from uninduced chemical variance,
ampling, sample work-up, and analytical variation. The most sig-
Fig. 1. The three phases according to ITA trajectory (initial, training and application
phase).

nificant uninduced variation in chromatography is baseline- and
peak drift. Novel and advanced signal preprocessing algorithms can
be applied to handle these artifacts in order to obtain data appro-
priate for subsequent data analysis. Moreover, it may be important
to scale the data before starting the chemometric analysis. Hereby,
the aim is to focus on the induced variation and emphasize the
chemical relevant information in the samples.

2.1.1. Baseline correction
Baseline correction in chromatography is commonly employed

to eliminate interferences due to baseline drift. Several baseline
correction methods are available in the literature [17,18]. One effi-
cient way of baseline correction operates in local regions of the
chromatogram and uses B-splines constructed from polynomial
pieces joined at certain positions (knots) [19]. The method operates
by gradually eliminating points in the signal furthest (northern dis-
tance) away from the fitted polynomial until the number of selected
support points (baseline points) is reached. Since the method works
in local regions it is required that the number of knots and their
position are set. This is actually an advantage as local changes in
baseline can be corrected by placing more knots in the problem-
atic regions. The method also requires input for the order of the
polynomial that is fitted between the knots. Upon selecting the
baseline-algorithm and its settings from initial data investigation,
baseline correction can be an objective and automatic preprocess-
ing.

2.1.2. Alignment
Alignment of shifted peaks can be performed in various ways.

Very reproducible chromatographic data often need only a move-
ment of the whole chromatogram a certain integer sideways for
proper alignment. This is characterized by a systematic or lin-
ear shift and can easily be handled by the correlation optimized
shifting (coshift) algorithm [20] or the recently published icoshift
algorithm [21]. Yet, if the column is changed between runs or
if samples are measured over a long period of time, more com-
plex shift correction is needed. This non-systematic or non-linear
shift is characterized by a different degree of shifts for multiple
peaks across samples and can be seen as peaks shifting indepen-
dently from one another in the same chromatogram. One effective
method, which can handle non-systematic shifts in chromato-
graphic data, is the piecewise alignment algorithm correlation
optimized warping (COW) [22,23]. Both Coshift and COW algo-

rithms align each chromatogram towards a target. The choice of
a target chromatogram is an important aspect of the alignment
methods considered here. Several methods for how to find a proper
reference chromatogram can be used. Among these are, the average
chromatogram, the first loading of a PCA model, the most inter-



atogr.

s
r
t
a
b

2

m
1
a
c
t
t
a
w
p
d
O
w
m
a

2

m
c
b
i
l

a
P
e
c
b
f
E

X

w
o
m
v
i
a
i
c
c
a
f
c
t
o
t
t
s
i

T

w
o
t

K. Laursen et al. / J. Chrom

imilar chromatogram among all chromatograms or the sample
un in the middle of a sequence. However, the choice depends on
he homogeneity of the samples, on the degree of missing peaks
cross the chromatograms and many other things, which should
e considered in each individual application [24,25].

.1.3. Scaling
The choice of preprocessing procedure is crucial for perfor-

ance of the subsequent chemometric analysis. For instance a
000-fold difference in concentration for the target compound and
n impurity is not proportional to the chemical relevance of these
ompounds [15]. Thus, an appropriate preprocessing may increase
he sensitivity on detecting small impurity peaks hidden under the
arget peak by chemometric analysis and MSPC. Scaling methods
re data preprocessing approaches that divide variables by a factor,
hich is different for each variable. The aim is to adjust for the dis-
arity in fold differences between various signals by converting the
ata into differences in concentration relative to the scaling factor.
ne effective way to reduce the relative importance of large values
ithout blowing up noise is square root mean scaling. This scaling
ethod uses the square root of the mean (of individual variables)

s scaling factor.

.2. MSPC based on PCA

The goal of any statistical process control (SPC) scheme is to
onitor the performance of a process over time. Most SPC schemes

urrently in practice are based on charting a single or a small num-
er of product quality variables in a univariate way. This approach

s inadequate for processes where massive amounts of highly corre-
ated variables are being collected as is the case in chromatograms.

Latent variable methods such as PCA that handle all the vari-
bles simultaneously are required in these data-rich applications.
CA has previously proven a valuable tool to objectively compare
ntire chromatograms [26]. With PCA the information from many
orrelated variables in a chromatographic data matrix X (M × N) can
e projected down onto a low-dimensional subspace defined by a
ew latent variables or principal components TP’ and a residual part
(M × N):

= TP ′ + E (1)

here T (M × A) is the orthogonal score matrix and P (N × A) is the
rthonormal loading matrix. The chromatographic pattern is then
onitored in this A-dimensional subspace by using a few multi-

ariate control charts built from multivariate statistics. Using the
nformation contained in all the measured chromatographic vari-
bles simultaneously, these MSPC charts are much more powerful
n detecting faulty conditions than conventional single variable SPC
harts [27]. Once the MSPC chart signals a faulty alarm, the model
an be scrutinized to understand the cause of the alarm; here-
fter a possible corrective action can be taken. Variables responsible
or the faulty signal, due to a disturbance in any of the subspaces
an be projected back to the original variables and thereby iden-
ified. In general, there exist two ways to investigate the nature
f the fault that causes the control chart to signal [28,29]. Faults
hat obey the correlation structure, but have an abnormal varia-
ion (i.e. extreme variation within the model) are described by the
cores in Hotelling’s T2 also referred to as D-statistic. Hotelling [30]
ntroduced the T2 for principal components:

2 =
R∑ t2

r (2)

r=1

�2
tr

here tr is the rth principal component score, �2
tr

is the variance
f tr and R denote the number of principal components retained in
he PCA model. The D-statistic can be expected to approximately
A 1217 (2010) 6503–6510 6505

follow an F distribution and the confidence limits for the control
chart can be calculated according to Jackson [31].

Faults that break the correlation structure (i.e. variation to
the model) are represented in the sum of squared residuals also
referred to as Q-statistic:

Q =
N∑

n=1

(xn − x̂n)2 (3)

where xn and x̂n are a measurement of the nth variable and its pre-
dicted (reconstructed) value, respectively. N denotes the number of
process variables. Several ways to determine the confidence lim-
its for the Q-statistic is described [32,33]. In the present paper, a
normal distribution to approximate a weighted chi-square distri-
bution is used from which the confidence limits for the Q chart can
be calculated according to Jackson and Mudholkar [34].

Most commonly 95% or 99% confidence limits are used for both
the D- and Q-statistics to determine whether a sample is considered
an outlier. In the application described here a 99.73% confidence
limit (∼3�) is used as the upper control limit (UCL) similar to ordi-
nary Shewart control charts. From the D- and Q-statistics, two
complementary multivariate control charts are constructed. Chro-
matographic fault detection in the D-statistics could for example
be caused by an increased load on the analytical column leading
to intensified signals, but intact correlation between the chro-
matographic signals. If necessary, this load-effect may however be
handled using normalization as preprocessing. Fault detection in
the Q-statistics could for example be induced by the presence of
a new peak in the chromatogram resulting in broken correlation
between the chromatographic signals exemplified in Fig. 2. The sen-
sitivity of fault detection towards changes in the chromatogram
depends on the historical NOC data, chromatographic retention
time window, preprocessing methods, and number of components
included in the NOC model. If a new chromatogram falls outside
the UCL in the D- or Q-statistics control chart, it is characterized
as a fault and the chromatogram is considered to deviate signif-
icantly from the chromatograms included in the PCA model. It is
not only important to detect that the chromatographic pattern is
deviating, it is also important to search for the original chromato-
graphic signals responsible for the fault. One of the most widely
used approaches is using contribution plots [35–37]. Contribution
plots compute a list of each single chromatographic signal (reten-
tion time) that contribute numerically to the D- and Q-statistics
respectively. However, contribution plots do not reveal the actual
cause of the fault. Therefore, those variables responsible for the
faulty signal should be investigated, and incorporation of chemi-
cal and technical process knowledge may be necessary to diagnose
the problem and discover the root causes of the fault [27]. As an
enhancement to the way the faults are typically detected and source
determined, it is possible to calculate confidence intervals for the
residuals of individual variables, rather than only the overall resid-
ual [38].

2.3. Chromatographic simulation

The goal of chromatography is to separate different compo-
nents from a solution mixture. The resolution expresses the extent
of separation between the components in a sample, and is a
useful measure of the columns separation properties of that par-
ticular sample. The higher the resolution of the peaks in the
chromatogram, the better extent of separation between the com-

ponents the column provides. A simplified method to calculate the
resolution of a chromatogram is to use the plate model [39]. The
plate model assumes that the column can be divided into a cer-
tain number of plates, and the mass balance can be calculated for
each individual plate. This approach approximates a typical chro-



6506 K. Laursen et al. / J. Chromatogr. A 1217 (2010) 6503–6510

F lling o
c ram d

m
t
o
m
t
c
c
b
t
e
w

R

w
t
s
t
G
a
t
[

N

o
r

R

a
i
s
d
i
fi
c
i
r
s

3

c
l

ig. 2. Example of chromatographic pattern monitoring using PCA. (A) PCA mode
hromatogram within common-cause variation. (C) Prediction of a new chromatog

atogram curve as a Gaussian distribution curve. By doing this,
he curve width is estimated as four times the standard deviation
f the curve (4�). Sigma can be estimated by calculating the seg-
ent of the peak base (wb) intercepted by the tangents drawn to

he inflection points on either side of the peak. The inflection points
an be found by calculating max and min of the first derivative
hromatogram [40]. The parameter � is calculated as wb divided
y four. To define to what extent an impurity is hidden under the
arget peak; the peak resolution (Rs) is used [7]. Rs expresses the
fficiency of separation of two peaks in terms of their average peak
idth at base [40]:

s = 2
(tR2 − tR1)

(wb1 + wb2)
(4)

here tR1 and tR2 are the retention time of solute 1 and 2 respec-
ively (tR2 > tR1) and wb1 and wb2 are the Gaussian curve width of
olute 1 and 2 respectively (the retention time is the time from
he start of signal detection to the time of the peak height of the
aussian curve). Usually, in chromatography the plate number is
pproximately constant for similar components with similar reten-
ion times. The plate number N for a Gaussian peak is given by
40]:

=
(

tR

�

)2
(5)

With similar retention times and plate numbers the peak width
f the impurity and the target component is hence similar and a
easonable assumption is [40]:

s ≈ tR2 − tR1

wb2
(6)

Based on these assumptions an impurity peak was generated
s a pure Gaussian peak using � calculated from the target peak
n a randomly chosen chromatogram from the validation sample
et. The generated impurity was subsequently added to the vali-
ated chromatogram. As mentioned previously, impurities present

n excess of 0.1% relative to the target compound should be identi-
ed. Therefore, the relative amount of simulated impurity was kept
onstant at 0.1%. To give different degrees of chromatographic sim-
larity between the target compound and the related impurity, the
esolution (Rs) was varied from 0 (completely hidden) to 2 (well
eparated).
. Experimental

Fifty in-process samples of a high-purity drug substance were
ollected for routine quality control testing. All samples were col-
ected under NOC, i.e. the process has been running consistently
n NOC chromatograms using two principal components. (B) Prediction of a new
eviating from common-cause variation resulting in abnormal residuals.

and only high quality products have been obtained. The 50 sam-
ples represent a substantial time period so as to represent possible
physical changes in the chromatographic system as well as changes
in production arising e.g. from different batches of raw materials
being used. The purity, measured by reverse-phase high perfor-
mance liquid chromatography (RP-HPLC), was performed on a
Waters Alliance HPLC system that consists of a Waters 2690 Sep-
aration Module (combined pump and autosampler) and a Waters
2487 Dual-Wavelength UV detector (Waters, Milford, MA, USA).
The detection wavelength was 214 nm. The separation was per-
formed on a reverse phase 125 mm × 4 mm i.d. 5 �m 100 Å column
(FeF Chemicals, Køge, Denmark) by employing an isocratic elution
followed by gradient elution. The mobile phase consisted of Elu-
ent A (10%, v/v acetonitrile in sulphate buffer pH 2.5) and Eluent
B (60%, v/v acetonitrile in water). Chromatographic data was col-
lected using Empower 2 (Waters) and exported as the raw signals
vs. time (ASCII/ARW files) to Matlab version 7 (Matworks, Natick,
MA, USA) for further analysis. All software was written in Matlab
using tools from PLS Toolbox.

4. Results and discussion

4.1. Initial phase

The main goal of the training phase is to collect and pre-
pare historical NOC chromatograms for modeling. Fifty historical
HPLC chromatograms obtained for purity analysis of an indus-
trial high-purity drug substance were collected and imported into
MATLAB. The chromatograms were organized as an M × N data
matrix X, with M rows or samples and N columns or elution times.
A relevant chromatographic retention time window was chosen
around the target peak, resulting in a 50 (samples) × 1500 (reten-
tion times) dataset/matrix. Coshift alignment was applied to handle
larger systematic retention time shifts, followed by COW to han-
dle non-systematic retention time shifts. Both algorithms align the
chromatograms towards a manually chosen inter-similar target
chromatogram as illustrated in Fig. 3 The use of both alignment
methods clearly handles all the retention time shifts and delivers
adequate aligned chromatographic profiles.

To reduce baseline drift, baseline-spline was applied to the
dataset. In this case study a first order polynomial was chosen and
3 knots were positioned at retention time point 200, 1100 and 1300
(not shown).
To increase the sensitivity on detecting small impurities hidden
under the target peak different centering, scaling and transfor-
mation methods were tested. Among these are mean centering,
autoscaling, parato scaling, vast scaling, square root mean scal-
ing, and log transformation. Most of the methods are described
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NOC chromatograms, the monitoring performance depends very
ig. 3. Plot of shifted (A) and aligned (B and C) chromatograms (blue) towards a ref-
rence (red) using Coshift- and COW algorithm. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of the article.)

y [15,20]. The application of different preprocessing methods had
ery different effects on the resulting data (not shown). The meth-
ds were evaluated both by visual inspection of the resulting data
nd on the results obtained when used as input for subsequent
ata analysis in the training- and application phase. Square root
ean scaling turned out to be the most appropriate preprocess-

ng method for this particular application, as it first of all manages
o adjust for the variation in fold differences between the tar-

et peak and the minor surrounding peaks without blowing up
oise. Secondly, the characteristic appearance of the chromatogram

s kept intact, which in this case is helpful when interpreting
he contribution plot during the application phase. The result of

Fig. 5. Plot of cumulative variance captured (A) and
Fig. 4. Plot of chromatograms before (A) and after (B) square root mean scaling.

square root mean scaling applied to the data is illustrated in
Fig. 4.

4.2. Training phase

The essence of the training phase is to model the common-
cause variation present in the chromatograms obtained under
NOC. Since this NOC model exclusively determines whether a
new chromatogram is similar or deviates significantly from the
much upon adequacy and representativity of these NOC chro-
matograms. The number of samples needed to construct a NOC
model and control charts depends on the application. In this case
study a calibration set consisting of the first 40 chronologically

results of leave-one-out cross-validation (B).
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during the training phase. Nevertheless, as this study focuses on
purity analysis; we are primarily interested in the residuals. We use
the residuals to identify new, unanticipated peaks, which are not
part of the normal chromatographic pattern and thus, the model. On
Fig. 6. Scores plot of PC2 vs. PC1 (A) and loa

rdered chromatograms was used to develop a three component
CA model describing 99.97% of the common-cause variation. We
ave selected an optimal number of three components based on
he variance captured (Fig. 5a) and on the results of leave-one-out
ross-validation (Fig. 5b). Both variance captured and root mean
quared error of calibration (RMSEC) flattens out after three compo-
ents, also root mean squared error of cross-validation (RMSECV)
as the first clear local minimum at three components, indicating
hat after this point, the components just reflect noise. In addi-
ion, the inspection of loadings confirmed that only the first three
omponents reflect real chromatographic variation (Fig. 6b). As the
rincipal components higher than three are very noisy and do not
eem to contain any clear systematic structure, it is appropriate
o consider them as reflecting noise. Inspection of the scores plot
rovided in Fig. 6a showing PC2 vs. PC1, reveal that the calibration
amples are separated in two groups in PC2. The corresponding
oading for PC2 (Fig. 6b) indicated that this was due to an increased
ronting and partly decreased tailing on the target peak. This chro-

atographic difference between the two groups of calibration
amples most likely originate from analytical variation (ex. column,
olvents, pump, temperature) not handled by the preprocessing.
his chromatographic variation is also observed in Fig. 4b. However,
o systematic pattern was recognized when plotting PC2 scores vs.
hronologically ordered sample number (data not shown), which
ead to the conclusion that the grouping observed in PC2 repre-
ents common-cause-variation. The model was validated using an
ndependent validation set consisting of the last 10 chronologically
rdered chromatograms. In Fig. 7 D- and Q-statistics of calibration
nd validation samples are presented with 95%, 99% and 99.73%
UCL) confidence limits.
By inspection of the D- and Q-statistics it can be confirmed that
hree components describe the common-cause variation (Fig. 7). All
0 NOC samples are within the 95% confidence interval in the D-
tatistic chart, whereas in the Q-statistic chart two samples (∼5%)
re outside the 95% confidence interval as expected from a normal
plot on first three principal components (B).

distribution point of view. Both D- and Q-statistics are monitored
Fig. 7. Plot of (A) D-statistics and (B) Q-statistics of calibration (circle) and validation
(square) sample sets.
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Fig. 9. Plot of D-statistics (A) and Q-statistics (B) of chromatograms added 0.1% area
impurity with varying resolution (Rs 0–2). Critical area of detection in Q-statistics is
marked.
ig. 8. Simulated 0.1% area impurity peaks (red) in 9 varied resolutions from 0 to 2
efore (A) and after (B) added to a reference chromatogram (blue). (For interpreta-
ion of the references to color in this figure legend, the reader is referred to the web
ersion of the article.)

he other hand, when developing the model in the training phase,
oth the D- and Q-statistics are of interest. These statistics may
ontribute with important and complementary indications about
amples to exclude from the NOC model as they do not describe
ommon-cause variation and magnitude. In this case all 50 sam-
les used in the training phase are within their respective UCL

imits in both D- and Q-statistics charts, and are therefore assumed
o describe common-cause variation. The model can be updated
eriodically by including new predicted samples already accepted
lying within the confidence limits). In this way variations such as
easonal changes can be incorporated in the model, making it more
obust against false positive alarms.

.3. Application phase

To demonstrate the sensitivity of this chemometric quality
ontrol of chromatographic data, a validated chromatogram was
anipulated. This was done by adding a 0.1% area impurity peak

idden under the target peak in nine varied resolutions from 0 to 2
s illustrated in Fig. 8.

The nine simulated chromatograms were used to evaluate the
ethods ability to detect more or less hidden unexpected peaks. As

ndicated in the D-statistic chart (Fig. 9) none of the simulated chro-
atograms were detected, whereas in the Q-statistic chart (Fig. 9)

hromatograms added impurity peaks with a resolution down to
.5 was detected as faulty, falling outside the 3� UCL.

It would be difficult or impossible to detect such an impurity
eak visually or to identify it by peak integration using existing soft-
are. Generic peak detection algorithms commonly seek instants of

apid increase or decrease in signal intensity above a critical thresh-
ld. However, setting the threshold is a problem because too low a
hreshold generates a large number of meaningless peaks and too
igh a threshold might miss an actual one [2].

To determine chromatographic variables (retention time sig-
als) responsible for the signal in the Q-statistic chart, a residual
ontribution plot is inspected in Fig. 10. The contribution plot

llows us to diagnose the problem with the faulty chromatogram
mmediately. Clear indication of a new peak or a shoulder on the
ronting target peak is given in Fig. 10. Apparently, this variability
s not described by the principal components retained in the NOC

odel. Accordingly the added impurity with resolution 1.4 shows
Fig. 10. Plot of the faulty Rs 1.5 residual contribution (black), plotted together with
the reference (blue) and the faulty Rs 1.5 chromatogram (red) on the secondary y-
axis. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

up as an abnormal residual variability and a faulty signal in the
Q-statistic chart.

5. Conclusions and perspectives

This study demonstrates that MSPC based on PCA applied on
chromatographic purity analysis is a powerful tool for monitor-
ing subtle changes in the chromatographic pattern. In addition it
was illustrated how contribution plots provides clear diagnostics of

faults at a glance. The chemometric quality control proved robust
towards treating chromatographic artifacts such as baseline- and
retention time drift. Applying this procedure for the detection of
new peaks makes a fully automatic monitoring of complex chro-
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atograms possible. Furthermore, if implemented and operating
hile the chromatographic purity analyses runs, this tool may con-

iderably reduce time needed for subsequent assessment of peak
ntegration. Thus, the chemometric quality control will increase
hroughput in chromatographic purity analysis and operate accord-
ng to the process analytical technology (PAT) concept aiming for
eal-time release. The actual root cause of the alarm is not auto-
atically given when applying chemometric quality control to
PLC purity analysis. Such an analysis would need incorporation of
hemical and technical process knowledge or even more advanced
nalytical techniques e.g. coupled separation systems. Multivari-
te chromatographic patterns may well be increasingly important
n the pharmaceutical industry. However, if the chemometric qual-
ty control described in this paper where to be integrated within the
harmaceutical industry, data management including smooth data
ccessibility will be a crucial requirement. Future work should be
ocused on incorporating the chemometric quality control in com-

ercial software packages for chromatographic instruments or as
art of a corporate database management system.
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LC–MS  is  a  widely  used  technique  for  impurity  detection  and  identification.  It  is  very  informative  and
generates  huge  amounts  of data.  However,  the  relevant  chemical  information  may  not  be  directly  acces-
sible  from  the  raw  data  map,  particularly  in reference  to  applications  where  unknown  impurities  are  to be
detected.  This  study  demonstrates  that multivariate  statistical  process  control  (MSPC)  based  on  principal
component  analysis  (PCA)  in conjunction  with  multiple  testing  is  very  powerful  for  comprehensive  moni-
toring  and  detection  of  an  unknown  and  co-eluting  impurity  measured  with  liquid  chromatography–mass
spectrometry  (LC–MS).  It is  demonstrated  how  a spiked  impurity  present  at low  concentrations  (0.05%
(w/w))  is  detected  and  further  how  the  contribution  plot  provides  clear  diagnostics  of  the  unknown  impu-
ent analysis (PCA)
stical process control

ing

rity. This  tool  makes  a  fully  automatic  monitoring  of LC–MS  data  possible,  where  only  relevant  areas  in
the LC–MS  data  are  highlighted  for further  interpretation.

© 2011 Elsevier B.V. All rights reserved.
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eak-purity examination should prevent co-eluting
escape detection in the conventional HPLC analysis

 diode array detection (HPLC-DAD) is a commonly
o conduct peak-purity examination. However, many

e structurally related to the drug substance, and
 contains very similar chromophores, making purity
sed solely on HPLC-DAD data difficult and unreliable.
ss spectrometer to a liquid chromatograph (LC–MS)
elective signals to the table. LC–MS is probably the
l technique currently available for pharmaceutical
he technique is still under fast development, par-
e mass spectrometry area, with vastly improved

d resolution. However, such state-of-the-art high-
truments are considered rather costly for routine
harmaceutical manufacturing environment. More-
h-resolution LC–MS instruments may  not contribute
al required information compared to conventional
S instruments. Since a mass spectrometer (MS) sep-
nds by their respective mass-to-charge ratios (m/z),

 in the m/z values between the impurities and the
e will allow an unambiguous detection regardless of

 their UV spectra. Therefore an impurity co-eluting
t peak will be separated in MS  as long as their m/z
erent and ionization of the impurity is not suppressed
ompound. The LC–MS technique is very informative

 huge amounts of so-called three-way data, where
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ple is characterized by the intensity as a function of reten-
 and m/z. However, the relevant information from the

 point of view is not directly accessible from the raw data
ich makes manual interpretation tedious and often gener-
ttleneck in the analysis process [5].  Furthermore manual
n of LC–MS data is prone to subjective decision-making
cause additional errors. Several advanced techniques for
sment of LC–MS peak purity and co-elution problems have
orted during the last decades [6–9]. However, to comply
eased focus on process analytical technology (PAT) and
y design (QbD) there is a need for an automatic tool that

 monitors, detects, and extracts relevant signals from the
ata where further interpretation and identification should
d. Furthermore, such a tool should detect relevant varia-
e LC–MS map  quantitatively and in a statistically reliable

 is a relatively unexplored area in LC–MS data analysis. A
 tool has recently been demonstrated on chromatographic
alysis by Laursen et al. [10]. That study demonstrates that
iate statistical process control (MSPC) based on principal
nt analysis (PCA) [11,12] applied on chromatographic data
e for monitoring subtle changes in the chromatographic
nknown impurities co-eluting with the target compound

ected in the sum of squared residuals (Q) statistics, and
tion plots provided clear diagnostics of cause of the sub-
ting chromatograms [10]. However, this approach might
m lack of sensitivity when applied to LC–MS data. The

ount of data points combined with the discrete nature of
gnals (i.e. sharp signals in MS  direction) makes detection
wn impurities a case of needle-in-the-haystack expedi-

 new LC–MS sample containing an unknown impurity is
a PCA model based on normal operation condition (NOC)
amples, the resulting residuals would ideally hold infor-
bout the unknown impurity. However, a few discrete

 related to an unknown impurity would simply be masked
culating the sum of squared residuals (Q). This makes Q a
itive measure for monitoring and detection of unknown
s present in low concentrations. Therefore, a more dis-

ive and sensitive measure is needed targeted towards the
f LC–MS data. Ralston et al. [13] proposed a statistical

ent to the typical application of multivariate statistical
es. The statistical enhancement uses confidence limits on
uals of each variable for fault detection rather than just
ce limits on the overall Q residual. The method detected
rlier than the basic Q residual contribution method typi-
d, but the enhancement proved primarily as a graphical
tool and not as a single value measure for control chart
ng.
s study, the approach reported by Laursen et al. [10] is
d to adapt the nature of LC–MS data and to enhance mon-
d detection of unknown impurities in an industrial insulin
iate (DesB30). In-process samples are spiked with the
lly related human insulin drug product co-eluting with

MSPC based on PCA is combined with variable wise (mul-
ting. This would enhance detection of discrete residuals
nown impurities, as residuals of each variable are tested
orresponding model residuals.

y and methods

eneral workflow of MSPC based on PCA follows a previ-
cribed trajectory [10,14]. The trajectory is divided in three
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 initial phase, appropriate historical LC–MS experiments
cted and prepared for PCA modeling. In the training phase
del based on NOC LC–MS samples is developed (describ-
on cause variation) and multiple testing is applied on the

. Finally, in the application phase new samples are fitted
del and the most significant variable is monitored in con-

ts developed in the training phase. Deviating samples are
d using multiple testing contribution plots to determine
f the deviating behavior.

al preprocessing

the LC–MS data has been collected, preprocessing methods
red to correct, refine and filter the data. The quality of sig-

rocessing is crucial in order to extract relevant (chemical)
ion. The signal preprocessing was  divided into the fol-
teps: baseline correction, normalization, alignment, data
n, and scaling. The preprocessing steps are described in
wing subsections. The practical implications of these pre-
g steps are visualized in the result section.

seline correction
ine correction is commonly employed to eliminate inter-

 due to baseline drift. A variety of techniques for baseline
n of LC–MS data are applicable and is reviewed by List-
nd Emili [15] among others. In this study an efficient
er simple method for baseline correction is applied. The
works by fitting a global polynomial (of a user-defined

 each extracted ion chromatogram and, through an iter-
tine, down-weighting points belonging to the signal. A
is then constructed and subtracted from the original

 ion chromatogram. Upon selecting the polynomial order
ion of data points to use for determining the baseline, the

 provides an objective and automatic preprocessing. The
correction is similar to a previously described method by
. [16].

rmalization
ignals are frequently corrupted by either systematic or

 changes in abundance measurements. Normalization will
or bias due to errors in sample amount, possibly sam-
-over and drifts in ionization and detector efficiencies.
ation procedures enable a more accurate matching and
ation between multiple samples. Different procedures for
ation can be applied. Normalization values can be calcu-
the basis of a global distribution for all detected features
, average or median of all intensities per run), or calcu-

m a specific sub-set of features, for instance from a spiked
hat is used as internal standard [15,17].  In this application
t peak purity might vary but the overall signal intensity
eally be the same for each sample. Therefore the sum of
ities is used as normalization value for each sample.

ignment
ith every laboratory experiment, chromatographic sep-
s stable and reproducible only to a certain extent. The

 time often shows large shifts, and distortions can be
 when different runs are compared. Even the m/z dimen-
ht show (typically much smaller) deviations. Pressure

ons or changes in column temperature or mobile phase
lt in shifted peaks.

ment of shifted peaks can be performed in various ways.
roducible LC–MS data often need only a movement of the
 ion chromatograms a certain integer sideways for proper
t. This is characterized by a systematic shift and can eas-
ndled by the recently published icoshift algorithm [18].
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Fig. 1. The three phases according to ITA trajectory (initial, t

lgorithm is based on correlation shifting of inter-
loys a fast Fourier transform engine that aligns all
aneously. The algorithm is demonstrated to be faster
ethods found in the literature making full-resolution
rge datasets feasible [18]. Yet, if peaks shift indepen-
e another in the same extracted ion chromatogram,

 shift correction is needed to correct for this non-
ft [19,20].

uction
 map  of a sample is characterized by a collection of
surements as a function of retention time and m/z

 the measurements more comparable, and to reduce
unt of data points per sample, all intensities within
d bin level are summed. This technique puts all the
a (time, m/z) grid. The bin size is selected based on

nd centering
rucial for the performance of the subsequent multi-
cal analysis. A fold difference in concentration for the
nd and an impurity is not proportional to the chemi-
f these compounds [21]. Therefore scaling is applied
e model sensitivity on detecting small unknown
rthermore, scaling is crucial in order to bring the
f data points close to a normal distribution. This is
ortant when multiple testing (like Student’s t-test) is
nce analysis [22]. In many cases, a logarithmic trans-
sed for stabilization of the variance. Furthermore,
sformed intensities, the disparity in fold differences
rious signals is adjusted. As the final preprocessing
les are mean centered (the average unfolded chro-
attern is subtracted) to remove a common offset. This
riable to vary around zero. This procedure is standard

 modeling that focuses on variability in data.

ed on PCA modeling combined with multiple testing

ariable wise (multiple) testing offers two  different
 statistical data analysis. Multiple testing aims at
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cause variatio
for example b
eled compoun
g and application phase).

ts where a high number of variables are evaluated on
al outcomes involve testing of numerous hypotheses
g of error rates is of crucial importance. This disci-

ed to as multiple testing. Multiple testing is widely
arker discovery in proteomics, and has been applied
rence analyses of LC–MS data intensities [15,23,24].
t al. [23] and Listgarten et al. [24] evaluate the inten-
s between samples from two classes using t-tests on
tion of time and mass to charge ratio, to find regions

 further interpretation. However if multiple testing
ctly to preprocessed LC–MS data it would result in
ll intensity differences (i.e. both known according
rating conditions and unknown features). Multiple
d to PCA residuals would only result in detection
eatures, as the known features are described by the

ressed in the D-statistics.
he variation from many correlated (time, m/z) bins

ix X (with M rows of samples and N columns of bins),
posed into R (R ≤ N) linear principal components TPT

 part E (M × N):

p2
T + · · · + tRpR

T + E = TPT + E = X̂ +  E (1)

 R) is the score matrix and P (N × R) is the loading
 components. X̂ is the matrix of predicted values.

umber of significant principal components can be
y using cross-validation to eliminate less important
the data matrix [25]. In this way the dimensional-

 matrix is reduced while capturing the underlying
etween the variables. In standard PCA, each sample
values. If one sample is a matrix of values (e.g. in

–MS data), the sample matrix can be unfolded into a
lows standard application of PCA, but throws away
nformation conveyed by storage in a matrix. Using
n contained in all the measured signals simultane-
harts are much more powerful in detecting faulty
n conventional single variable SPC charts [26]. Once
rt signals an alarm, the model can be scrutinized to
e cause of the alarm; hereafter a possible corrective
taken. Faults can be due to deviation from common-

 (detected in Q) and in the magnitude of the common

n (detected in D). Fault detected in the D chart could
e caused by an increased amount of already mod-
ds in the sample, and is described by the scores in
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’s T2. Hotelling [27] introduced the T2 for principal com-
 also referred to as D:

t2
r

�2
tr

(2)

is the rth principal component score, �2
tr

is the variance
 component and R denotes the number of principal com-
retained in the PCA model. Assuming normality for the
l scores, the D-statistic can be expected to approximately
eighted F distribution and the upper control limit for the

ic can be calculated according to Jackson [28].
w sample, containing an unknown impurity, is predicted
odel (based on pure samples), the sample is expected to

 correlation. Indications of the unknown impurity would
epresented in the residuals and monitored in Q:

xn − x̂n)2 =
N∑

n=1

(en)2 (3)

and x̂n are a measurement of the nth variable and its
 (reconstructed) value, respectively which result in the

en. N denotes the number of variables. Most commonly, a
istribution to approximate a weighted Chi-square distri-

 used from which the upper control limit for the Q-statistic
lculated according to Jackson and Mudholkar [29].
ver, as claimed earlier, a few discrete residuals related to
wn impurity would simply drown when calculating Q.

to detect the needle in the haystack we  device multiple
ased on a simple t-test for each bin (n) as:

,n − ēref,n

1 + M−1
(4)

 1

M∑
i=1

(ei,n − ēref,n)2 (5)

M∑
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ei,n (6)

ew,n is the residual from the new sample for bin n, ēref,n is

T
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mber of reference samples. sn is the standard deviation of

 from reference samples for bin n.

statistics
gle meas
operator
 from multivariate data. p refers to test probability,  ̨ is significance level.

ritical value of t is dependent on sample size. In order to
or this ambiguity t is transformed to a z-value through a

n) = ˚(zn) (7)

f is the t-distribution with df degrees of freedom, df = M − 1.
cumulative distribution function of the standard Gaussian
ion. This z-value is used as diagnostic measure for the cor-
ng (time, m/z) bin. The z-value and p-value reflects the
tistics (Eq. (7))  and hence the behavior of the system. When

ith signals of interest in the area of p < 0.01, changes are
ily captured by exploring the corresponding z-values e.g.

duction time.

ultiple testing
ling of issues related to multiple testing is becoming more
t as number of features detectable from modern analytical
nts is rapidly increasing. For example within the field of
ics from different platforms such as micro arrays, LC–MS,
nd NMR  often numbers in thousands to tens of thousands

more is common [30]. Performing numerous univariate
nce tests on such highly multivariate data will lead to a
e positive rate (FPR). The conservative Bonferroni factor is

 controlling the error rate across all tests, known as the
ise error rate (FWER) [31]. The Bonferroni factor is simply
tionality correction of the p-value threshold (˛) with the
f the number of test. The Bonferroni correction is a crude
correction where all null hypotheses are assumed true i.e.
ence what so ever. But data is seldom collected under the
ion that there is no relation with a specified outcome. In
jamini and Hochberg [31] developed control of false dis-
te (FDR) as an alternative to Bonferroni factor in multiple
stimation of the FDR, contrary to FWER, does not assume

ull hypotheses are true but estimates the proportion of null
 non-null cases from data. This procedure is shown more

l in detecting true non-null cases than procedures control-
WER [32]. Where the FPR predicts how many of the truly

otheses are rejected, the FDR predicts how many of the
hypotheses are in fact likely to be truly null. In proteomics
is to discover biomarkers in order to develop biological
nding. Here a list of significant biomarkers supported by
relevant for reporting of results including statistical infer-

SPC the primary scope is to deem a sample pure or impure
ndly if impure to investigate the impurity contribution.
es are dealing with issues related to multiple testing, but
pe is different, the estimation and extraction of a relevant
 is likewise. In the following subsection we derive a sin-
ure statistics, and estimate its distribution under normal

 conditions.
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easure statistic for control chart
et al. [10] the Q value was used for a new sample as
detecting subtle differences in the chromatographic
ethodology devised here produces not one but N sig-

 where N is the number of bins. These are expressed
lues; z1, z2, . . .,  zK. The largest values of z1, z2, . . .,  zK

 where the new sample is most deviating. Impurities
nd hence only large positive z-values are of interest.
ethod proposes use of the maximum z-value across

measure in control chart monitoring.

tion of the maximum z-value across N bins
ality assumptions for residuals within each bin, with

 for calibration and new samples, the derived t-test
istributed with M − 1 degrees of freedom (M number
samples). The corresponding z-values are normally
th mean zero and variance one. Assuming indepen-

 the K z-values it is easy to compute the distribution
m z-value:

P(z1 ≤ z) · P(z2 ≤ z), . . .(
1√
2�

∫ z

−∞
e−½t2

dt

)K

(8)

 two-sided SPC charts an observation more than
 deviations (3�) from normal operating conditions is
he critical limit. This correspond to a coverage prob-
3 (1 − 2˚(−3) = 0.9973). As only maximum positive

f interest here, the one-sided control chart thresh-
ect the same coverage probability. In accordance it is
culate the corresponding threshold for the maximum
3) such that P(zmax,K ≤ z0.9973) = 2˚(−3). This thresh-
ds on number of bins (N). For N = 1000, z0.9973 = 4.55,
, z0.9973 = 4.40. Independence between bins might be
mistic assumption, especially when chemical com-
ignal in more than one bin. In order not to rely on
oncerning independence we use a heuristic itera-

 on the calibration samples to estimate the critical
 critical 3� limit is calculated by iteratively testing

sample against the remaining reference samples, cre-
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 is calculated as:
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er of reference samples.

tal

rocess samples of the insulin intermediate DesB30
 for routine quality control testing. All samples were
r NOC, i.e. the process has been running consistently

quality products have been obtained. The 30 samples

11
0

2

4

6

x 1

In
te

ns
ity

11
0

5

10

15

20
x 1

In
te

ns
ity

Fig. 3. TIC 

correction, 

co-elutin
insulin, b
values. Sa
tonitrile a
of an All
Kinetex C
USA), and
Bremen, 

mode. ES
charge st
measured
measured
and expo
(Bruker D
MA,  USA)
using too
Statistics

4. Result

4.1. Initia

The 55
ples) wer
M sample
window 

(samples
baseline c
ted to eac
on 50% o
tial inves
normaliz
alignmen
LC–MS da
ion chrom
ion chrom
profile w
bstantial time period representing possible changes
. One sample was spiked with human insulin drug

 various levels from 0.01% to 0.15%. Human insulin is

TIC profiles w
corrected vers
in Fig. 3.
lization and time alignment).

h the structurally related target compound DesB30-
s a different molecular weight and thus different m/z
es were injected into a gradient (0.05% TFA/10% ace-
.05% TFA/70% acetonitrile) LC–MS system consisting

 reverse phase HPLC system (Waters, MA,  USA), a
olumn (150 mm  × 3 mm,  2.6 �m)  (Phenomenex, CA,
icroTOF-Q II mass spectrometer (Bruker Daltonics,

perated with electrospray (ESI) in the positive ion
ides maximum intentsity of the MH4+ ions, why this
as used in the calculations. All 30 NOC samples were
ne replicate, whereas the five spiked samples were

five replicates each. The LC–MS data was collected
as text files using a software tool called DataAnalysis
ics) and imported to Matlab version 7 (Mathworks,

further analysis. All software was  written in Matlab
m PLS Toolbox (Eigenvector Research, WA,  USA) and
box (Mathworks).

d discussion
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MS samples (30 NOC samples and 5 × 5 spiked sam-
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 elution times, and O m/z values. A relevant LC–MS
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rams (EIC) of the corresponding LC–MS sample. The
showed the highest correlation with the remaining

as  selected as the target. For illustrative purpose, the
us the original TIC profiles for all samples is presented
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 the EIC the elution profile of the unknown impurity is
. It would be difficult or impossible to detect a co-eluting
purity peak if measured with HPLC. However with LC–MS
lenge is possible and becomes practicable if assisted by

ated methods demonstrated in this study. However, it is
t to clarify that MSPC should not be regarded as a replace-

analytical knowledge when interpreting the LC–MS data.
MSPC should be seen as the means for creating robust and
terpretable multivariate models with the aim of monitor-
etecting unknown features in large and complex LC–MS

usion and perspectives

tudy demonstrates that MSPC based on PCA in conjunc-
h multiple testing is very powerful for monitoring and

 of unknown and co-eluting impurities measured with
 spiked impurity present at low concentrations (0.05%)
cted and comprehensible contribution plot containing
gnostics of the unknown impurity was  provided. From
tion of contribution plots for lower spike levels than 0.05%
and 0.01%) large contributions from the unknown impu-

 highlighted, emphasizing the sensitivity of this method.
off false negative signals by lowering of the critical limit
. 3� to 2� might enhance the detection limit further. This

 monitor and highlight only relevant areas in the com-
MS data where further effort on interpretation should
d. Furthermore the tool proved robust towards treating
ntal artifacts such as baseline- and retention time drift.

 this procedure for the detection of new peaks makes a
omatic monitoring of LC–MS data possible. Furthermore,

ented and operating while the purity analyses runs, this
 considerably reduce time needed for subsequent assess-
data, and operate according to the PAT concept aiming
ime release. Obviously the actual root cause of the alarm
tomatically given when applying this tool. Such an anal-
ld need incorporation of chemical and technical process
ge and possibly applying MS/MS  fragmentation for further
d identification. Label-free LC–MS data analysis is already
ad in proteomics and may  well be increasingly important
armaceutical industry. However, many different types of
ons can be developed with LC–MS. Due to such variety of
applications and approaches it may also be challenging to

and incorporate a generic solution for processing and anal-
–MS data in commercial software. Nevertheless, this study
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