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Abstract 
 
The subject of this thesis is the use of near-infrared chemical imaging (NIR-CI) for the 
study of pharmaceutical tablets in formulation development. NIR-CI is an emerging tech-
nology in pharmaceutical analysis and solid dosage form development, as it provides in-
sight into the structure and function of tablets, which cannot readily be obtained by any 
other technique. This information is highly valuable, as many quality attributes of tablets 
are closely related to the size and distribution of not only the active component (API) but 
also the excipients within the tablet matrix.  
 
Near-infrared chemical imaging is an analytical technique based on near-infrared (NIR) 
spectroscopy, but in addition to identification and quantification of bulk components from 
NIR spectroscopy it provides information on the spatial distribution of all the spectro-
scopically active chemical components in a sample. A description of the basic principles 
and instrumentation for NIR-CI is shortly given in this thesis. 

NIR-CI generates a huge amount of spectral data, and the use of multivariate and im-
age analysis methods are critical to the translation and extraction of these data into ac-
curate and relevant chemical information. Optimally, identification, quantification and lo-
cation of the chemical components within the sample matrix will be obtained, and an im-
age of the size, shape and distribution of each component within the sample created 
(chemical image). 
 
The primary purpose was originally to explore the use of NIR-CI in different types of for-
mulation development applications and evaluate the increased process and product un-
derstanding that could be gained from these experiments. However, during the initial 
project phase it became apparent that fundamental work on the NIR-CI technology was 
still needed, for instance to develop reliable data and image processing methods. There-
fore, a major part of this thesis describes data and image processing methodologies for 
the analysis and extraction of useful and accurate information from NIR-CI data meas-
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urements. Each of the typical steps involved in NIR-CI analysis is explained, and this the-
sis can in fact be used as a guidance to perform such data analysis.  

In order to develop reliable and accurate NIR-CI data processing methods, it is neces-
sary to evaluate them with regard to their ability to generate accurate chemical images. 
In this context, three common data processing approaches were compared. A calibration 
data set was constructed and analysed. The accuracies of the three methods were com-
pared according to their ability to generate accurate chemical images, which was evalu-
ated by their concentration prediction ability.  

Furthermore, results from the application of developed NIR-CI data processing and im-
age processing tools to a pharmaceutical formulation development experiment are pre-
sented. Chemical images, histogram statistics, binary images, domain size statistics and 
a method for evaluating tablet homogeneity were all used to evaluate tablets from the 
formulation development study. The study demonstrates the unique and invaluable in-
formation that the NIR-CI technology is capable of providing for the formulation scientist. 
The presented approach will be applicable in many types of development studies for new 
tablet or other solid dosage formulations.   
 
The NIR-CI technology is still maturing, and a discussion of some of the limitations and 
cautions is provided. Important aspects that require improvement for the NIR-CI tech-
nology to be widely adopted and deployed in pharmaceutical development are also dis-
cussed. Hence, the full potential on the use of the NIR-CI technology in the pharmaceuti-
cal industry has yet to be revealed but this thesis adds to its knowledge foundation. The 
unique information that can be obtained by near-infrared chemical imaging and the valu-
able role it can play in the development of new solid dosage formulations is demon-
strated in this thesis. 
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PREFACE 

 
The following thesis entitled “Near-infrared chemical imaging in formulation development 
of solid dosage forms” was submitted to the Faculty of Pharmaceutical Sciences, Univer-
sity of Copenhagen (Denmark), as part of the requirements to obtain the PhD degree. 
Being an Industrial PhD project supported by The Danish Agency for Science, Technology 
and Innovation, the thesis will also subsequently be send to the Agency together with a 
business report to obtain an Industrial PhD certificate.   
 
This thesis presents the research performed during the industrial PhD project which 
started in September 2005. A Danish Industrial PhD project is a three-year research pro-
ject with an industrial focus conducted jointly by a private company and a university 
(more information on: http://en.fi.dk/research). This project was a joint cooperation be-
tween Novo Nordisk A/S and The Department of Pharmaceutics and Analytical Chemistry, 
Faculty of Pharmaceutical Sciences, University of Copenhagen (Denmark). Participating 
as third party institute The Department of Food Science, Faculty of Life Sciences, Univer-
sity of Copenhagen (Denmark) also made a major contribution to the project.  
 
The project was at its beginning anchored in the company’s Formulation Development 
department, whose mission was to develop solid dosage forms of drug molecules manu-
factured by synthesis in a world wide competitive manner regarding speed and quality. 
The PhD project was considered part of the department’s development strategy to con-
tinuously develop and optimise existing technologies and core competences e.g. by im-
plementing new innovative approaches. The objective of the project was to increase un-
derstanding of solid dosage formulation processes and products and to integrate this new 
near-infrared chemical imaging (NIR-CI) technology in future company development pro-
jects. Undoubtedly, the increasing promotion of the process analytical technology concept 
(read more in section 1.2 and 4.7) by the regulatory authorities also facilitated initiation 
of this project. Equally important, the project was well in line with the research profile of 
relevant groups at The Department of Pharmaceutics and Analytical Chemistry. The in-
volvement of The Department of Food Science was due to their major expertise in multi-
variate data analysis, which was crucial for the completion of this project.  
 
Halfway through the project it was due to management strategic decisions decided to 
discontinue the company’s ‘small molecule’ research activities. As a consequence of this, 
the Formulation Development department was closed down. Hence, the professional 
sparring with the company’s formulation development employees vanished together with 
research objectives/issues that were supposed to partly be provided from the company’s 
development projects. Despite these changes, it was made feasible to continue the pro-
ject with a similar scope now anchored in the company’s Analytical Development depart-
ment and with the role of the university departments maintained.  
 
With the author’s background as a formulation scientist this is also a target group of this 
thesis. From the significant growth and use of near-infrared chemical imaging in pharma-
ceutical applications it is most likely that more and more formulation scientists will be-
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come acquainted with this or similar technologies in the future. However, the intended 
readers are also process chemists, analytical chemists and scientists working with chemi-
cal imaging specifically. In fact, this project is rather interdisciplinary integrating the 
three individual large scientific areas of pharmaceutical technology, near-infrared spec-
troscopy and multivariate data analysis (Figure 1). 
 

 
 

Figure 1 - The interdisciplinary knowledge foundation of this thesis 

necessary to enable studies of NIR-CI in pharmaceutical applications.  

 
From the initiation of this project, pharmaceutical applications and formulation develop-
ment studies were intended to make up a much larger part, using NIR-CI as a tool to 
gain new and increased process and product understanding. However, after purchasing 
the near-infrared chemical imaging system for the project, it became apparent that more 
focus had to be laid on the basic foundations of the NIR-CI technology comprised by data 
acquisition, data processing and image processing. The main part of this project was 
therefore focused on developing methodologies for these disciplines, which then can be 
used for many different types of pharmaceutical applications.  
 
This thesis is organised in nine chapters and with the four papers produced during this 
project (as author and co-author) enclosed in Appendix I-IV.  
 
The thesis will be defended at the Faculty of Pharmaceutical Sciences, University of Co-
penhagen.  
 
 
Assessment Committee:  
 
Professor Jukka Rantanen, Department of Pharmaceutics and Analytical Chemistry, 
Faculty of Pharmaceutical Sciences, University of Copenhagen, Denmark, (Chairman). 
 
Principal Scientist Lars Hovgaard, Department of Preformulation and Delivery, Novo 
Nordisk A/S, Denmark. 
 
Dr. Gabriele Reich, Institute of Pharmacy and Molecular Biotechnology, University of 
Heidelberg, Germany. 
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CHAPTER 1 
 

BACKGROUND 
 

1.1 What is near-infrared chemical imaging? 

The subject of this thesis is near-infrared chemical imaging (NIR-CI) applied to pharma-
ceutical solid dosage forms. For readers without prior knowledge of chemical imaging 
techniques and in particular near-infrared chemical imaging a short introduction to the 
technology is given here. A more comprehensive and detailed description of the NIR-CI 
principle and literature are presented in Chapter 4. 
 
NIR-CI is the combination of conventional near-infrared (NIR) spectroscopy with digital 
imaging. Spectral and spatial information is recorded simultaneously providing a NIR 
spectrum in each pixel of the sample image. The result is a three dimensional data set, 
known as a hyperspectral data cube (Figure 2). The x and y axis represent the spatial 
information and z is the wavelength axis in the spectral measurement. The hyperspectral 
data cube is translated into a set of, typical chemical, images providing distribution in-
formation of each chemical component from the sample surface. 
  
The unique feature of NIR-CI is that in addition to identification and quantification of the 
chemical components in the sample, their spatial distribution and cluster size and form 
within the sample is simultaneously revealed. Hence, chemical images visualises the in-
ternal structure and elucidates the distribution and cluster size of each chemical compo-
nent within the sample (Figure 2, left), which can be related to the quality of the product. 
 

 

Figure 2 - Three-dimensional hyperspectral NIR data cube recorded from a NIR chemical imaging 

data acquisition. The information directly obtainable from the hyperspectral data cube is displayed. 

Right: Localised NIR spectra associated with each pixel and images associated with each NIR 

wavenumber. Left: A chemical image of the active pharmaceutical ingredient (API) generated from 

data processing of the data cube.   
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1.2 Introduction to project 

Regulatory aspect 

The pharmaceutical industry is a highly regulated industry. Manufacturing processes are 
traditionally treated as frozen and based on time-defined end points. Changes to proc-
esses are managed through regulatory submissions. The philosophy ‘if it isn’t broke, 
don’t fix it’ has been dominating and even ‘broken’ processes with frequent batch rejec-
tions or re-processing’s have not been fixed. The reason for the latter is that the uncer-
tain consequences from regulatory submissions of process changes as well as the high 
price of submitting post approval changes overpower the possible benefits from optimis-
ing the manufacturing processes. The lack of process control and scientific innovation in 
pharmaceutical manufacturing science led the United States Food and Drug Administra-
tion (FDA) to publish a guidance document about the use of process analytical technology 
(PAT)1 (Section 4.7). The concept of PAT is to build in quality by design (QbD) instead of 
merely passively end-product testing to evaluate quality. The guidance promotes the use 
of different tools to gain process understanding and process control. The tools suggested 
in the guidance document are: 

 Multivariate tools for design, data acquisition and analysis 

 Process analyzers  

 Process control tools 

 Continuous improvement and knowledge management tools 

Near-infrared chemical imaging is one type of novel analytical technology promoted by 
PAT to create increased process understanding and also to be used for process control.2-3   
 

Pharmaceutical formulation development 

Pharmaceutical formulation development (Chapter 2) is basically the scientific work of 
designing and developing a suitable dosage form containing the active pharmaceutical 
ingredient (API) taking into consideration the physical, chemical and pharmacological 
properties of the API, administration route, manufacturing process and the patient’s use 
of the dosage form. The aim is to design a quality product and its manufacturing process 
to consistently deliver the intended performance of the product (ICH Q8).4  
 
In formulation development numerous experiments are performed to select the appropri-
ate dosage form, optimal manufacturing process, composition, processing steps and 
process parameters. It is studied how formulation and process factors affect product 
quality and performance. The goal is to identify and be able to monitor the critical quality 
attributes (CQA) and the critical process parameters (CPP), which is consistent with the 
concept of PAT.  

Tablets are the most common pharmaceutical dosage form produced today and were 
also the first priority dosage form in the former Formulation Development department at 
the company Novo Nordisk A/S. Therefore tablets were chosen as the dosage form to be 
analysed in this work. A tablet is a solid dosage form where a mixture of the active 
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pharmaceutical ingredient(s) and excipients, usually in powder form, are compressed into 
a solid matrix. The excipients are inactive substances but each plays an important role 
and function for the tablet performance. The tablet matrix is hence carefully designed in 
development of new tablet formulations and the functional performance may vary de-
pending on the concentration and distribution of all components within the final matrix. 
Probably the most significant factor in determining the quality of the formulated tablet is 
the structure of the matrix that evolves during the manufacturing process.5 It is therefore 
a paradox, that when it is time to assess the quality of a tablet the matrix is destroyed 
by some kind of sample preparation. The conventional analytical techniques used to ana-
lyse the identified quality attributes of tablets are destructive methods, focuses on the 
API component and only yield bulk content information. No information on the excipients 
and no insight into the structure of the matrix are obtained. Different spectroscopic tech-
niques, in particular near-infrared (NIR) spectroscopy, are now also widely used in phar-
maceutical analysis. NIR spectroscopy is a non-destructive method but also only provides 
bulk information, i.e. determines the gross composition of sample.2,6-8 
 

Product and process-intermediate testing  

With the conventional analytical techniques available and also with pharmaceutical for-
mulations becoming more complex and advanced the challenge is to fully characterise 
the processes and products. New analytical technologies are needed to determine the 
impact of process and ingredient changes and to identify and measure the critical quality 
attributes (CQA) and critical process parameters (CPP) to gain the process understanding 
that will enable process and product control. NIR-CI provides increased understanding of 
the solid dosage form by a technology that generates other types of information com-
pared to traditional analysis techniques, which only provide bulk information of the ana-
lysed dosage form.  

NIR-CI is a non-destructive analytical technique, requires almost no sample prepara-
tion and can be used to determine multiple quality attributes not only for the API but also 
the excipients. The visualisation of the spatial distribution of components in a sample 
provides information that can not be obtained by any conventional analytical techniques. 
 

Scope and aim of thesis 

Some of the major key-drivers for interest, implementation and further development of 
the NIR-CI technology in the pharmaceutical industry are: 
 

• Compositional structure of sample matrix. The quality, i.e. the physical, chemical 
and biopharmaceutical properties, of pharmaceutical solid dosage forms is a func-
tion of the chemical composition and spatial distribution of all the components in 
the final matrix.   

• FDA’s PAT initiative.1 FDA encourages manufacturers to use new technologies that 
increase the scientific understanding of how formulation and manufacturing proc-
ess factors affect product quality and performance.    
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• Trouble-shooting. The non-destructive nature and unique component size and dis-
tribution information obtainable by NIR-CI increases the likelihood of not only 
identifying formulation or manufacturing problems but also explaining their cause. 

• Counterfeit medicine. It is estimated that counterfeit medicine make up more than 
10 % of the world’s medicine market.9 This is likely to increase with increasing 
trade of medicine via the Internet. Counterfeit medicine is a threat to the health 
of patients and the pharmaceutical industry’s reputation and sales. NIR-CI is a 
rapid method for detecting and comparing counterfeit products without any sam-
ple preparation.  

 
The aim of this thesis is to demonstrate how NIR chemical imaging can be used in formu-
lation development of solid dosage forms, primarily tablets. 

Through application of NIR-CI in a formulation development experiment it is shown 
how the unique information obtainable by NIR-CI can lead to enhanced process and 
product understanding. In addition to a thorough NIR-CI literature review on pharmaceu-
tical applications this should provide inspiration to other relevant formulation develop-
ment studies where NIR-CI can add value and increase understanding.  

However, in order to fully exploit the potential of NIR-CI it is essential to have a thor-
ough understanding of how to properly measure, analyse and interpret NIR-CI data and 
to understand the limitations of this technology. The NIR-CI technology is still maturing 
and there is a need to evaluate the data processing methods for their ability to generate 
accurate chemical images of the pharmaceutical samples. Development and evaluation of 
data processing methods and extracting essential information from the generated chemi-
cal images were also an important objective of this thesis work. 
 
This thesis can be read as an introduction or guidance to near-infrared chemical imaging 
and its application to pharmaceutical solid dosage forms. The focus is on formulation de-
velopment of tablets and the concept of this work is presented in Chapter 2. Although all 
experimental work has been NIR-CI studies of tablets, the presented data analysis 
strategies are applicable to other chemical imaging technologies and can also be used to 
analyse other solid dosage forms than tablets (powders, capsules, microspheres, extru-
dates, granules etc.). Near-infrared (NIR) spectroscopy is the basis of the NIR-CI tech-
nology and a short introduction to theory on NIR spectroscopy and the diffuse reflectance 
measuring mode is given in Chapter 3. The principles and instrumentation of NIR-CI is 
presented in Chapter 4. This chapter also includes sections describing other chemical 
imaging technologies (MIR-CI, Raman-CI), the role of NIR-CI in the PAT concept, and a 
thorough literature review of NIR-CI used in pharmaceutical applications.  

A full NIR-CI experiment can be divided into data acquisition, data processing and im-
age processing. Each of these three overall analytical steps is described in Chapter 5, 6 
and 7, respectively. The data processing described in Chapter 6 is a major chapter pre-
senting several approaches on how to analyse hyperspectral raw data obtained from NIR-
CI data acquisition. The described data processing approaches will provide a toolbox for 
analysing most NIR-CI data of pharmaceutical solid dosage forms. Chapter 6 also con-
tains a stepwise guidance on how to analyse NIR-CI data and the chapter is completed 
with a comparison and summation of the characteristics of the presented methods. The 
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data processing chapter can thus be used as a guidance or tutorial on how to analyse hy-
perspectral NIR data but will also be applicable to other chemical imaging techniques 
(Raman, MIR). Chapter 7 on image processing describes developed methods to extract 
useful information from the generated chemical images. The application of NIR-CI in a 
development study of a tablet formulation produced by a direct compression process is 
presented in Chapter 8. In this chapter there are also other examples of NIR-CI applied 
to pharmaceutical tablets, which contributes to understanding the limitations and added 
value of using the NIR-CI technology. Finally, concluding remarks and suggestions for 
future research are given in Chapter 9. 
 
During the project two publications (Paper I and II) have been produced. Paper I is ac-
cepted and published. Paper II is in a final manuscript form ready for submission. Fur-
ther, two publications of closely related work are enclosed (Paper III and IV). The four 
papers are enclosed as Appendix I-IV and will be referred to in the text by the Roman 
numerals (I-IV). Some of the results from these papers will be integrated in the following 
chapters of the thesis.    
 

1.3 Terminology 

The combination of vibrational spectroscopy with a microscope to obtain spatially re-
solved spectra was already introduced back in 1949.10 It then lasted almost five decades 
before sufficient advancement in computer power, detector elements and optics made 
the technology commercially available. The technology and the application knowledge are 
still maturing and the terminology for this multi-disciplinary technology is not always 
clear and consistent. It is therefore important to clarify the terminology used in this the-
sis to avoid any misconceptions.  
 
The overall term for combining vibrational spectroscopy (IR, NIR or Raman) with digital 
imaging is denoted chemical imaging (CI) in this thesis. Specifically when using near-
infrared spectroscopy the term near-infrared chemical imaging (NIR-CI) is used, which is 
the only chemical imaging technique used for experimental studies in this thesis work. 
Other terms (synonyms) often met in the literature for this technology are: spectral or 
spectroscopic imaging, vibrational chemical imaging, chemical mapping and imaging, hy-
perspectral imaging, vibrational microscopy, vibrational microspectroscopy or microspec-
troscopy.  
 
The full analytical work of a NIR-CI experiment in this thesis is divided into three overall 
steps defined as:  

• Data acquisition. Includes sample preparation, instrumental settings and basic 
spectral transformation. The raw data output from a NIR-CI measurement is organ-
ised in a three-dimensional data structure with two spatial axes and one wavelength 
axis, also called a hyperspectral data cube.  

• Data processing. The processing of the hyperspectral data cube into a, typically 
chemical, image by univariate or multivariate image analysis methods. This part in-
cludes wavelength selection, spectral pre-processing and the subsequent data analy-
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sis to generate images visualising the distribution of each of the components within 
the imaged sample.  

• Image processing. The processing of the generated chemical images into relevant 
and ‘useful’ information that will qualitatively or quantitatively describe the properties 
of a sample in relation to the problem investigated. This extracted information could 
e.g. be a total concentration, a measure of the distribution of the concentration of the 
active ingredient or the domain sizes of components within the sample.     

 
The term hyperspectral data cube, hyperspectral image and hypercube are used inter-
changeably and denote the raw data output from the data acquisition. It is a three di-
mensional data structure containing two spatial axes and one wavenumber axis (Section 
1.1 and 4.1). 
 
A chemical image is a visual representation of the spatial distribution of a chemical com-
ponent in the imaged sample. It is generated from the mathematical processing of a hy-
perspectral data cube. However, it is important to note that ‘chemical image’ does not 
cover the representation of images generated from all processing’s of hyperspectral data 
cubes, as for example, principal component analysis (PCA) will generate score images 
which should be denoted as such.  
 
A component relates to a chemical component or compound, e.g. the active pharmaceu-
tical ingredient (API) or any excipients used for a tablet composition. The term compo-
nent is primarily used but compound, ingredient or analyte will have the same meaning. 
It should not be confused with the term principal component from multivariate data 
analysis. The principal component (PC) will be specified as such when used.  
 
There are two types of resolution in chemical imaging. The spectral resolution refers to 
the number of wavelength data points in a measured spectrum. The spatial resolution 
refers to the pixel size.  
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CHAPTER 2 

FORMULATION DEVELOPMENT OF TABLETS 
 

2.1 Introduction 

Medicine is seldom administered as the pure active pharmaceutical ingredient (API) 
alone. It is primarily given in a mixture with appropriate additives (excipients) to provide 
a suitable dosage form for administration, also called the formulated dosage form, drug 
product or just the formulation. The design of the formulation and the process that re-
sults in the most desirable dosage form is the central concept of formulation develop-
ment. The type and function of excipients used in formulations are varied and each plays 
an important and specific role for the quality and functionality of the final dosage form. 
 

 
 
Pharmaceutical development is the term that encompasses all aspects in developing a 
new drug product for commercialisation, i.e. from drug substance development to select-
ing packaging material for the drug product. The aim is to design a quality product and 
its manufacturing process to consistently deliver the intended performance of the prod-
uct. Formulation development specifically concerns drug product and process develop-
ment, which generally means designing the dosage form composition and manufacturing 
process. The International Conference on Harmonization (ICH) lays down the regulatory 
foundation for this work in the guideline document ”Pharmaceutical Development Q8”.4 
 
Formulation development is an essential discipline in a large part of the development 
phases of a new medicine. It is used in pre-clinical studies for dosing animals, early 
safety studies, clinical trials, and eventually for developing the commercial formulation. 
Formulation development is crucial for the quality of the new medicine as the intended 
therapeutic performance may be compromised without a suitable designed and robust 
formulation.  
 

2.2 Solid dosage forms - Tablets 

Solid dosage forms for oral use are by far the most prevalent pharmaceutical formulation 
type on the worldwide pharmaceutical market comprising around 60 %.12 Most solid dos-
age forms are produced as tablets. A tablet is a compressed unit of a powder mixture of 
the active pharmaceutical ingredient (API) and a number of excipients. Extracts from the 
monograph for tablets in the European Pharmacopoeia (6th Edition 2008)12 define tablets 
in the following way:  

Tablet formulation and design: 

Tablet formulation and design may be described as the process 
whereby the formulator ensures that the correct amount of drug 
in the right form is delivered at or over the proper time at the 
proper rate and in the desired location, while having its chemical 
integrity protected to that point.11 
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 Tablets are solid preparations each containing a single dose of one or 

more active substances. They are obtained by compressing uniform vol-

umes of particles or by another suitable manufacturing technique…. 

 Tablets are intended for oral administration. 

 The particles consist of one or more active substances with or without ex-

cipients such as diluents, binders, disintegrating agents, glidants, lubri-

cants, substances capable of modifying the behaviour of the preparation 

in the digestive tract, colouring matter authorised by the competent au-

thority and flavouring substances. 

 Tablets are usually straight, circular solid cylinders, the end surfaces of 

which are flat or convex and the edges of which may be bevelled. They 

may have break-marks and may bear a symbol or other markings. Tab-

lets may be coated. 
 
The popularity of tablets as dosage form is related to some of its major advantages com-
pared to other dosage forms: 

• High accuracy in correct dosing of API  

• Better drug stability 

• Easier and economically beneficial manufacturing process 

• Easy packaging process and distribution to customers 

• Convenient dosage form to handle and administer for the users 

The two most common processes for manufacturing tablets are by direct compression or 
wet-granulation. The most simple and often preferred process for manufacturing tablets 
is simply mixing the API with excipients and compressing the powder mixture directly 
into tablets (direct compression). Tablets by direct compression are the only formulation 
type and process investigated throughout this thesis work. However, the application of 
near-infrared chemical imaging (NIR-CI) demonstrated on tablets by direct compression 
can also be applied to other types of solid dosage forms using other manufacturing proc-
esses.3,5,14-20 For example, the use of NIR-CI to characterise the intermediate and final 
product in a wet granulation process is apparent. Wet granulation is the process where 
primary powder particles are made to adhere to form larger multi-particle aggregates 
called granules in which the original particles can still be identified.21 The granules are 
produced by adding an aqueous binder-solution to the powder mixture through mechani-
cal agitation in granulator equipment. Prior to the wet granulation process dry mixing of 
API and different excipients are often performed to achieve a uniform distribution of each 
ingredient throughout the mix and later in the final product. After the granulation process 
the granules are typically dried, sieved, mixed with other excipients and finally com-
pressed into tablets. There are various reasons for selecting a wet-granulation process, 
for example to provide better powder-flow properties, improve compaction characteris-
tics, prevent segregation effects of formulation ingredients, better control of drug content 
uniformity at low drug concentrations, reduce powder volume and dust from toxic pow-
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ders etc.21,22  It is important to obtain granules of well-defined size and with a uniform 
and consistent API content. NIR-CI is an obvious and valuable technology to characterise 
both single granules (e.g. after sectioning) for their API distribution but also for charac-
terising the granule distribution in the final tablets and thus homogeneity of the product. 
 

2.3 Preformulation 

Prior to the development work of the formulation, the physical and chemical properties of 
the active pharmaceutical ingredient (API) and other derived properties of the API pow-
der are determined in preformulation. This characterisation of the API is essential for the 
formulation development work as it determines many of the experiments and approaches 
to be performed. Some of the most important preformulation characterisations of the API 
for the formulation development work are:  

• Solubility 

• Density 

• Polymorphism, solvates/hydrates 

• Hygroscopicity 

• Particle size (distribution) and particle morphology 

• Compatibility with excipients 

• Powder flow properties 

• Compression properties 
 

2.4 Formulation development of tablets 

With the knowledge obtained from the preformulation studies the aim of (tablet) formula-
tion development is now to design and develop a robust process and product composition 
that consistently will produce a final product with the desired functional characteristics 
that fulfils the intended therapeutic performance. The essential aspects of formulation 
development and manufacturing of tablets are illustrated in Figure 3 (based on direct 
compression).  
 
The goal is as it appears to manufacture robust tablets that consistently fulfil a number of 
quality attributes. After oral administration the tablets must disintegrate and release the 
API to make it available for absorption into the systemic blood circulation. The general 
quality attributes that should be fulfilled for a tablet formulation are listed below together 
with the European Pharmacopoeia tests (in brackets) applicable to assess the quality at-
tributes: 

• Tablets must be mechanical resistant to withstand attrition or breakage 
from handling during and after manufacturing. 

(Resistance to crushing of tablets23; Friability of uncoated tablets24). 

• The tablets must have a consistent and uniform mass and content of API. 

(Uniformity of dosage units25). 

 



- Formulation development - 
   

 
 

 10

 

Figure 3 - The direct compression process for tablet manufacturing and fate of the tablet after oral 

intake. Possible application points for NIR chemical imaging are indicated. GI = Gastro-Intestinal. 

 

• The API should be released from the tablet in a controlled and reproducible 
way. The dissolution test does not assure satisfactory bioavailability but is 
the available approach to evaluate this. 

(Disintegration of tablets and capsules26; Dissolution test for solid dosage forms27).  

• The tablet should be chemically, physically and microbiologically stable 
during the lifetime of the product. 

• The appearance (size, shape, colour, and logo) of the tablet should be con-
sistent.  

 
Compliance with all these and other case-by-case additional quality attributes can only 
be obtained with a carefully designed formulation and manufacturing process. This is the 
goal of formulation development work and experimental formulation studies are per-
formed to select the appropriate dosage form and optimal manufacturing process, com-
position, processing steps and parameter settings. The selection of excipients and their 
concentration in the formulation is an important part of this work. Their role is to ensure 
that the manufacturing process runs satisfactorily and tablets of the specified quality are 
obtained. The functions of excipients are diverse and different types such as fill-
ers/diluents, disintegrants, binders, glidants, lubricants etc. are used. The important role 
of excipients can e.g. be illustrated for the lubricant magnesium stearate. Due to its hy-
drophobic nature it may retard the tablet disintegration and dissolution if it is present at 
a too high concentration or mixed too well with the other ingredients.  
 
In the development work of a new formulation studies are performed to identify the criti-
cal quality attributes (CQA), the critical process parameters (CPP) and determine the op-
timal process parameters for manufacturing the formulation. The types of formulation 

API 

Excipients Powder mixture Tablets 

Drug in solution 
in GI fluids  

Drug  
dissolution  

Tablet  
disintegration 

Primary drug 
particles  

Tableting   Powder mixing 

Absorption  

Drug in blood  

NIR-CI NIR-CI 

+ 
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experiments to perform are highly depending on the formulation type, manufacturing 
procedure and the unit process steps. It is therefore not possible to make a general com-
prehensive list of experiments to perform. However, below follows a list of some of the 
typical experiments that could be performed in developing a tablet formulation by direct 
compression:  

• Selecting the optimal excipients and composition 

o Compatibility studies 

o Screening with different types, quantities and ratios 

o Evaluate compactability, flowability, lubrication effect etc. 

• Sieving studies to determine optimal particle sizes 

• Mixing studies: 

o Mixing principle 

o Mixing effect (rotation speed and time) 

o Mixing order of ingredients 

• Compression force and speed 

• Stability studies 

Many different product and process parameters are typically involved and varied in each 
experiment; hence design of experiments (DoE) is often employed in these formulation 
studies. Depending on the type and objective of each formulation study, powder samples 
and/or tablets are collected and analysed for the different quality attributes described 
earlier. Existing analytical techniques such as high performance liquid chromatography 
(HPLC), ultraviolet spectroscopy (UV), mass spectrometry (MS), and the specific quality 
tests such as dissolution, resistance to crushing, disintegration etc. are used to deter-
mine identity, strength, purity and quality of the tablets. These tests are all destructive, 
time consuming and only provide bulk information about the sample and are primarily 
focused on analysing the API content. For example, the content uniformity testing will 
provide information on the variation in content between a number of dosage forms – but 
only for the API. It provides no information about the size or distribution of API or the 
excipients within each tablet. Dissolution testing examines the manner and duration of 
API release from the tablet formulation but provides no insight into the cause of the pro-
files obtained. NIR spectroscopy is a non-destructive method that is becoming a tradi-
tional analytical technique. However, this method can also only provide the bulk content 
relationship of components but provides no information on their spatial distribution in the 
sample. 
 

Investigating the homogeneity in pharmaceutical powder blends or tablets is always a 
main concern in formulation development and is mainly related to a uniform distribution 
of the active pharmaceutical ingredient (API) throughout the blend/tablets. There is no 
definitive definition of homogeneity of a powder blend or tablet batch. Homogeneity is 
indirectly determined or assessed by calculating an acceptance value based on the mean 
and/or standard deviation from a number of samples and comparing the results with pre-
determined acceptance criteria. The pharmacopoeia’s testing performed to evaluate the 
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homogeneity of the final dosage form is covered by “Uniformity of dosage units”.25,28 The 
content of API in 10 or 30 individual dosage units are analysed and the overall batch ho-
mogeneity is assessed acceptable when a calculated acceptance value meet the require-
ments. As the content uniformity of solid dosage forms is closely related to the uniformity 
of the powder blend, it is also important to determine blend uniformity. This is the basis 
for the FDA Guidance for Industry document describing how sampling and assessment of 
uniformity in powder blends and finished dosage units can be conducted to comply with 
good manufacturing practice requirements.29 However, it should be noted that the pow-
der blend uniformity may be affected by the subsequent steps before the final tablets are 
obtained, hence homogeneity is best determined as late in the manufacturing process as 
possible, i.e. determining content uniformity of the final dosage form. 
 
It should be evident by now that a tablet formulation is a carefully designed matrix and 
the functional performance may vary depending on how the components are distributed 
within the final tablet. The structure of the tablet matrix that evolves during the manu-
facturing process is thus an important quality factor. However, when it is time to assess 
the quality of the tablets matrix it is destroyed by e.g. dissolving the sample in a solvent. 
All the insight into the internal structure and spatial distribution of components relative to 
each other in the final product matrix is lost. Information that is invaluable and can elu-
cidate intra-tablet variations helping the formulator to see how the process actually per-
formed. While the traditional analytical techniques cannot provide this important spatial 
information, it is possible by chemical imaging techniques such as e.g. near-infrared 
chemical imaging (NIR-CI).  

Moreover, there are trends in formulation development science where traditional ana-
lytical techniques may fall short on fully characterising the product quality and NIR-CI 
could be useful: 

• More potent API’s, i.e. it is crucial and a challenge to obtain and maintain con-
tent uniformity as the content per tablet decreases with more potent API’s. 

• The increasing number of poorly soluble drug substances being developed or 
desire for more complex drug release profiles call for the development of 
more advanced tablet formulations. Examples are layered tablets, barrier lay-
ers, encapsulated drug molecules, microspheres of selective drug release, 
osmotic pumps etc. Common for these highly engineered drug delivery sys-
tems is that the physical structure is as critical as the chemical composition.2 
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CHAPTER 3 

NEAR-INFRARED SPECTROSCOPY 

AND DIFFUSE REFLECTANCE MODE 
 

3.1 NIR spectroscopy 

NIR chemical imaging builds upon the well established near-infrared (NIR) spectroscopy 
technology. The illumination in the NIR-CI instrumentation used for the data acquisition 
is provided by near-infrared radiation. The near-infrared region is located adjacent to the 
mid-infrared (MIR) region starting at 4000 cm-1 and extends up to the visible region at 
12800 cm-1 (wavelength range 2500 nm to 780 nm). Near-infrared belongs together with 
mid-infrared (MIR, 4000-400 cm-1) and Raman (4000-50 cm-1) to the vibrational spec-
troscopy techniques that utilises absorption bands in the spectra emerging as a conse-
quence of molecular vibrations in the chemical compounds. The location of the NIR and 
MIR regions in the electromagnetic spectrum is shown in Figure 4.  
 
 

 
 

Figure 4 - Electromagnetic spectrum. 
 

The absorptions in the NIR region are primarily due to overtones and combinations of the 
fundamental molecular vibrations from the mid-infrared region between X-H bonds (X = 
O,N,C,S). The absorption peaks are 10-100 times weaker than their corresponding fun-
damental infrared absorption bands and characterised by very broad and overlapped 
bands. Unlike IR spectroscopy, absorption bands in NIR spectroscopy are not well suited 
for identification purposes and the NIR spectra for compounds of chemical resemblance 
may be very similar in structure and difficult to resolve. However, the development of 
chemometrics and increased computer power has made it possible to interpret and ex-
tract the unique information from the NIR spectra.   
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3.2 Diffuse reflectance spectroscopy 

Depending on the sample properties NIR spectra can be obtained in three different 
modes: transmission, diffuse reflection or transflection. Only diffuse reflectance meas-
urements on solid samples have been conducted throughout this project and only this 
mode will therefore shortly be introduced further here. 
 
In diffuse reflectance spectroscopy, the illumination source and detector are located on 
the same side of the sample. It measures the amount of light reflected from the sample 
surface, which contains a specular component and a diffuse component.6 The specular 
(speculum (lat.) = mirror) component is the light that is just reflected from the sample 
surface rather than absorbed and contains little or no information about the sample. The 
diffuse component is the light reflected after interaction with the sample. The diffuse re-
flected light carries information about the sample materials at various depths and loca-
tions in the sample. It is thus the diffuse component that contains information on the 
composition that is of interest. The contribution from the specular component is mini-
mised by appropriate position of the detectors relative to the sample and by pre-
processing the collected spectra.6 In practice, relative reflectance (R), i.e. ratio of the in-
tensity of light reflected by a sample and a standard (R = Rsample/Rstandard), is measured.  
 

Over the last two decades, NIR spectroscopy has occupied an increasing role in pharma-
ceutical analysis especially along with the PAT concept. NIR spectroscopy is fast, non-
destructive, flexible, non-invasive, requires little or no sample preparation, and the tech-
nique provides a lot of information about the measured sample. It is widely used for raw 
material characterisation, process monitoring, and product quality control. Numerous 
publications on the fundamental NIR spectroscopy theory and its application to pharma-
ceutical samples can be found in the literature, and good overviews and reviews have 
also been published.3,6-8,30-32 

Most of the beneficial characteristics and processing techniques of conventional NIR 
spectroscopy are also valid when it is utilised for NIR chemical imaging. 
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CHAPTER 4 

PRINCIPLES OF NEAR-INFRARED CHEMICAL 

IMAGING AND INSTRUMENTATION 
 

4.1 Principles of NIR chemical imaging 

In conventional NIR spectroscopy a bulk NIR spectrum is measured that reflects an aver-
age composition of the measured sample. NIR-CI adds spatial information to the spectral 
information by combining conventional NIR spectroscopy with digital imaging. In NIR-CI 
the spectral and spatial information is recorded simultaneously. The result is creation of a 
three dimensional spectral image, also termed a hyperspectral data cube or hyperspec-
tral image, where two dimensions provide the spatial information (x and y) and the third 
dimension provides spectral information (z) (Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 - Three-dimensional hyperspectral data cube (M×N×λ) shown as false color image and 

the information that may be obtained directly from the data cube (single pixel spectrum (a) 

and single wavenumber image (b)) and through data processing (chemical, binary and compos-

ite images, all left).   

 

The hyperspectral data cube can either be viewed as an array of spectra (one for each 
pixel) from which images can be created or as a row of images from which spectra can 
be extracted. Selecting a single pixel (xy-coordinate) through the z-plane will show the 
spectrum recorded at this particular spatial location, which provides the spectral signa-
ture of chemical components present in that exact part of the sample (Figure 5a). Select-
ing an image plane (xy-plane) at a specific wavenumber (z-value) will show the intensity
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values for all pixels at that wavenumber also called a single wavenumber image. The sin-
gle wavenumber image contains spatial distribution information about a chemical compo-
nent with a distinct spectral characteristic at that particular wavenumber (Figure 5b). 
This is the simplest image generation algorithm.  

The hyperspectral data cube is the raw data outcome from a NIR-CI data acquisition. It 
is often visualised as an image using either a grey scale or colour scale to represent in-
tensity, for example the average absorbance intensity value for each pixel (spectrum). 
Such false colour image will not in itself reveal anything about the chemistry in the sam-
ple. The NIR spectra can be regarded as chemical fingerprints and the goal is to translate 
the spectral signature from each pixel into chemical information. There are a number of 
univariate and multivariate analytical tools available for this purpose and some of these 
approaches are dealt with in more details in Chapter 6. The result from the data process-
ing of a hyperspectral data cube is a set of, typically chemical, images providing informa-
tion on the composition, size of clusters, and distribution of each component within the 
sample matrix. 

The unique feature of NIR-CI is that in addition to identification and quantification of 
the chemical components, their size and spatial distribution within the sample is also re-
vealed. NIR-CI will also measure samples non-destructively so they are preserved for 
further testing. 

 

4.2 NIR-CI instrumentation 

The instrumentation for acquisition of hyperspectral NIR data is best described as the 
coupling of a microscope with a NIR spectrometer. There are two main types of NIR-CI 
systems to obtain the raw data hyperspectral data cube: 

1) Line mapping or pushbroom system; 

2) Global imaging or staring imager system. 

Only the line mapping system has been used in the experimental studies in this thesis 
but as an introduction to the NIR-CI technology and to get acquainted with the principles 
reported in literature, general knowledge about both principles are needed and thus in-
troduced below. 

Using the term chemical imaging for a line mapping system has been found inappropri-
ate as only global imaging and not line mapping is considered a real imaging technique.16 
Despite the differences in data acquisition the output result for both techniques is a hy-
perspectral data cube and the same chemical image will be obtained for the same sample 
using the same instrument settings and data processing method. Therefore, no distinc-
tion is made between line mapping and global imaging in this thesis – both are classified 
as chemical imaging systems.  
 

LINE MAPPING  

The line mapping principle is based on a step-and-acquire acquisition mode. The sample 
area and pixel size are initially defined and this determines the number of pixels in the 
image. For each acquisition diffuse reflectance spectra are collected from a line of, typical 
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16, adjacent points (pixels). With a very accurate positioning sample stage the sample is 
moved and another line of spectra are obtained. In this way a grid of spectral information 
is build up from the lines of spectra until spectra from all pixels in the defined sample 
area are obtained to constitute the hyperspectral data cube. 
 

   
Figure 6 - Schematic presentation of line mapping instrumentation.   

 

A schematic presentation of the line mapping instrumentation is shown in Figure 6. The 
sample is positioned on a motorised moving sample stage. A Fourier Transform (FT) NIR 
spectrometer is employed as wavelength filter and provides the light source (tungsten 
lamp). The radiation is focused onto the sample surface using a Cassegrain objective lens 
and is after interaction with the sample focused through a set of apertures onto the line 
of detectors.  
 

GLOBAL IMAGING 

The global imaging system contains - unlike line mapping - no moving parts and gener-
ates images at each selected wavenumber rather than collecting NIR spectra directly 
from each pixel. Global imaging measures the NIR absorption intensity values in each 
pixel of the defined sample area at one particular wavelength at a time. The imaging 
technique uses two-dimensional focal plane arrays (FPA), which are cameras composed 
of many thousands individual detector elements (pixels). The number of pixels in an im-
age is thus fixed for global imaging systems and the pixel size and hence sample area 
are defined by the magnification optics (e.g. 40 µm/pixel objective leading to a 12.8 × 
10.2 mm image using a 320×256 pixels FPA). The third dimension of ‘spectral’ informa-
tion is obtained by changing the wavelength of light using tuneable filters, e.g. liquid 
crystal or acoustic optical tuneable filters. The NIR absorption intensity values are meas-
ured in every pixel of the FPA at each individual wavelength, which is sequentially 
changed by the tuneable filter. Images at each individual wavelength are in this way built 
up like a deck of cards to generate the hyperspectral data cube.  

 
A schematic presentation of the global imaging instrumentation is presented in Figure 7. 
The NIR light is not focused but rather defocused onto the sample to cover a larger area. 
After interaction with the sample the reflected light is collected through imaging optics 
and passed through the tuneable filter before an image of the sample at the selected 
wavelength is recorded on the focal plane array detector.  
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Figure 7 – Schematic presentation of a global imaging system. 

 

4.3 NIR line mapping versus global imaging 

Irrespective of whether a line mapping or global imaging system is used for a NIR-CI ex-
periment the output results are the same, i.e. obtaining a hyperspectral data cube. There 
are nonetheless some important differences between the two systems that may decide 
whether a NIR-CI line mapping system or global imaging system should be purchased or 
alternatively used (should one be so lucky to have both types of instruments available).  
 
The line mapping system is based on a Fourier-Transform (FT) NIR spectrometer which is 
known to provide high wavelength accuracy. The spectral resolution is generally better 
for FT-NIR based mapping techniques providing higher quality of the spectral data. Map-
ping systems typically have spectral resolution down to 1-4 cm-1 compared to 8-10 cm-1 
for global imaging systems.16 The sampling scheme utilised in line mapping illuminates 
the line of pixels directly in a staggered pattern, which reduces the inter-pixel mixing ef-
fects.33 For line mapping there is also no correction of ‘dark’ detector response as for 
global imaging systems.15 However, line mapping systems are not so flexible for irregular 
samples geometries and large sample areas, but do have the option to acquire data from 
several areas and quilt them together to form a larger image.  
 
The major advantages of global imaging are the larger field of view, speed of data acqui-
sition and ruggedness. By changing the magnification objectives much larger areas can 
readily be analysed by global imaging compared to line mapping, and global imaging has 
for example been used to analyse whole blister packs15 and for high-throughput analysis 
of multiple tablets simultaneously.35 Due to the principle of obtaining images at selected 
wavelengths and using fast tuneable filters, data acquisition time for global imaging is 
not so dependent on the area analysed as in line mapping. The tuneable filters can also 
be used to select a subset of available wavelengths and thereby only analysing absorp-
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tion bands of useful information. This will make the data acquisition time even shorter. 
However, narrowing the spectral range and thereby reducing the acquisition time is also 
possible for FT-NIR based line mapping instruments. In general, data acquisition time for 
global imaging systems is a few minutes compared to 10 to 40 minutes for line mapping 
systems depending on the selected area, pixel size, spectral resolution and number of 
scans per wavenumber.  

The illumination source in a global imaging system is usually provided by four quartz-
halogen lamps. Some users of global imaging have experienced significant heat genera-
tion from the lamps and this can potentially be a problem for heat-labile compounds or 
compounds with a low melting point as e.g. for some polymers (unpublished observa-
tions).  

The line mapping uses a moving sample stage to move the sample during data acquisi-
tion and raster scan the defined sample area. Global imaging systems have no moving 
parts. This makes global imaging more robust for manufacturing environments and thus 
at-line or on-line PAT applications.  
 
The cost is often an important factor when purchasing analytical equipment. The global 
imaging system tends to be the more expensive of the NIR chemical imaging systems, 
also considering that different magnification objectives are sold separately at additional 
prices. Should both instrumentation types be available the choice to use will probably de-
pend on the type of application. The line mapping may be most suitable for initial inter-
rogation of a new or unknown formulation, for research and problem-solving experiments 
or in other cases where most spectral information from the sample is needed. The global 
imaging system is preferable when larger areas or multiple samples are analysed, when 
fast data acquisition is a requirement, or when the analytical environment requires the 
most rugged and robust NIR-CI instrument.  

 

4.4 Chemical imaging technologies (NIR-, MIR- and Raman-CI) 

NIR chemical imaging applied to pharmaceutical tablets is the main theme of this thesis 
and NIR-CI is the only chemical imaging technique used in the experimental work. How-
ever, the possibility of utilising other chemical imaging technologies (MIR and Raman) in 
pharmaceutical applications also exists. A short comparison between MIR-, NIR- and Ra-
man chemical imaging for pharmaceutical applications will shortly be presented here.   
 
The nature of the analysed sample is important to consider when deciding on the most 
suitable chemical imaging technologies for a given analytical application. Most ingredients 
for pharmaceutical tablets (API and excipients, Chapter 2) are white to off-white pow-
ders, which is why traditional microscopic analysis of a compressed tablet is unsuitable.  

Most pharmaceutical API’s are organic compounds appearing as crystalline powder. The 
API is often a salt of a specified polymorphic form that need to be distinguished from 
other related API forms (free acid or base, other salt or polymorphic forms, hydrate or 
solvate).16 NIR spectroscopy involves the overtone and combination absorptions of the 
fundamental MIR absorptions from X-H bonds (Chapter 3), however in MIR spectroscopy 
the most intense absorption will come from polar bonds (C-O, C=O, Si-O etc.). Raman 
spectroscopy is a spectrally rich scattering technique and is often better for identification 
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of different API polymorphic forms as it exhibit strong spectral differences between 
these.16 Furthermore, Raman spectroscopy is complementary to MIR and NIR as it is bet-
ter at detecting non-polar symmetrical bonds (e.g. C=C, C-C, S-S). 

The pharmaceutical excipients are varied in nature ranging from hydrophilic to hydro-
phobic, crystalline to amorphous and organic to inorganic chemical compounds. A large 
part of the frequently used excipients are carbohydrates (sugars, celluloses and 
starches). They are characterised by their many X-H bonds and are quite similar in 
chemical structure although they exhibit widely different functions in a tablet. For this 
purpose, NIR-CI has an advantage, as both MIR and Raman do not discriminate mixed 
carbohydrates as well as NIR.36-37 For inorganic excipients that have no NIR spectrum, 
e.g. the commonly used calcium phosphate, Raman is superior. An ideal solution for ana-
lysing a pharmaceutical matrix composed of organic and inorganic compounds (and 
maybe also non-polar chemical bonds) would therefore be to analyse the sample by both 
NIR and Raman chemical imaging. The combination of these two techniques to analyse a 
formulation containing some of the different types of chemical compounds mentioned has 
been successfully demonstrated.36 

To illustrate the spectral appearance of these different excipients, the diffuse reflec-
tance NIR spectra from a NIR-CI analysis of several commonly used pharmaceutical ex-
cipients and also of an API compound are displayed (Figure 8). The spectra are the mean 
spectrum of the hyperspectral data cube obtained from NIR-CI analysis of each pure 
component material. 
 
A common feature for the MIR, NIR and Raman chemical imaging techniques are that 
they are surface analysis techniques, i.e. based on radiation with relatively limited pene-
tration depths into the sample. 

Due to strong absorption and virtually no combination bands in the MIR spectral range 
this offers higher specificity and sensitivity compared to NIR. The consequence of this for 
MIR-CI applications is however, that some kind of sample preparation (sample dilution) 
to limit the amount of sample material that interacts with the light is required. To avoid 
such sample dilution MIR-CI is usually employed utilising the attenuated total reflectance 
(ATR) technique to analyze tablet surfaces.15,19,34 Close contact of the sample with the 
surface of the ATR crystal used for this technique is required. The close contact with the 
crystal surface is best obtained with liquids and extremely flat or deformable sample sur-
faces. When analysing solid dosage forms, pressure needs to be applied, which may 
damage the sample or the crystal.34 
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Figure 8 - NIR diffuse reflectance spectra from a NIR-CI analysis of common pharmaceu-

tical tablet excipients and one API compound. The spectra are the mean spectrum of the 

hyperspectral data cube obtained from NIR-CI analysis of each pure component material.  

 

Compared to MIR-CI both NIR and Raman chemical imaging work well in diffuse reflec-
tion and are suitable for surface analysis of opaque or thick materials such as tablets. 
NIR and Raman chemical imaging requires little or no sample preparation. Raman chemi-
cal imaging provides the best spatial resolution being as low as 1-2 µm (typical 2-5 µm) 
compared to about 5 µm (typical 6-25 µm) for NIR-CI.16,36-37 The disadvantage for Ra-
man-CI is longer data acquisition time and limitation of the sample area that can be 
measured. Due to the focusing nature of the laser beam used in Raman, in particular at 
high resolution, sample heating/burning can also be a problem.34,38 And finally, as for all 
Raman based techniques fluorescence may interfere and overwhelm the Raman signal.  
 
So, primarily due to speed of data acquisition, ease of operation, ability to most effec-
tively map/discriminate pharmaceutical components, and instrument price, NIR-CI was 
the chemical imaging technique purchased and used for exploring the pharmaceutical 
tablets in this project. The challenge, as for all NIR techniques, lies in the interpretation 
and chemical information extraction from the broad and overlapped absorption bands but 
multivariate data analysis will facilitate in mitigating this (Chapter 6). 

Finally, it should also be mentioned that new imaging technologies are emerging that 
may complement or compete with NIR chemical imaging. Some of these are terahertz 
imaging,39 time-of-flight secondary-ion mass spectrometry (TOF-SIMS),40 NMR-imaging,41 

and different tomographic imaging techniques.42  
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4.5 Measurement variables in NIR-CI data acquisition 

The principles of NIR diffuse reflectance in NIR-CI measurements were described in 
Chapter 3, the principles of data collection and instrumentations were discussed above, 
and the aspects of data acquisition are presented in the next chapter. In relation to these 
aspects it is important to consider what the NIR-CI instrument is actually measuring tak-
ing both the sample and measurement characteristics into account. This section will pre-
sent and discuss some of the measurement variables and their impacts that are impor-
tant to be aware of. Although there may be no easy solution or final answers to these 
measurement variables, it is important to be familiar with them for conducting a proper 
NIR-CI experiment. For example, in order to take care and be critical in the interpretation 
of NIR-CI results. 
 
When the NIR radiation - appearing as millions of photons – reaches the sample surface, 
it may be immediate reflected (specular reflectance, Chapter 3) or enter the sample. 
Some of the photons entering the sample will be lost completely by absorption in the 
sample material. Other photons will pass through the entire sample or be scat-
tered/reflected to a degree that will not be captured and detected by the instrument. The 
photons of interest will penetrate into the sample and be partially absorbed by every 
sample material/particle it interacts with. These photons are reflected to various degrees 
and may eventually return to the sample surface from where they can be detected. The 
spectral signature of this diffuse reflected NIR radiation will contain information about the 
sample components at various depths and locations in the sample. The light penetration 
into the sample and fate of the reflected light will depend on various measurement vari-
ables such as particle size, particle shape, NIR radiation wavelength, and the optical and 
chemical properties of sample components.38,43-45  
 
A model pharmaceutical tablet is schematically shown to illustrate some of these meas-
urement variables (Figure 9).  
 

 
Figure 9 - Model sample of a pharmaceutical solid-mixture showing different hypothetical 

examples (a-f) used to explain important measurement variables of NIR-CI data acquisition.    

 

In Figure 9a it is illustrated how the NIR radiation are reflected at particle/particle inter-
faces and penetrate into the sample at various depths and locations. The grey-shaded 
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area illustrates the penetration depth and sampling volume that photons entering this 
area will have interacted with. The maximum physical penetration depth is often trans-
lated into an information depth, which is the depth of sample contributing to the meas-
ured reflected radiation, and a sample volume can be calculated from this information 
depth.45 The information depth is wavelength dependent and will be discussed further in 
Section 6.3.  
 
It seems immediate apparent that any spatial resolution will be lost by this substantial 
reflection pattern. The low content illustration of component 1 in Figure 9b would then be 
difficult to detect because it would be overwhelmed by the signal of the much higher 
amount of component 2 adjacent to or below component 1. However, it seems that the 
significant penetration depth and reflection merely add a uniform baseline to the signal 
generating mixed spectra. The mixed spectra will have sufficient absorption information 
from the surface component/particles to extract this information by utilising appropriate 
data processing.38 The resulting mixed spectra are proven by NIR spectra from the hy-
perspectral data cube of a real pharmaceutical tablet in Figure 13 (Section 5.1) and Fig-
ure 38a (Section 8.1). The sample behind the spectra in Figure 38a is predominantly 
microcrystalline cellulose (95 % w/w) with low content (5 % w/w) of fine API particles 
uniformly distributed, i.e. comparable to Figure 9b. The spectral API peaks (around 5980 
cm-1) from ‘hot spots’ of API are shown to be quite weak. The other example in Figure 
38b shows the same formulation in overall batch composition but with much larger API 
particle sizes appearing as large clumps and unevenly distributed in the tablet, i.e. com-
parable to Figure 9c. The spectra from API ‘hot spots’ now show much stronger spectral 
API peaks and resemble much more the spectrum of pure API component (Figure 38c). 
Thus, despite the complex and unpredictable interactions between photons and sample 
material, the information obtained (after data processing) from any point on the sample 
surface will primarily come from the sample surface.38,44-45 Both real case examples de-
scribed above are sought illustrated in the model tablet (Figure 9b and 9c).     
 
The random reflection of NIR radiation discussed above could also influence the precision 
of the method. It is crucial that repeated measurements of the exact same sample and 
the exact same area using identical analytical conditions will provide the same results. 
Data from such an experiment are presented in Section 8.2.  
 
The model samples in Figure 9b and 9c also illustrate the impact of spatial resolution 
(pixel size). Component 1 would easily be determined in both examples (b and c) using 
the small pixel size. The difference will only be that the signal and hence the concentra-
tion will be stronger/higher for the sample in Figure 9c compared to Figure 9b. Using the 
large pixel size will relatively provide a much smaller contribution from component 1. It 
would thus make it more difficult to detect component 1. This could e.g. mean that com-
ponent 1 would not be included for this pixel when creating a binary image, of course de-
pending on the threshold value selected (Section 8.1).  
 
Pharmaceutical tablets are as before mentioned usually composed of a number of com-
ponents having different physical and chemical properties. The chemical images of ir-
regular shaped components will indeed depend on what part of the particle is presented 
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at the sample surface (Figure 9d-9e). This will also be the case for more regular shaped 
particles. As an example, consider a sample composed of similar sized spherical particles 
(Figure 9f). Although having the exact same form and size, the interpretation of a chemi-
cal image obtained from a cross-section of the sample may be that the sample is com-
posed of different sized particles (see xy-plane ‘Sample cross section’, Figure 9f). How-
ever, what the results just illustrate is spherical domains sectioned at different depths. 
This clearly demonstrates that care should always be taken in evaluation of parti-
cle/domain size results as absolute determinations.44,46  A possible solution to this issue 
is to measure several samples of a product or measure a number of cross sections of 
each sample. An example of the latter is demonstrated in Section 8.2. 

The optical and chemical properties of the sample components will also impact the in-
teraction pattern with the NIR radiation. Some components may have a strong absorp-
tion, some may not absorb at all, and some may reflect most or all radiation. It will re-
quire some well-designed, systematically NIR-CI experiments of well-defined model sam-
ples to explain and understand the impact of these different component properties (cf. 
further suggestions Section 9.2).   
 
The aspects that have been discussed in this section raise rather than answer questions 
for which there currently is no easy answer or solution. It addresses some of the limita-
tions and uncertainties on characterising today’s chemical imaging analyses of pharma-
ceutical solid-mixtures. The simplified hypothetical illustrations in Figure 9 serve to facili-
tate the perception of some of these issues but the examples are obviously not exhaus-
tive. The model figure is however useful to have in mind when evaluating chemical imag-
ing data but may also serve as a basis for designing new experimental studies that may 
address some of the unsolved aspects. Such new studies are important for further devel-
opment and better understanding of chemical imaging technologies and suggestions are 
given in Section 9.2 (Future research).  
 

4.6 Review of pharmaceutical applications using NIR-CI 

The potential of NIR-CI has been explored through many applications in both biological, 
chemical, pharmaceutical and food industries. The focus of this thesis work is on the use 
of NIR-CI in pharmaceutical applications and only reported applications from this area 
are reviewed here.  

The application of NIR-CI to pharmaceutical samples is still relatively new and not 
nearby as widely reported as for NIR spectroscopy. Due to advances in detectors, optics 
and computers commercial NIR-CI instrumentation became available around a decade 
ago and the pharmaceutical industry slowly started exploring this new technology. How-
ever, data acquisition was still rather slow compared to today’s instrumentations and 
some of the first articles report acquisition time on half a day or even days.47-48  
 
The majority of the early NIR-CI literature in pharmaceutical analysis describes the gen-
eral principle of this new technology and its potential use. The early applications include 
root-cause analysis of manufacturing problems, product development, quality assurance 
and quality control but are mostly feasibility studies on relatively simple model systems 
or examples based on a single pharmaceutical sample.2,5,15,18,47,49-50,52 The pharmaceutical 
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NIR-CI research later moved into developing methods to optimise the analysis of hyper-
spectral NIR images and investigating the factors affecting NIR chemical images of solid 
dosage forms.36,38,43,45,53-55 In the past few years the number of pharmaceutical applica-
tions using NIR-CI has increased significantly and recently NIR-CI is seen integrated in 
formulation development,14,56-57 used for mechanistic understanding of pharmaceutical 
processes58-60 and three reviews have also been published.8,34,61 Additionally, the NIR-CI 
technology primarily with focus on pharmaceutical applications is treated more exten-
sively in a few book chapters.15-16,33,48  
 
The primary focus of this thesis is on the use of NIR-CI in formulation development of 
solid dosage forms and recently two papers were published on that particular objective. 
Both development cases concerned evaluation of the uniform distribution of components 
in the formulated product using NIR-CI. Hilden et al.56 examined whether the difference 
in particle size of an extra-granular component affected the uniformity of its distribution 
within finished tablets. Chemical images of the tablets were generated by principal com-
ponent analysis (PCA) and transformed into binary images from which particles size sta-
tistics were determined and used for evaluation. Gendrin et al.14 used NIR-CI to evaluate 
the homogeneity of two types of process intermediates obtained with different process 
parameters from an extrusion process. Both univariate (single wavelength selection) and 
multivariate (classical least squares) analysis were used to generate chemical images 
that were evaluated visually and by histogram statistics. Both studies demonstrate NIR-
CI as a valuable tool for supporting formulation development studies and optimising 
products and processes. 
 
With the increasing number of studies on the use of NIR-CI in pharmaceutical applica-
tions the diversity of the investigations are also increasing. Table 1 presents a categori-
sation of the different types of pharmaceutical applications published on the use of NIR-
CI. Together with the generated list of data analysis methods used in these studies (Ta-
ble 2, Section 6.2) this provides a comprehensive overview of published literature on the 
use of NIR-CI in pharmaceutical applications. The type of NIR-CI instrumentation used 
for each study can also be read from Table 1.   
 
The recent 1-2 years of steadily increasing number of publications on the use of NIR-CI 
in pharmaceutical applications reveal that more and more research groups from industry 
and academia are exploring and developing the capability and potential use of NIR-CI for 
analysing pharmaceutical samples. Thus, with this increasing growth NIR-CI will likely 
play a more and more dominant role in pharmaceutical analysis; maybe even evolve in a 
similar fashion as for NIR spectroscopy. 
 
 
 
 
 
 
 
 



- NIR-CI principles and instrumentation - 
   

 
 

 26

 

Pharmaceutical Application Reference 

Compositional information or  
Quality assessment 

3, 5, 8, 15, 15, 17, 20, 33, 36, 37, 
50, 53, 62, 71, 72, 73 Paper I,III 

Fundamental NIR-CI technology; 
Data processing or image processing 
development 

15, 15, 38, 43, 44, 45, 53, 63, 64, 
65, 71, 72, 73, 74, 75, 76, 77 Paper I-IV 

Powder blend and tablet uniformity, 
(content uniformity) 

3, 15, 18, 33, (35), 49, 51, 59, 64, 
(65), 66, 77 Paper II,III 

Process information – Trouble-shooting 15, 15, 37, 51, 53 

Formulation development 14, 15, 56, 57  Paper II 

Mechanistic process understanding 58, 59, 60 

Particle/domain size determination 15, 33, 53, 56, 58, 59, 69, 71 Paper II 

Counterfeit product detection 15, 62, 67, 68 

Coating studies 5, 69, 70 

High throughput analysis 15, 35, 57 

Trace contaminant, polymorph 15, 16 

Table 1 - A comprehensive list of pharmaceutical applications using NIR-CI. The chemical im-

aging systems used/described in the studies are: Normal font = Global imaging; Italic = Line 

mapping; Bold = Both systems.  

 
The increased interest on the use of NIR-CI in pharmaceutical applications is also been 
experienced for the other chemical imaging principles, mid-infrared chemical imaging19,78-

82 and Raman chemical imaging.17,44,46,71,83 Applications reported for MIR-CI and Raman-
CI will not be presented further here, but readers are encouraged to look for more infor-
mation in the supplied references, which provide a fine introduction on the use of MIR-CI 
and Raman-CI in pharmaceutical applications. However, one interesting study should 
shortly be mentioned though. The study is special as it combines the use of Raman-CI 
and NIR-CI to study pharmaceutical formulations.36 The complimentary nature of NIR 
and Raman spectroscopies (section 4.4) provides the opportunity for a more complete 
chemical imaging analysis of pharmaceutical formulations. Clarke et al.36 analysed solid 
dosage formulations by separate FT-NIR and Raman chemical imaging instruments as-
suring to analyse the exact same area of each sample. This ‘chemical image fusion’ 
method showed how some formulation ingredients were better mapped by Raman-CI 
(the API and an inorganic excipient) and some by NIR-CI (a diluent, disintegrant and lu-
bricant). The most appropriate chemical image of each ingredient were selected from the 
two techniques and thereafter merged to generate a final composite image. This provided 
an improved evaluation of the pharmaceutical formulations compared to using only one 
of the chemical imaging technologies. The complementary benefits of NIR-CI and Raman-
CI were demonstrated, but it probably requires a commercially available instrument cov-
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ering both techniques in one before it will find wider pharmaceutical applications. Be-
cause if the synergy effect of this chemical image fusion technique is so advantageous, 
then how come that, to the author’s best knowledge, no other work has been published 
using this fusion technique since it was introduced in 2001?   
 

4.7 Process analytical technology and NIR chemical imaging 

The Process Analytical Technology (PAT) initiative driven by the United States Food and 
Drug Administration (FDA) was shortly mentioned in the Introduction to the project (Sec-
tion 1.2). It is further presented here as it plays a key role in promoting the interest and 
implementation of NIR chemical imaging in pharmaceutical industry and academia.  

FDA initiated the PAT initiative as the pharmaceutical manufacturing compared to other 
industries was characterised by lack of innovation and hesitation to introduce new tech-
nologies to improve the manufacturing process. In general the performance of the phar-
maceutical industry was (and is) characterised by high manufacturing costs and poor ef-
ficiency. The predominant reason cited is the rigid regulatory system. Despite frequent 
manufacturing problems, batch rejections, reworks, recalls etc., the uncertainties of fac-
ing regulatory changes and for example losing marketing authorisation has led many 
pharmaceutical manufacturers to leave (not very robust) processes unchanged.  

In September 2004, a final version of the PAT guidance document was released by the 
FDA1. The world wide regulatory framework and implementation of PAT is facilitated by 
guidelines from the International Conference on Harmonization (ICH). The concept of PAT 
is now adapted in the ICH guidelines of Pharmaceutical Development (ICH Q8)4 and 
Quality Risk Management (ICH Q9).84   
 

 
 
Briefly, the concept of PAT is quality by design (QbD); i.e. instead of merely passively 
testing the quality of the manufacturing process steps and end products the quality 
should be built-in or should be by design.  

The goal of PAT is to design and develop well-understood processes that will consis-
tently ensure a predefined quality at the end of the manufacturing process. Through an 
in-depth characterisation and understanding of the pharmaceutical ingredients, the proc-
esses and their relationship, the FDA will allow unit operations to be adjusted along the 
manufacturing process to maintain an end product of consistent quality. The manufactur-
ing process is controlled through timely measurements and the ultimate goal is to release 
the product immediately after the last manufacturing step, i.e. real time release. This is 
indeed in contrast to the traditional manufacturing paradigm with time-defined end 
points for processes and extensive end product testing to release the products.  

FDA considers PAT to be: 

…a system for designing, analyzing, and controlling manufacturing 
through timely measurements (i.e. during processing) of critical 
quality and performance attributes of raw and in-process materials 
and processes, with the goal of ensuring final product quality.1  
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An important element of the PAT initiative is promoting technologies that can provide in-
creased process and product understanding and identify and monitor all the critical qual-
ity attributes (CQA) and critical process parameters (CPP). The role of NIR-CI in PAT lies 
currently in the identification of CQA/CPP and root cause analysis. In order to adequately 
monitor CPP there is a need to develop NIR-CI hardware and software. NIR-CI may be 
useful for some at-line applications but development in instrument design, acquisition 
speed, flexibility, ruggedness etc. are needed for NIR-CI to be a complete PAT tool and 
applicable for on-line and in-line measurements.  

The PAT guidance recommends PAT principles and tools to be introduced during the 
development phase. The mechanistic understanding of how formulation and process fac-
tors affect product performance is established in early development and used later for 
setting the product and process specifications. It is here, that NIR-CI currently can play a 
major role in PAT. 
 
The FDA itself has shown a great interest in NIR chemical imaging and conducted differ-
ent regulatory research to evaluate the technology and its use for pharmaceutical appli-
cations.3,20,49,62-63 The PAT framework is often mentioned in literature reports on NIR-CI 
in pharmaceutical applications and there are also a few of them specifically describing 
NIR-CI in relation to PAT.2,15,61,85  

 



 
 
 

 29

CHAPTER 5 

DATA ACQUISITION AND RESEARCH INSTRUMENTATION 
 

5.1 Data acquisition 

Data acquisition is the first of three steps in a full NIR-CI analysis and is the fundament 
of a successful experiment. The quality of the hyperspectral raw data is depending on the 
data acquisition and no data processing methods are able to correct for poor quality data 
and provide accurate images of the distribution of sample components if the data acquisi-
tion is not performed properly. However, one of the challenges for the NIR-CI technology 
lies in how to confirm the best or most appropriate data acquisition. This is a difficult task 
as no calibration standards (e.g. a ‘NIR-CI calibrated tablet’) exist to identify these set-
tings.  
 

 
 

SAMPLE PREPARATION 

One of the advantages of NIR-CI is that almost no sample preparation is needed prior to 
the data acquisition. Due to the focusing nature of the line mapping system flat sample 
surfaces are preferable. For tablets having an inherent flat surface from using a flat 
punch-set no sample preparation by sectioning is necessary. For convex tablets or when 
it is desirable to explore the internal sample matrix a microtomer (e.g. Leica EM Trim, 
Leica Mikrosysteme GmbH, Vienna, Austria, Figure 10) can be used to mill flat the sam-
ple surface.  

 
 

Figure 10 - Microtomer (Leica EM Trim) used to section tablets for obtaining a flat sample surface. 
 

Definition of Data Acquisition in this thesis: 

Includes sample preparation, instrumental settings and basic 
spectral transformation. The raw data output from a NIR-CI 
measurement is organised in a three-dimensional data struc-
ture with two spatial axes and one wavelength axis, also called 
a hyperspectral data cube. 

Bevel-edge blade  

Sample Sample holder 
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The microtoming milling technique is however not without issues as some component 
materials may smear or be displaced during this sample preparation.38 For the micro-
tomer milling process the tablet is glued onto a microscope slide using a cyanoacrylate 
adhesive. The milling is done with respect to the microscope plane, which has the advan-
tage that the flat tablet surface automatically will be parallel with the image plane.  
 

INSTRUMENTAL SETTINGS AND RESEARCH INSTRUMENTATION 

The instrumental settings to consider depend on the type of NIR-CI system being used. 
For the line mapping system used for this thesis work the instrumental settings comprise 
area to be measured, spatial resolution (pixel size), spectral resolution, number of spec-
tral scans and wavenumber range selection.  
 
The hyperspectral NIR data cubes acquired in all experiments throughout this thesis was 
collected using a Spectrum Spotlight 350 FT-NIR line mapping system from Perkin Elmer 
(Seer Green, UK, Figure 11a).  
 
 

 

 (a) 
 
 

 
 (b) 

Figure 11 - (a) Photograph of the Spectrum Spotlight line mapping instrument (Perkin Elmer, UK). 

(b) Schematic illustration of the steps in line mapping data acquisition. (1) The tablet with a flat 

surface is positioned on the sample stage and sample area defined. (2) Spectra are obtained on a 

linear detector for each pixel size in the defined area. (3) With sample stage movement a grid of 

spectral information is collected. (4) A hyperspectral data cube is finally obtained displayed as a 

false colour image. 
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Prior to each analysis a background reference was measured (cf. sub-section Spectral 
correction below). The samples were in general fixed either onto a microscope slide as 
described above or in an appropriately sized rubber-ring holder, which were then 
mounted on the XYZ motorised stage. Each sample was moved across the field of view of 
a 16-element mercury-cadmium-telluride (MCT) linear detector array. The pixel size gen-
erally used was 25 x 25 µm (alternatively 6.25 x 6.25 µm) so the 2D image was built up 
line by line in steps of 400 µm x 25 µm. The third dimension of NIR diffuse reflectance 
spectra were each the average of 8 scans from the wavenumber region 7800-4000 cm-1 
using a 16 cm-1 spectral resolution (= 476 wavenumber channels). The Spotlight instru-
ment and a schematic presentation of the line mapping data acquisition are both dis-
played in Figure 11.  

 

SPECTRAL TRANSFORMATION 

Spectral correction  

As the spectral responses obtained from a NIR-CI measurement contain information from 
both the sample and the instrument it is necessary to correct for the instrument response 
by an initial background measurement. This is performed measuring the intensity of light 
(Ib) diffusively reflected from of a high-reflectance standard SpectralonTM (Labsphere, 
Inc., North Sutton, NH). The SpectralonTM is a white ceramic disc made of polytetra-
fluoroethylene (PTFE) that reflects almost 100 % light at each wavenumber. The inten-
sity of light reflected from the sample is then measured (Is). The final NIR diffuse reflec-
tance raw data (R) from the data acquisition is then calculated as the ratio between the 
sample and the background measurements (R = Is/Ib). The diffuse reflectance data (R) is 
organized in a three-dimensional structure (the hyperspectral data cube).  
 

Conversion to absorbance 

Prior to data analysis all raw reflectance data (R) are transformed into absorbance (A) by 
the relation A = -log10R = log10(1/R). Assuming the path length (ℓ) on average is con-
stant for the NIR diffuse reflectance mapping measurements of the sample, a linear rela-
tionship then exists between absorbance (A) and analyte concentration (c) by Beer-
Lambert’s law: 
 
A = log10(1/R) = ε × ℓ × c,       [1]  
 
where ℓ represents the path length of the sample and ε is the molar absorptivity that is 
specific to each analyte and a function of wavenumber.  
 

Unfold 3D hyperspectral data cube 

The generated three-dimensional hyperspectral data cube can be analysed by both ordi-
nary two-way and three-way methods but the two-way methods have been found most 
suitable for this type of data.86 To make hyperspectral image data amenable for two-way 
methods it is necessary to unfold the 3D hyperspectral data cube to a 2D matrix, in 
which each row is a spectrum from one of the pixels (Figure 12).  
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Figure 12 - Schematic description of 3D hyperspectral data cube unfolding for data processing ap-

proaches (CLS, PCA, PLS etc.) and subsequent matrix refolding.  

 

Once all data acquisition and data processing has been performed the resulting 2D matrix 
of e.g. CLS or PLS prediction values, PCA score values etc. is refolded to retain the pixel 
location from the corresponding spectrum and generate the chemical images (Figure 12). 
To illustrate the actual output from a NIR-CI data acquisition (before unfolding) and 
comparing it to the final result from data processing, a typical example of a hyperspectral 
data cube, its underlying spectra and a resultant chemical image are shown in Figure 13.  
 

 
 

Figure 13 - (a) Illustration of a typical hyperspectral NIR data cube of a five-component tablet 

formulation shown as a false colour image; (b) its underlying spectra (every 500th spectrum); 

and (c) the resultant chemical image of API generated from data processing using classical least 

squares.  

 

5.2 Other research instrumentation  

For some of the NIR-CI experiments samples were compared with conventional NIR spec-
troscopy analysis (II). A Bruker FT-NIR Multi Purpose Analyzer instrument (Bruker Op-
tics, Ettlingen, Germany) equipped with a tablet auto-sampler and capability of analysing 
transmission spectra of whole tablets was utilised for this purpose. Transmission NIR 
spectra were measured through both sides of tablets and an average spectrum was cal-
culated for each tablet. A spectral resolution of 16 cm-1 and 64 scans per spectrum were 
used. The wavenumber region from 12500 cm-1 to 5800 cm-1 was measured. Air was 
used to record a background spectrum.  
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CHAPTER 6 

DATA PROCESSING –  

ANALYSING THE HYPERSPECTRAL DATA CUBE 
 

6.1 Introduction 

Processing of the hyperspectral data cube concerns analysis of the spectral data con-
tained within the data cube resulting in one or more images reflecting the spatial distri-
bution of components within the imaged sample. Often, although this depends on the 
data processing method, the chemical content of the components in the imaged sample 
is estimated resulting in concentration or chemical images.  

Data processing is the second of the three overall steps in the full analytical work of a 
NIR-CI experiment as defined in this project.  
  

 
 
Data acquisition is described in Chapter 5, data processing is described in this chapter, 
and the image processing will be described in Chapter 7. Extracting all the elements from 
each of these three overall steps, a full NIR-CI analysis can be divided into the following 
steps:  
 

1) Sample preparation 

2) Instrumental raw data acquisition (hyperspectral data cube) 

3) Convert reflectance data to absorbance 

4) Unfold 3D data cube to a 2D matrix  

5) Wavenumber selection  

6) Pre-processing spectra 

7) Perform data analysis on two-way data to generate images reflecting the spatial 

distribution of chemical components in the imaged sample (e.g. chemical images) 

8) Extract information from generated images by image processing tools 

 
As defined above data processing comprise step 5-7 and is initiated by wavenumber se-
lection and pre-processing spectra. The data analysis method is then applied to extract, 
usually chemical, information from the hyperspectral data cube. A univariate approach 

Definition of data processing in this thesis: 

The processing of the hyperspectral data cube into a, typically 
chemical, image by univariate or multivariate image analysis meth-
ods. This part includes wavelength selection, spectral pre-processing 
and the subsequent data analysis to generate images visualising the 
distribution of each of the components within the imaged sample. 
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can be applied by simply selecting a single image plane (cf. Figure 5). However, this ap-
proach only uses a small amount of the immense information contained in the hyper-
spectral image cube and will often fall short of determining the accurate spatial informa-
tion for more complex samples. Since a NIR-CI experiment also easily generates more 
than 10000 spectra and 4 millions data points, data are best suited for multivariate data 
analysis methods. Some of the most commonly used multivariate methods are described 
and discussed in this chapter. 
 
To perform data processing of the hyperspectral data cubes various commercial soft-
ware’s or free open source programs for download are available. The commercial soft-
ware’s are often purchased with the instrument hardware (e.g. ISys by Malvern; Hyper-
view by Perkin Elmer; CI XpertTM by ChemImage; OPUS/3D by Bruker). Image process-
ing programs freely available for download are for example ImageJ87 and JIMIA.88 This 
type of ready-to-use data and image processing programs may be easy accessible, intui-
tive, fast and convenient to use particularly with no prior knowledge of multivariate im-
age analysis. However, there is often a big difference in how well developed and sup-
ported these programs are and how many features they contain. Thus, limitations in 
processing the hyperspectral data are often met and the programs are often inflexible 
turnkey solutions that perform “black-box” analysis, where it is impossible to follow and 
evaluate the effect on the data for each step applied during data processing. As an ex-
ample, the software enclosed with the line mapping instrument used for all experiments 
in this thesis work was evaluated and assessed to be inadequate in several aspects 
(however, it was also only promoted as experimental software). All raw reflectance data 
(R) produced for this project was therefore imported and processed in the Matlab® pro-
gramming language89 and some of its additional toolboxes. This provides almost unlim-
ited opportunities, large flexibility and provides a much more comprehensive understand-
ing of each data processing step.  
 
The high importance of reliable data processing methods was realised during this project. 
The data processing methods applied to hyperspectral data cubes are by various well-
defined manners able to generate images reflecting the composition of a sample. How-
ever, the real challenge is to select the method that generates the ‘best’ or most accu-
rate images. Inadequate methods will produce inaccurate chemical images that will lead 
to erroneous conclusions drawn not only from the immediate apparent visualisation of 
the components distribution but also from the subsequent image processing analysis. Un-
fortunately, there is no universal data processing method that is superior for all hyper-
spectral data cubes. And when different univariate and multivariate methods are applied 
to the same pharmaceutical samples the results are often difficult to compare. The im-
ages may visually look similar but can actually provide different chemical information. 
Hence, there is a need for objective criteria such as e.g. a ‘NIR-CI calibrated tablet’ (in 
analogy to a certified reference material) to assess what the ‘best’ or most accurate im-
age is. This is not currently available (although ASTM are working on the subject16), so 
the choice of proper analysis therefore mostly depends on the type of data set, the pur-
pose of analysis and experience. Yet, there is one common way to compare and evaluate 
different data processing methods. This requires that a calibration data set is available. 
Regression analysis can then be performed for each method and the prediction error, 
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root mean square error of prediction (RMSEP) or root mean square error of cross-
validation (RMSECV), can be estimated. The method providing the lowest prediction error 
will be considered to generate the most accurate chemical images. This evaluation ap-
proach is the main subject of paper I, where three different common calibration ap-
proaches were compared.    
 
In general, it was realised that to further develop and mature the NIR-CI technology it 
was necessary to:  

1) describe each data processing method in adequate details; 

2) evaluate the reliability and accuracy of the chemical images produced;  

3) discuss how to interpret the obtained results in relation to the experimental data 
and the fundamental of the data analysis method to fully understand the relation-
ship.  

The work by Sasic71 is an excellent example of such a thorough work with detailed dis-
cussions of the PCA results and score images produced from Raman and NIR chemical 
images of both minor and major component in common pharmaceutical tablets. During 
this thesis work the classical least squares (CLS) method was found to be fast, easy to 
use and relatively accurate. CLS therefore became the preferable data analysis method, 
especially when only spectra from the pure components were available. Hence, CLS was 
employed in all the papers related to this thesis work (I-IV). A more detailed discussion 
is therefore given on particular CLS, including how to interpret the results and the CLS 
generated chemical images (Section 6.3). 
 

6.2 Data analysis method used for NIR-CI studies in pharmaceuti-
cal applications 

In most of the NIR-CI literature analysing hyperspectral data cubes of pharmaceutical 
samples the focus has more been on the actual application than a critical evaluation of 
the data processing methods and their appropriateness and accuracy. Table 2 is created 
from a thorough examination of the NIR-CI literature in pharmaceutical applications and 
provides an overview of the data analysis method used in these studies. Many of the 
early NIR-CI studies used univariate methods or multivariate turnkey approaches from 
commercial software. As it was realised that data processing is crucial for successful NIR-
CI experiments, studies began to focus more on developing, evaluating and thoroughly 
discussing data processing methods for their reliability and ability to obtain the most 
meaningful and accurate images. For example, Clarke53 presented and discussed a prin-
cipal component analysis (PCA) and partial least squares analysis (PLS) method for ana-
lysing NIR-CI data and how to extract process related information from these. Two other 
studies, one comparing five different data processing approaches64 and one comparing 
CLS and PLS regression65 were also contributing to the data processing development 
work. Paper I (see also section 6.4) is also contributing to this work. Three common cali-
bration approaches (single wavenumber, CLS and PLS1) were compared by their ability 
to generate accurate chemical images. A calibration data set of tablets with five compo-
nents was used for analysis. Chemical images of the API and the two major excipients in 
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the formulation were produced. The accuracy of the generated chemical images was 
evaluated by the concentration prediction ability. 
 
 

Data Analysis Method Reference 

Single wavenumber 
14, 15, 17, 18, 33, 35, 38, 49,  
60, 64, 69 Paper I 

Peak-height ratio, peak area 33, 36, 37, 64 

Correlation coefficient 33, 36, 64, 72 

Principal Component Analysis (PCA) 
5, 15, 16, 33, 37, 38, 44, 53, 56, 
59, 67, 71, 72, 73  

Multivariate Curve Resolution (MCR) 72, 74, 75, 76 Paper III 

Classical Least Squares (CLS) 14, 16, 65, 72 Paper I-IV  

Partial Least Squares (PLS, pure spectra), 
also named PLS-Classification 

15, 16, 20, 33, 37, 38, 49, 50, 53,  
57, 58, 59, 60, 62, 63, 66, 67 Paper IV 

Partial Least Squares (PLS, calibration set) 16, 64, 65, 77 Paper I 

Table 2 - Data analysis methods theoretically described or used for analysing hyperspectral NIR 

data cubes in pharmaceutical applications. 

 

6.3 Data processing of NIR-CI data 

Prior to applying the actual data analysis method that generates the chemical images the 
spectral range and pre-processing methods must be selected. These two steps are in-
cluded in the definition of data processing and described below prior to the actual data 
analysis methods. The efficiency of pre-processing method or spectral range selection 
can only be evaluated in conjunction with the data analysis methods by using a calibra-
tion data set and select best performance by the lowest prediction error obtained. 
 

WAVENUMBER SELECTION 

NIR-CI data is usually collected in the spectral region 7800-4000 cm-1 (1280-2500 nm). 
The cut off at 7800 cm-1 (the NIR region normally spans to 12800 cm-1) is usually per-
formed because the impact from noise becomes too large at higher wavenumbers where 
the spectral absorption is low.    
 
Multivariate methods often excel above univariate methods because of the possibility to 
include the entire measured wavenumber range. Nevertheless, the precision of a multi-
variate method can, in some cases, be improved by a proper variable, i.e. wavenumber, 
selection. As explained, this requires a calibration data set to evaluate and select the 
spectral range that provides calibration models with the lowest prediction error. Table 3 
in the next subsection on pre-processing shows a few results from such a wavenumber 
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range evaluation for the CLS method. This is just for illustrating that prediction results 
can be improved by appropriate spectral range selection.  
 
For partial least squares regression (PLS) a variety of variable selection methods exist 
such as for example variable importance in the projection (VIP)90-91 and iPLS92. When no 
such methods or calibration data set are available to confirm the most suitable variables, 
the selection must be decided from experience and visual inspection of the spectral raw 
data. The general approach used for the CLS analysis has been to remove the noisy 
wavenumber ends and reduce the spectral range from 7800-4000 cm-1 to e.g. 7500-
4200 cm-1.  
 
Another important impact of wavenumber selection is the consideration of depth of pene-
tration of the NIR light into the sample. A typical average spectrum from a hyperspectral 
data cube obtained from a NIR-CI analysis of a pharmaceutical tablet shows that the ab-
sorption increases as the wavenumber decreases (Figure 14). This means that the NIR 
light cannot penetrate as deeply as it can at higher wavenumbers. Clarke et al45 con-
firmed this and found an exponential relationship of NIR light penetration with wavenum-
ber (Figure 14). The information depth, which is the depth of sample contributing to the 
measured reflected radiation, was found to increase exponentially with increasing 
wavenumber. From 9090-4000 cm-1 (1100-2500 nm) the information depth varied from 
777 µm to 109 µm. However, it was also determined that half of the contribution to any 
obtained reflectance spectrum will come from the top surface (from 180 µm to 25 µm for 
the spectral range 1100-2500 nm).45 The consequence of this relationship actually makes 
it possible to actively adjust the penetration depth by appropriate wavenumber selection. 
 
 

 
Figure 14 - Schematic illustration of a typical average spectrum from a 

hyperspectral NIR data cube and the exponential relationship between 

information depth (bold) and wavenumber determined by Clarke et al.45 
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SPECTRAL PRE-PROCESSING 

The raw NIR diffuse reflectance spectra obtained from a NIR-CI measurement contain 
both chemical and non-chemical information about the solid sample.15,93 The source of 
non-chemical information may originate from the sample (e.g. uneven sample surface or 
differences in sample density) and/or the instrumentation (e.g. changes in lamp inten-
sity, detector response or other instrumental noise). The resulting effects are typically 
observed as spectral baseline offsets or a sloping baseline. 

As it is usually the chemical information that is of interest in NIR-CI experiments the 
non-chemical biases are sought removed by different pre-processing techniques. These 
pre-processing techniques are routinely used in conventional NIR spectroscopy on 
smaller sets of spectra but can also be applied to hyperspectral data cubes of thousands 
of spectra. The most common pre-processing methods used in NIR-CI experiments on 
pharmaceutical solid dosage forms are first and second Savitzky-Golay derivative trans-
formation94, standard normale variate (SNV)95, multiplicative scatter correction (MSC)96, 
baseline corrections or a combination hereof. Note, that Savitzky-Golay derivative trans-
forms imply choosing derivative order, filter width and polynomial order. For example, a 
first derivative transform with a nine-point filter width and polynomial order three is here 
denoted “first (or 1st) derivative (9/3)”. 
 
Careful selection of spectral pre-processing method(s) can improve the final results. 
However, it is difficult to confirm the best pre-processing unless a calibration data set is 
available to estimate the prediction error for this evaluation. Using this latter approach to 
compare the effect of using different pre-processing treatments in NIR-CI data process-
ing have only been investigated in a few studies (I).54,65 The pre-processing method 
evaluation was only a secondary part of paper I. In that study, results from two pre-
processing methods were shown for each of three data analysis method applied to a cali-
bration data set of hyperspectral NIR data from a conventional pharmaceutical tablet 
formulation. These two pre-processing methods were selected as the two best of a range 
of different pre-processing methods evaluated for their estimated prediction error results 
(RMSECV) from a regression analysis. All these results were not included in the study (I), 
but Table 3 below presents the results that formed the basis for selecting the two best 
performing pre-processing methods for the CLS method (the two best pre-processings 
selected are highlighted by grey-shaded areas). Note, that only the fourth lowest predic-
tion error value was obtained for API using ‘1st derivative (9/3)’, but this pre-processing 
was nevertheless chosen as a compromise due to its better prediction results for the two 
other components, cellulose and lactose (compared to particularly the competing pre-
processings ‘SNV + 1st derivative (9/3)’ and ‘SNV + 2nd derivative (9/3)’). 
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Table 3 - The effect of using different spectral pre-processing treatments in data 

processing of hyperspectral data cubes. Prediction results (RMSECV) are shown for 

three different components in a conventional five-component pharmaceutical tablet 

formulation from CLS regression analysis of a calibration data set containing nine 

samples. The effect on prediction results for selecting different wavenumber ranges 

are also shown for ‘2nd derivative (9/3)’ pre-processing. The two pre-processing 

methods selected for further calculation (cf. Paper I) is highlighted in the grey-

shaded areas.  

 
 

DATA ANALYSIS METHODS OF HYPERSPECTRAL DATA CUBES 

Some of the most commonly used univariate and multivariate analysis methods for hy-
perspectral image analysis and methods applied in this thesis work are presented in this 
subsection. The presented methods will manage to satisfactorily and reliably analyse 
most hyperspectral NIR data from pharmaceutical applications. Paper I contributes to the 
knowledge foundation being built for developing reliable data processing methods and 
these results are presented in Section 6.4. 
 

Univariate method 

One univariate method is simply to select an image plane from the hyperspectral data 
cube (cf. Figure 5). The images produced are thus the absorbance intensity values in 
each pixel at the specific wavenumber selected. This is the easiest and fastest way of 
analysing hyperspectral data cubes. For this method to be successful and provide reliable 
chemical images of the component of interest, it is necessary to select a unique, distinct 
absorption band with little spectral overlap from the other components in the sample. 
This may work for simple samples, but it is often difficult to find distinct, characteristic 
absorption bands for all components in more complex pharmaceutical samples. Often the 
API has one or more distinct, well resolved bands but many excipients – e.g. the fre-

API Cellulose Lactose CLS analysis 
RMSECV-values 

(9 calibration spectra) Wavenumber range: 4200-7500 cm-1  

1st derivative (9/2) 0.59 1.27 1.79 

1st derivative (11/2) 0.65 1.27 1.78 

1st derivative (9/3) 0.40 1.16 1.82 

SNV + 1st derivative (9/3) 0.30 1.39 2.93 

1st derivative (11//3) 0.45 1.23 1.87 

1st derivative (9/3) + mean center 0.49 2.71 7.93 

1st derivative (15/3) 0.55 1.28 1.80 

MSC  1.96 2.21 3.06 

MSC + mean center 1.48 2.74 7.82 

SNV + 2nd derivative (9/3) 0.31 1.63 2.85 

2nd  derivative (15/3) 0.43 1.47 1.85 

2nd  derivative (9/3) + mean center 0.42 2.22 8.35 

2nd  derivative (9/3) (4200-7500 cm-1) 0.23 1.34 1.94 

2nd  derivative (9/3) (4000-7800 cm-1) 0.65 1.84 2.19 

2nd  derivative (9/3) (4800-6500 cm-1) 0.48 1.86 1.84 
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quently used carbohydrates – have broad peaks and often very similar spectra. This was 
well illustrated by the single wavenumber chemical images of the API and two major car-
bohydrate excipients produced of the 5-component pharmaceutical tablets in paper I.  
Fairly accurate single wavenumber chemical images of API but not of the two carbohy-
drate excipients were obtained. The distribution information of the two excipients was 
also not very well resolved, which confirm the high RMSECV results.  
 
The distinct absorption band for each compound in a sample is best selected from the 
NIR spectra of the pure components if available. For proper wavenumber selection it is 
often necessary to pre-process these spectra to resolve and highlight subtle spectral 
peaks. The appropriate pre-processing method to use is sample dependent and should be 
determined case-by-case. However, second order derivative transform is often suitable 
for the task and advantageously compared to e.g. first derivative spectra, as the absorp-
tion peaks for second derivative spectra will appear at the same position as for the origi-
nal peaks.  
 

Multivariate methods 

The univariate method suffers from background variation of the sample components not 
of interest and other interferences. This can be overcome by using multivariate tech-
niques. The advantage of multivariate analysis is that the entire spectrum can be used 
and interferences can be separated from the information of interest.  
 

Principal Component Analysis (PCA)  

Principal component analysis (PCA) is probably the most used method in multivariate im-
age analysis.97-99 Table 2 also indicates that it has been frequently used for analysing hy-
perspectral data cubes in pharmaceutical applications. However, recently publications 
have pointed out drawbacks and limitations of using PCA for analysing hyperspectral data 
cubes of pharmaceutical samples.71,72,74. 
 
PCA is a multivariate data compression method that seeks to extract the major system-
atic variation in a data matrix and reduce it to a few variables, called principal compo-
nents (or PCs). The principal components are new uncorrelated linear combinations of 
the original variables. The first principal component (PC1) describes the largest variation 
in the data set, the second PC the second largest variation and so forth. A loading is pro-
duced for each PC. Loadings provide information about the relation between the original 
variables and the PCs. In PCA models of spectral data this means that the loadings look 
similar to spectral features and even so, similar to the pure spectrum of a compound if a 
principal component mainly explains the variation for this pure compound. A score value 
is also assigned each sample (spectrum) for each PC based on the relative contribution of 
each PC. With a score value for each pixel spectrum, score images for each PC are pro-
duced as the final result from a PCA analysis of hyperspectral data.  
 
The primary drawback reported for PCA on NIR-CI data is that a principal component 
score image can not be unambiguously assigned to a particular chemical compound be-
cause it is difficult to associate the loadings with the pure compound spectra. Care should 
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therefore be taken to draw conclusions on the distribution of a compound from a PC 
score image. Another problem is that the numbers of PCs are often not in accordance 
with the number of chemical compounds in the sample.16,71,72,74   
 
Despite the limitations reported for PCA it still has a role to play in analysing hyperspec-
tral data cubes of pharmaceutical samples. Due to its unsupervised nature it can be used 
without any prior knowledge of the sample and do not require any reference samples 
(e.g. pure component spectra or a calibration data set). It is thus suitable for initial ex-
ploratory analysis of a sample, especially samples of unknown compositions, and may for 
example reveal the presence of un-intended products (polymorphs, hydrates, contami-
nants etc.) that will not be captured by supervised methods. 
 
Acknowledging the apparent limitations of PCA, a method has been developed to opti-
mise PCA for its exploratory use.73 The method is based upon an initial PCA analysis, but 
takes it a step further. It combines PCA results with correlation coefficient calculations 
between one single spectrum selected from the image and all other image spectra. Fur-
thermore, an enhanced contrast function is introduced that aims at enhancing the chemi-
cal and spatial information from the correlation coefficient image. An example is included 
to illustrate the method (Figure 15). The tablet sample used in this example is a five-
component tablet formulation also used for other NIR-CI experiments in this thesis (cf. 
Table 4, Batch 9). In fact, it was the exact same sample analysed by single wavenumber 
analysis, CLS and PLS1 in (I), which therefore can be used for comparison (Figure 4 in 
Paper I).  
 
 

 
Figure 15 - Schematic presentation of a traditional principal component 

analysis combined with correlation coefficient calculations of hyperspectral 

image data of a five-component tablet sample.73 The false colour image of 

the hyperspectral data cube (a) is first analysed by PCA. Secondly, a single 

spectrum [(x,y) = (52,20); α=0.1] from the PCA score image (b) is used for 

initial correlation coefficient analysis (c). An enhanced autocorrelation coef-

ficient routine is used to generate the final enhanced coefficient image (d). 

The CLS generated image of same tablet sample is shown for comparison  

(e, using 1st derivative (9/3)).  

Chemical API image by CLS
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A conventional PCA of the hyperspectral NIR data cube is initially performed (Figure 15a). 
Any of the generated principal component score images can subsequently be used to se-
lect a single pixel spectrum (Figure 15b). This spectrum is used for calculating the corre-
lation coefficient with all other spectra from the hyperspectral image and thus generating 
an image based on correlation coefficients (Figure 15c). However, a disadvantage work-
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ing with correlation coefficients in hyperspectral image analysis is that many of the spec-
tra in the image are highly correlated with each other, making the interpretation difficult. 
An enhancement function was therefore introduced to increase the discrimination be-
tween the correlation coefficients.73 The final results show the most similar pixels to the 
first selected pixel in an image based on the enhanced correlation coefficient (Figure 
15d). For comparison the chemical image of the same sample analysed by classical least 
squares (CLS, see next subsection) is also displayed (Figure 15e). 
 
The major advantage of the presented PCA-based method is that it requires no prior 
knowledge of the composition of the sample and the input for the analysis is just the hy-
perspectral data cube from a NIR-CI data acquisition. There are some challenges associ-
ated with this method (e.g. how to select appropriate discrimination power by adjusting 
the α-parameter) but these will not be discussed further here.73 Despite the challenges, 
this method is found very useful for an initial exploratory and scrutinising study of a new 
and unknown tablet formulation.  
 

Classical Least Squares (CLS)  

The classical least squares (CLS) model is most often used in spectroscopy and is also 
directly applicable to hyperspectral data analysis.80,100-101 CLS was therefore an obvious 
model to explore in this project and is very useful because a single model is used to es-
timate quantitative and easy interpretable chemical information for multiple components. 
CLS is fast and easy to use and major advantages are that CLS only needs the pure 
component spectra to estimate concentrations and that it generates chemical concentra-
tion images rather than abstract score images.101 The latter is also very useful for the 
subsequent image processing when extracting essential information from the generated 
chemical images.     
 
The characteristic mixture absorbance spectra from a hyperspectral NIR data cube can be 
viewed as the weighted sum of absorbance of each pure component spectrum constitut-
ing the sample plus experimental noise. The linear relationship between absorbance and 
concentration (equation [1]) is utilised in CLS and the CLS model can be considered a 
multi-component Beer-Lambert’s law given:  
 
D = CST + E         [2] 
 
where D is an (M×N)×λ matrix of unfolded measured spectra with M×N spectra (pixels) 
and λ wavenumbers (variables), S is a k×λ matrix of k pure component spectra, E is a 
(M×N)×λ matrix of residuals and C is the resulting (M×N)×k matrix of mixing coefficients 
(concentration) when applying the CLS model (Figure 16). 
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Figure 16 - Schematic presentation of analysing a hyperspectral data cube using the CLS algorithm 

(Reprinted slightly modified from Gendrin et al.14 with permission from Elsevier).  

 

Basically, the principle of CLS when analysing all the unknown pixel spectra (M×N) is to 
find the linear combination of the pure compound spectra that gives the smallest (sum-
squared) residual spectrum. D is given by the NIR-CI measurements, S is measured or 
known in advance and C is then estimated by minimising the sum of squares of the ele-
ments in E by: 
 
Ĉ = DS(STS)-1         [3] 
 
Refolding each column of the resulting (M×N)×k matrix of estimated concentrations Ĉ 
back to the original image size M×N will generate k chemical images with an estimated 
concentration of the k component in each pixel as shown in Figure 16. 

As it appears, a prerequisite for using CLS is that all the spectra of the pure compo-
nents constituting the sample are available. This is fortunately almost always the case in 
developing a new tablet formulation. One potential problem using CLS is that signals in D 
from sources not included in S can seriously bias the estimates of C. Further, obtaining 
good estimates of S can be difficult as the pure spectra from a pure component sample 
may not sufficiently represent the spectra of the pure components in the process mixture 
due to matrix effects, porosity, instrument differences when collecting data etc.101 

As it appears from Table 2, the useful role of CLS has been explored for analysing hy-
perspectral NIR data of pharmaceutical samples.  
 

How to interpret CLS images and prediction values 

As described above, CLS is very useful because it estimates concentrations from spec-
tra.101 But how should these estimated CLS concentration predictions actually be inter-
preted? In many applications using CLS (cf. Table 2) the pure spectra, S, come from im-
ages of pure components and the average spectrum of such an image is then taken to be 
concentration 1 (100%). Thus, when predicting the concentrations of components in a 
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mixture image, these concentrations are then really fractions rather than absolute con-
centrations. Moreover, it is quite likely that the density of a pure component is different 
in the pure component compacts compared to the mixture in tablets. Hence, the sum of 
the concentrations found from the above CLS model will not necessarily add to 100%.  

This is in itself not problematic, as long as it is understood that a CLS prediction of, say 
40% component A, does not necessarily imply that the sample contains 40% of compo-
nent A in the sample. It means that there is 40% of what was in the pure component 
sample. Mostly, though, the CLS predictions may be converted to something that can be 
considered the mean percentage of a component in the actual sample. There are several 
different ways of transforming the initial predictions into predictions of fractions in terms 
of the actual sample. These methods have different properties and different prerequisites 
as will be shown below. 
 
The hyperspectral NIR data cube of a five-component pharmaceutical tablet was analysed 
by CLS (Figure 17). The uncorrelated CLS prediction results are displayed in Figure 17a. 
Two different ways of scaling these CLS prediction results are shown in Figure 17b and 
17c. Scaling each individual pixel prediction value to the sum of the prediction values in 
each pixel will provide the results shown in Figure 17b. All pixel value will sum to a total 
concentration of 100 %. However, scaling each individual pixel prediction value to the 
sum of the mean concentrations for all components in the entire chemical image (0.8737 
in the example in Figure 17a) will provide the results depicted in Figure 17c. The mean of 
all component predictions will now sum to 100 % but the variation will be similar to the 
uncorrelated results.  
 
The above considerations on interpreting and scaling CLS prediction results are only pre-
liminaries. Further systematic studies are needed to fully understand how best to evalu-
ate and handle CLS prediction results. Such studies would preferable include chemical 
reference analysis method (Section 9.2).  
 
It is important to be aware of the different factors that may affect the accuracy of the 
CLS prediction results. For example, it is important to assure that the sample materials 
used to generate pure spectra are as representative as possible of the component mate-
rial in the final dosage form. The pure spectra are typically generated from compacts 
produced by direct compression of the pure component material. The likelihood that pure 
component material approximates sample material is therefore higher for a direct com-
pression process than e.g. a wet-granulation process. The sample material in wet-
granulation may change form and size during the many different process steps and cause 
differences in the spectral response between pure component and sample materials. For 
a direct compression process, the largest contribution to any spectral differences be-
tween the pure component compacts and the final tablets probably originate from den-
sity/porosity differences. An example to illustrate this impact is presented below. In a 
small pilot study, spectra from pure component compacts produced by high and low 
compression force were obtained by NIR-CI analysis. A sample from a pharmaceutical 
powder blend compressed into a compact on a hydraulic tablet press (similar to produc-
ing the pure component compacts) was also analysed by NIR-CI. The powder compact 
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was from a three-component formulation composed of 10 % API, 45 % cellulose and 45 
% lactose (all in % w/w). 
 

(a) (b) (c) 

Uncorrected CLS results:  

 

 

0.0416 (API) 

0.0229 (Mg. Stearate) 

0.2921 (Cellulose) 

0.4834 (Lactose) 

0.0337 (Talc) 

0.8737 Sum 

Scaling each individual pixel pre-

diction value to its pixel sum value: 

 

0.0482 (API) 

0.0260 (Mg. Stearate) 

0.3278 (Cellulose)  

0.5595 (Lactose) 

0.0384 (Talc) 

0.9999 Sum 

Scaling each individual pixel pre-

diction value to the sum of mean 

analyte concentrations (0.8737): 
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Figure 17 - Different ways of scaling the concentration predictions from a CLS analysis of a hyper-

spectral NIR data cube of a five-component pharmaceutical tablet formulation. (a) Uncorrelated or 

not-scaled CLS predictions; (b) Scaling each individual pixel prediction value to its pixel sum value; 

(c) Scaling each individual pixel prediction value to the sum of the mean component concentrations 

(0.8737 in this example). 

 
The spectra from the pure component compacts produced by high pressure and the re-
sults from a CLS analysis of the three-component powder compact using these pure 
spectra are shown in Figure 18 (left column). The corresponding CLS results for the exact 
same sample data using spectra from the pure component compacts produced by low 
pressure are shown in Figure 18 (right column).   
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Figure 18 - CLS analysis of a three-component powder compact sample. Results were ob-

tained using spectra from hard/normal compressed pure component compacts (left column) 

and using spectra from loosely compressed pure component compacts (right column). The re-

sults shown are in row order: pure component spectra, chemical API image by CLS and histo-

gram statistics (i.e. mean CLS predictions) for the three components.  

 

The results from this pilot study were far too scarce to be conclusive, but indicate that 
the density/porosity of the pure component compacts may affect CLS prediction results. 
The results indicate that using pure spectra from loosely compressed compacts yield 
higher content predictions, in particular for API in this example (35 % increase, 0.0479 vs. 

0.0649). Two other similar powder compact samples (replicates) were analysed in a simi-

Component Mean Std 
API 0.0649 0.0561 
Cellulose 0.5433 0.2134 
Lactose 0.3466 0.2153 
Sum: 0.9547 

Component Mean Std 
API 0.0479 0.0599 
Cellulose 0.5244 0.2057 
Lactose 0.3334 0.2167 
Sum: 0.9057 
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lar manner and provided similar results (not shown here, but the API increase for these 
two samples were 21 % and 24 %, respectively). Whether these results are generally 
valid and apply to all components in the samples must be verified by detailed designed 
studies and is a task for future research (Section 9.2).  
 

Partial Least Squares (PLS) 

PLS is a common and well-described multivariate regression method used to build quanti-
tative calibration models.100,102 It is a regression method used to relate two data matrices 
X (spectra) and Y (reference values) with each other. In PLS model building of hyper-
spectral images, X is the spectra or mean spectrum of each hyperspectral data cube and 
Y the concentration values of one (PLS1) or more (PLS2) of the components in the sam-
ple. The calibration data set required for PLS is composed of several samples spanning an 
appropriate concentration range to build a model for new predictions. For PLS analysis 
only components that have been varied in concentration in the calibration data set are 
modelled. This is in contrast to CLS analysis where all components are (and should be) 
modelled.   
 
In this project, only PLS1 models for each component that varies in concentration have 
been built as described above. The models are used by applying them to all single-pixel 
spectra in a hyperspectral image (M x N x λ) of an unknown sample composed of same 
components as the calibration data set. The resulting chemical image for each compo-
nent consists of concentration prediction values of that component for each pixel. The 
mean of all pixel score values is an estimate of the concentration in the analysed sample.  
 
PLS has in general been superior, i.e. the most accurate, when compared with other data 
processing methods for analysing hyperspectral NIR data cubes of pharmaceutical sam-
ples (I).64-65 This means that PLS can be assumed to provide the most accurate chemical 
images. The major limitation for not mainly using PLS is that it is time-consuming to pro-
duce and measure a calibration data set. Further, it may not always be possible to obtain 
a calibration set, for example, in the early development of a pharmaceutical formulation 
due to the often limited amount of API available. 

In PLS there is also the challenge to obtain the most accurate Y matrix (reference val-
ues). Using the concentrations from the theoretical composition does not take the batch 
variation into account. This can be included by analysing batches by conventional analyti-
cal techniques (e.g. HPLC); however, this usually only provides the API concentration as 
methods are normally not developed for excipients. A more accurate approach would be 
to obtain the reference values for each sample (tablet). I.e. first analyse the tablet by 
NIR-CI and then by a reference method. Or if sample preparation to obtain a flat tablet 
surface is necessary for the NIR-CI analysis, then first analyse the tablet by a non-
destructive reference method and then by NIR-CI. The latter approach requiring a non-
destructive analytical method could e.g. be provided by NIR spectroscopy analysis (also 
for excipients, but again only if a reference method for them exists). Moreover, an ap-
proximation is made when the measured reference value is determined for the entire 
tablet but only a smaller part of the tablet is analysed by NIR-CI (sampling issue). Ide-
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ally, the Y reference values should be obtained by analysing the component concentra-
tion in each pixel, which is obviously impossible.  
 
As appears from Table 2 many reported studies of NIR-CI in pharmaceutical applications 
use an alternative PLS method (in Table 2 denoted ‘PLS2 (pure spectra)’). This method is 
based on PLS-Discriminant Analysis (PLS-DA) in conjunction with pure spectra and is 
commonly denoted PLS-Classification (PLS-Class). This PLS-Class model is build from a 
calibration matrix (X) of pure component spectra and a dummy matrix (Y) as target ma-
trix, where ‘1’ and ‘0’ indicates belonging or not belonging, respectively, to each pure 
component spectrum.15-16  
 
However, it can be mathematically shown that the PLS-Class method is actually doing 
CLS and that there are advantages of using CLS rather than PLS-Class (IV). The equiva-
lence of PLS-Class and CLS is also illustrated by an example (Figure 19). The hyperspec-
tral data from a NIR-CI analysis of a five component conventional pharmaceutical tablet 
was analysed by PLS-Class and CLS. The chemical images of API were generated and 
their predictions plotted against each other (Figure 19). From this plot it is also evident 
that PLS-Class and CLS provide the exact same results. Identical relationships were 
found for the other four components in the tablet.  
 
 

 
Figure 19 - Top: Chemical images of API predicted by PLS-Class and CLS 

methods. Bottom: CLS predictions versus PLS-Class predictions of API. 
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Multivariate Curve Resolution (MCR) – Alternating Least Squares (ALS) 

During the work of developing robust and reliable data processing methods for analysing 
hyperspectral NIR data cubes focus was on developing methods without a time-
consuming calibration stage. Multivariate curve resolution (MCR) models were in this 
context evaluated for their potential to provide reliable quantitative and spatial informa-
tion of all the five components in a conventional tablet formulation (Paper III). Recently, 
increased interest has been shown for employment of multivariate curve resolution tech-
niques to study hyperspectral NIR data of pharmaceutical tablets.72,74-76 
 
The basis of MCR is very similar to CLS and they can both be described by the bi-linear 
model D = CST+ E (cf. equation [2]). CLS uses spectra from the pure components to 
create S, whereas MCR is a class of methods for estimating S from the data, i.e. the 
spectra from pure components are not a prerequisite.72,76,101,103 The advantage of MCR in 
this relation is that matrix effects are included in the estimated spectra, which eliminates 
the issue of obtaining representative pure component sample material to generate pure 
component spectra as earlier discussed for CLS.  In MCR the estimation of C and S matri-
ces are performed iteratively and the algorithm alternating least squares (ALS) is often 
used for this purpose (MCR-ALS). One drawback of MCR-ALS is related to difficulties in 
estimating S (due to the phenomena of ‘lack of selectivity’ or ‘ambiguities’) and an aug-
mented version of MCR-ALS has been developed to overcome this.72,76,103 A detailed de-
scription of the two MCR-ALS method and their differences and limitations will not be 
given here but can be found in Paper III and the supplied references.  
 
MCR-ALS and augmented MCR-ALS were compared with CLS in the study of NIR-CI data 
for providing quantitative and spatial information of all ingredients in a five component 
tablet formulation (III). The conventional tablet formulation was composed of compo-
nents of both low and high concentration (minor and major components, respectively). 
The tablets analysed were the six tablets (replicates) of batch 9 also analysed for the 
common calibration approaches in Paper I (cf. Table 4, Section 6.4). Unlike that calibra-
tion study (I), all five minor and major components in the formulation were included for 
calculation in this study (III). 

The analysis of the tablet samples in (III) demonstrated CLS and in particular aug-
mented MCR-ALS to provide reliable semi-quantifications of the major components in the 
formulation. For the minor components only augmented MCR-ALS provided reliable re-
sults. The MCR-ALS techniques were found useful to analyse NIR-CI data of pharmaceuti-
cal tablets without the need of a calibration stage and the potential applications are for 
analysing samples where no prior information about them are available.    
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6.4 Comparing common calibration approaches (I) 

As emphasised before NIR-CI provides information about what chemical components are 
available in the sample, how much of each is present, and most importantly and unique 
for this technology, their spatial location. The quantitative determination of the compo-
nents in the sample is valuable information, in particular because it does not only quan-
tify the API but also the excipients, which are almost never quantified by conventional 
analytical methods. However, the quantification in itself is not the goal using NIR-CI. 
Other conventional analytical techniques are better and more accurate for doing this. 
Further, the NIR-CI quantitative determination will always be an approximation, as it will 
only measure a part of each sample. Nevertheless, accurate quantification using NIR-CI 
is important and a desirable goal, because it assures reliable results and generation of 
accurate chemical images. Accurate chemical images are important for sample evaluation 
and in particular for the image processing, where the essential and process related in-
formation from the images are extracted. 
 
A study (I) was performed comparing three of the data analysis methods presented ear-
lier in this chapter; namely (1) single wavenumber, (2) classical least squares (CLS), and 
(3) partial least squares (PLS1). The methods were compared by their ability to generate 
accurate chemical images, which was evaluated by their concentration prediction ability. 
Two different pre-processing methods were evaluated for each method. The approach 
was to analyse a calibration data set by NIR-CI and evaluate the most accurate method 
as the method providing the lowest prediction error (RMSECV) from regression analysis. 
The calibration set was produced from nine batches of a five-component direct compres-
sion tablet formulation only varying the concentrations for components of high content in 
the tablet formulation (Table 4). Six tablets (replicates) were analysed by NIR-CI for 
each batch and chemical images and the predicted concentrations were computed for 
API, cellulose and lactose for each of the three data processing methods. Regression 
analysis was performed from the nine predicted concentrations (mean of 6 replicates) 
versus the nominal concentrations.  

 

Ingredients (Particle size*) 1 2 3 4 5 6 7 8 9 

API (2.4/11/129) 4.38 8.14 4.38 8.14 4.38 8.14 6.26 6.26 6.26 

Cellulose (43/121/272) 14.00 14.00 26.00 26.00 20.00 20.00 14.00 26.00 20.00 

Lactose (13/62/152) 79.37 75.61 67.37 63.61 73.37 69.61 77.49 65.49 71.49 

Magnesium stearate 
(1.7/4.7/19) 

0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

Talc (3.5/13/44) 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

Table 4 - Composition (% w/w) of the 5-compound pharmaceutical tablet formulations consti-

tuting the 9 calibration batches. *Particle size measures (µm) of the cumulative volume distribu-

tion given by the 10%, 50% and 90% percentiles (D[v,0.1]/D[v,0.5]/D[v,0.9]) obtained using a 

Malvern Mastersizer 2000 laser diffraction system. 

 

The results from the regression analyses are shown in Table 5. PLS1 proved to be the 
most accurate method for all three components, which means that PLS1 can be assumed 
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to generate the most accurate chemical images. However, CLS proved to be an excellent 
alternative to PLS1 providing only slightly less accurate concentration predictions.  

 
 Single wavenumber  CLS PLS1  

Components API Cellulose Lactose API Cellulose Lactose API Cellulose Lactose 

Preprocessing 2nd derivative (15/3) 1st derivative (9/3)  1st derivative (9/3) + mean center 

Wavenumber 
region (cm-1) 

5984 4280 5168 4200-7500 
4256-4744; 
5840-6176 

(105 var.) 

4088-4488 

(52 var.) 

4248-4520; 
5008-5400 

(85 var.) 

Corr. coef. R2 0.98 0.95 0.92 0.98 0.98 0.96 0.99 0.98 0.99 

Slope  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 0.99 

RMSEC  0.29 1.560 2.03 0.30 0.93 1.50 0.05 0.24 0.32 

RMSECV 0.38 1.94 2.46 0.40 1.16 1.82 0.18 0.70 0.62 

Preprocessing SNV + 2nd derivative (9/3) 2nd derivative (9/3)  2nd derivative (9/3) + mean center 

Wavenumber 
region (cm-1) 

5984  4280  5168  4200-7500 
4304-4792; 
5816-6200  

(112 var.) 

4104-4496   

(50 var.) 

4264-4536; 
5016-5400 

(86 var.) 

Corr.coef. R2 0.96 0.97 0.86 0.99 0.97 0.95 0.98 0.98 0.97 

Slope 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.04 0.92 

RMSEC 0.44 1.53 2.59 0.17 1.11 1.60 0.07 0.33 0.35 

RMSECV 0.54 1.97 3.38 0.23 1.34 1.94 0.23 0.87 0.88 

Table 5 - Results from concentration predictions of API, cellulose and lactose for the single wavenumber method, 

CLS and PLS1. For each calibration method results are presented for the two preprocessing treatments showing 

best predictions. The grey-shaded area points out the best predictions obtained. 

 

6.5 Comparing and selecting data processing approaches 

A range of different data processing methods to analyse hyperspectral data cubes from 
NIR-CI experiments have been described. Some of the methods have been evaluated for 
their applicability and accuracy, and interpretation of the results has been discussed. 

The presented methods provide a varied and comprehensive ‘toolbox’ of data process-
ing approaches that can be used to analyse most types of NIR-CI data from pharmaceu-
tical applications. The methods may also be applied to hyperspectral data of pharmaceu-
tical samples obtained from other chemical imaging techniques. An overview of the pre-
sented methods and their characteristics are summarised in Table 6.   
 
The most suitable technique to choose for a certain application will likely depend on the 
purpose of the analysis and the type of data set. The single wavenumber method and 
PCA are for example most suitable for initial exploratory analysis. For quantitative analy-
sis and more accurate distribution information calibration PLS has proven to be the supe-
rior method to use. However, PLS requires a calibration data set that is time consuming 
to produce and measure and also requires that sufficient amount of component material 
is available. When there is no calibration data set available, CLS and augmented MCR-
ALS are excellent alternatives for quantitative purposes. CLS was during this thesis work 
experienced as fast, easy to use, easy to interpret, and providing reliable results. It thus 
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became the choice of method when no calibration data set but only the pure component 
spectra were available.  
 

Data analysis methods Samples required for 
method 

Characteristics of method and preferred 
use 

Single wavenumber 

Univariate 

NIR spectra of pure compo-
nents  
(to identify distinct absorp-
tion peaks) 

Qualitative use. Easy, seemingly intuitive and 
fast. 
Exploratory analysis, valid for simple sample 
matrices.  
Distinct spectral band for compounds required. 

PCA 

Multivariate 
Unsupervised 

No prior knowledge of sample 
required 

Qualitative use. 
Exploratory analysis, valid for complex matrices. 
Provides principal component score images. 

CLS 

Multivariate 
Supervised 

NIR spectra of pure compo-
nents 

Quantitative use. Relatively accurate, fast and 
easy.  
Requires only pure component spectra. Assumes 
Beer’s law valid. 
Provides concentration/chemical images. Easy 
interpretable from a chemical perspective.   

MCR/MCR-ALS 

Multivariate 
Supervised 

No prior information about 
samples needed. Can esti-
mate spectra from sample 
data.  

Quantitative use. Relatively accurate but not as 
well-defined, fast and easy as CLS.  
Initial estimates of S using pure component 
spectra are often preferable. Assumes Beer’s law 
valid.   
Provides concentration/chemical images. 

PLS 

Multivariate 
Supervised 

Calibration data set of  
known compositions  

Quantitative use. Accurate, robust predictive 
precision. 
Requires full calibration data set.  
Provides PLS scores or predicted concentration 
images. 

Table 6 - Comparison of data analysis methods suitable for analysing hyperspectral NIR data cubes 

from most types of pharmaceutical applications and products. 
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CHAPTER 7 

IMAGE PROCESSING 

7.1 Introduction  

Image processing is the third and last step of a full NIR-CI experiment as defined in this 
thesis (Section 1.3). Image processing also constitute a very important part for a suc-
cessful NIR-CI experiment, as this is the step where the useful and relevant process and 
product related information contained in the generated images is extracted and revealed. 
Obviously, it is important to extract the relevant and correct information contained in the 
generated chemical images for a successful NIR-CI experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is a need to obtain objective and quantitative measures from the images derived 
from data processing. The chemical images can visually be very convincing but care 
should be taken on the qualitative interpretation of these images. It may be impossible 
to discriminate small differences in chemical images by visual examination and some-
times the images can even be ‘misleading’. An example of the latter is shown by compar-
ing two chemical images of cellulose of the exact same sample generated from CLS and 
PLS1 data processing in the study described in (I) and Section 6.4 (Figure 20). The visual 
distribution information obtained is quite similar but the CLS image appears easier to in-
terpret due to the higher contrast. However, the best cellulose concentration predictions 
(lowest RMSECV), and thus presumable the most accurate chemical image, was obtained 
by PLS1. 
 
Other reasons for obtaining objective and quantitative information from chemical images 
are that such numerical measures are necessary for the employment of the NIR-CI tech-
nology in quality control (QC) and in order to be a complete PAT tool, e.g. by enabling 
real-time monitoring of critical attributes.  
 
 
 
 
 
 
 
 

Definition of Image Processing in this thesis:  

The processing of the generated chemical images into relevant and 
‘useful’ information that will qualitatively or quantitatively describe 
the properties of a sample in relation to the problem investigated. 
This could e.g. be a total concentration, a measure of the distribu-
tion of the concentration of the active ingredient or the domain 
sizes of components within the sample. 
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Figure 20 - Chemical images of cellulose (20.0 % w/w nominal) from a 

five-component tablet formulation generated by CLS (left) and PLS1 

(right). The CLS image provides higher contrast and is easier to visually 

interpret, but the most accurate content prediction was obtained by 

PLS1 (RMSECV=0.70 % for PLS1 versus RMSECV=1.34 % for CLS). 

 
Despite the importance of image processing this is the step of the three overall NIR-CI 
analytical steps that has been paid the least attention to in published papers so far.53 
This is probably partly because it is not so straightforward, and partly because focus at 
first has been on developing accurate and reliable methods for data acquisition and data 
processing. The latter makes sense from the perspective that it is important to first “lay 
down the foundation”. If the spectral quality from the data acquisition is poor, no multi-
variate image data analysis method is able to compensate for this and still generate ac-
curate results. If the data processing method is sub-optimal, inaccurate chemical images 
will be generated that will lead to erroneous conclusions in the subsequent image proc-
essing analysis. And finally, even when an accurate chemical image is generated, poor 
image processing methods may extract the wrong product or process-related information 
from the images. It is therefore imperative that each of the three overall steps is thor-
oughly investigated and their strengths and limitations known. In the present chapter 
different image processing methods are presented that will help to further develop the 
value of the NIR-CI technology.  
 
As the unique information obtained from chemical imaging techniques primarily are the 
spatial distribution (which is closely related to sample homogeneity) and particle/domain 
sizes, it is obvious to develop image processing tools extracting and determining quanti-
tative and objective measures of these characteristics. Such tools and measures are pre-
sented in the following.  
 

7.2 Histogram statistics 

The histogram representation of a chemical image statistically characterise the intensity 
distribution across the imaged sample. The histogram plot displays the obtained image 
intensity values (e.g. the CLS prediction values) on the abscissa and the number of indi-
vidual pixels for each of these intensity values on the ordinate. The mean represents the 
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mean value of all pixel predictions of a particular component over the whole image, pro-
viding an estimate of how much of the component is present in the sample. The standard 
deviation is a measure of the variation of image prediction values around the mean and 
provides a quantitative estimate of the overall sample homogeneity at the particular spa-
tial resolution utilised. Sometimes skewness and kurtosis are also used to characterise 
the histogram distribution. Skewness is a measure of the asymmetry or tailing of the his-
togram, whereas kurtosis gives information on the peak shape of the histogram.15,34 In 
general, the histogram statistics from NIR-CI experiments have been utilised to study the 
spatial and chemical homogeneity of pharmaceutical samples.14,15,17,33,49,59,64,66 This ho-
mogeneity concept from histogram statistics introduced for NIR-CI analysis is different 
from the traditional homogeneity concept described earlier  in Section 2.4. The thousands 
of individual measurements obtained from microscopic pixel locations of each sample 
provide data for intra-sample statistical analysis. This homogeneity is thus pertaining to 
each sample/tablet, i.e. intra-tablet homogeneity, more than the overall batch as in con-
ventional homogeneity testing. 

An example of histogram plots and statistics are displayed in Figure 21. The two 
chemical images of API having same nominal concentration represent a homogenous 
(top) and heterogeneous (bottom) tablet, respectively. 
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Figure 21 - Chemical API images generated by CLS and their corresponding histogram 

plots and statistics. The two images represent a homogenous tablet (top) and in-

homogenous tablet (bottom), respectively.  

 

Histogram statistics of chemical images can be useful for some applications but may not 
always be a suitable and complete measure to determine homogeneity or blend uniform-
ity in pharmaceutical samples. This homogeneity evaluation is based on the inherent spa-

Mean:  0.0594 
Std.: 0.042 
RSD: 71 % 

Mean:  0.1190 
Std.: 0.24 
RSD: 205 %  
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tial resolution, i.e. original pixel size, and basically determines the distribution of these 
single-pixel concentration predictions. The limitation of this principle is illustrated in the 
simulated images of two-component pharmaceutical samples in Figure 22. The first two 
samples in the upper row (a and c) are considered homogenous and the first two sam-
ples in the lower row (b and d) in-homogenous. The difference between the left column 
samples (a and b) and the middle column samples (c and d) samples is the spatial reso-
lution of the images. The calculated standard deviation between pixel values for the left 
images with high spatial resolution would be identical although their blend uniformity is 
clearly different. However, the standard deviation calculated using the low pixel resolu 
uniformity differenc tion shown in the middle column images (c and d) would clearly 
demonstrate the blend es between the left and right sample. This is further illustrated in 
Figure 22e and 22f, where the homogenous pixels (low standard deviation) for image (e) 
are broken down to smaller pixels in image (f) expressing another blend uniformity 
(higher standard deviation) for the same sample. 

 

 

  
(a) 

 

  
(c) 

 

  
(e) 

 

  
(b) 

 

  
(d) 

 

  
(f) 

Figure 22 - Simulated chemical images. The two image samples (a) and (c) and the two 

image samples (b) and (d) are identical regarding distribution of dark grey component but 

differ in spatial resolution (36 and 4 pixels, respectively). The standard deviation calcu-

lated over the intensity values in each pixel of the images having the same spatial resolu-

tion will reveal identical values for (a) and (b) but differ between (c) and (d). The images 

(e) and (f) illustrate how a homogenous sample in image (e) may look different and more 

in-homogenous using a higher spatial resolution (smaller pixels) in image (f). This illus-

trates the influence of the spatial resolution on histogram statistics of images and how it 

may not always be able to distinguish between samples of different homogeneity grade in-

terrogating at only one spatial resolution. 

 
It was based on this realisation that the homogeneity concept of calculating the standard 
deviation of prediction values in a chemical image was extended to be a function of the 
spatial resolution (scale of scrutiny). This concept is presented in Section 7.4.    
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7.3 Binary images and domain statistics 

BINARY IMAGES 

The creation of binary images (image binarisation) aims at separating the component of 
interest from the other components in the image. The binary images make component 
distribution easier to visually interpret, but binary images are also used as basis for gen-
erating overlay or composite images and for measuring the number and size of particles 
or domains within a sample. 
 
A binary image of an individual component can be generated from a chemical image by 
setting a threshold value from the colour-scale intensity bar on the chemical image or 
from the histogram plot. All pixel values above the threshold value are then given the 
value ‘1’ (and e.g. coloured white) and all pixel values below the threshold value are 
given the value ‘0’ (and coloured black). The binary image can now be generated as a 
black-white (or other two-coloured) image. Figure 23 displays the binary images of API 
generated from the chemical images shown in Figure 21.  
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Figure 23 - Binary images of the chemical API images in Figure 21. 

The threshold value 0.15 is used to create both binary images. The 

calculated domain size statistics (see later in this section) are also 

shown for each binary image. 

 
 

THRESHOLD SELECTION 

Selecting the appropriate threshold value is a real challenge in creating binary images. To 
the author’s best knowledge no objective method has been reported to select a threshold 
in chemical imaging of pharmaceutical products. Most of the NIR-CI studies of pharma-
ceutical solid dosage forms that have demonstrated the value of generating binary im-
ages, primarily for the purpose of calculating particle/domain size statistics, have applied 
user-defined threshold values.16,33,46,51,53,56,58-59,71 Otsu104 has introduced a general, objec-
tive method of automatic image threshold selection that minimises the intra-class vari-
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ance between pixels. It determines an individual threshold value for each image. How-
ever, Otsu’s method of image threshold selection was not found useful for any of the 
samples analysed in this project and was also reported insufficient in another study.71  
 
As in other areas of NIR chemical imaging analysis the difficult task is to confirm the se-
lection of the most appropriate threshold value. It would require some kind of ‘NIR-CI 
calibrated tablet’ for each product, which is impossible to obtain. With the lack of such 
standards, the best way seems currently to determine the threshold value as a function 
of the sample and problem investigated. Although this means subjectively selecting the 
threshold value it may be possible to select one fixed threshold value for each component 
appropriate for all samples of each formulation. Such consistent formulation-specific 
threshold values would probably be the most suitable approach for comparing different 
samples of the same formulation, although it may not be based on the most ‘correct’ 
threshold values. Another possible approach is a method-specific threshold value selec-
tion, where the threshold value is selected using the same approach/method for each 
sample. This could for example be determining the threshold value as the mean value 
plus one, two or three standard deviations for each generated component image.  
 
Another method-specific threshold value selection is suggested and used for the study in 
Paper (II) and Section 8.1. In this study, chemical API images were generated using CLS. 
The threshold value to generate binary API images was determined from CLS analysis of 
the hyperspectral data cube of the pure API compact using only the mean API spectrum 
from this sample. The histogram plot of the resulting chemical API image (of the pure API 
compact) showed a symmetrical distribution around the mean of 1.0 (Figure 24). 
  

 
Figure 24 - Histogram representation of the chemical API image from analysing 

a pure API compact by CLS using only the mean API spectrum of the hyperspec-

tral data from the pure API compact. The threshold limit is set as three time the 

standard deviation from this analysis (= 0.15, vertical lines).   
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The spread of the data around the mean was interpreted as an estimate of the methods 
precision (repeatability) assuming a uniform pure API compact (i.e. assuming API con-
centration 1.0 in each pixel). The threshold value was hence determined as equal to 
three times the standard deviation (Std. = 0.051, Figure 24) from the CLS analysis of the 
pure API image; resulting in a threshold value of 0.15.  
 
The interpretation of threshold values selected by this approach is that a concentration 
value equal to or below the threshold value in a chemical image could within statistical 
probability (three standard deviations) just as well be regarded as zero as determined by 
the ‘precision’ analysis of the pure component image. So in order to statistically confirm 
the component in a chemical image the concentration/intensity values must be above the 
threshold value. Whether this threshold selection method is general applicable or just 
useful for some samples needs to be studied further on different types of pharmaceutical 
samples. The advantage of the method is that it determines a threshold value in an ob-
jective and well-defined manner. 
 

DOMAIN SIZE STATISTICS 

To calculate particle/domain size statistics within an imaged sample it is necessary first 
to create a binary image as described above. Images can often not discriminate between 
one large particle, agglomerated particles or closely spaced but separate particles. It is 
therefore more the domain size statistics rather than the particle size statistics that is 
determined and the term ‘domain statistics’ is therefore used. Further, this discrimination 
often becomes more difficult at higher component concentrations.38 Although the calcula-
tion of the domain size statistics of components is an approximation of the true solid par-
ticle size statistics in the imaged sample, the domain statistics are useful to determine if 
any changes in domain size or form happen during the manufacturing process and to 
compare different formulations and processes.  

In formulation development of solid dosage forms, the effect of API particle size is usu-
ally evaluated for its influence on the process and product performance. NIR-CI and do-
main size statistics is a powerful combination to study the effect of varying API particle 
size on its distribution within the formulation.16,58 This is demonstrated in this project for 
a two-component formulation produced by direct compression (Section 8.1 and II). Cal-
culation of domain size statistics will also be very useful for wet-granulation formulations, 
where it is important to control and hence measure the size and form of individual gran-
ules and of the granules in the final tablet formulation, but also determine the API distri-
bution within each granule.12,16,22 

The useful role of image binarisation and calculating domain sizes has also been dem-
onstrated for various trouble-shooting investigations.16,37,51,53 In these studies variation in 
domain sizes of different components (disintegrant, diluent, binder) were found to cause 
changes in the product quality (dissolution, content uniformity) or problems in the manu-
facturing process (poor powder flow, adherence to tablet tooling).   
 
The actual domain size statistics in this project is calculated using routines developed in 
Matlab® 7.5.0 (R2007b) software89 and functions from the Image Processing Toolbox 6.0 
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(Mathworks).105 Many different properties can be obtained but the following has been ex-
tracted and focused on in this project (Table 7):  
 

DOMAIN STATISTIC PROPERTY EXPLANATION OF PROPERTY 

Number of domains The number of separate domains registered in the binary image 

Mean Equivalent Diameter (µm) 

(Std., Min. and Max.) 

Domains appear in many different shapes. The Equivalent Diameter 
represents the diameter of a circle with the same area as the region of 
the domain of interest. The mean is calculated for the equivalent di-
ameter of all domains. 
The standard deviation, minimum and maximum equivalent diameters 
can also be determined from this calculation.  

Area Covered (%) 

The area covered is the number of pixels of the calculated component 
(e.g. white pixels) in percent of the total number of image pixels. The 
percent area covered thus gives a rough estimate of the component 
concentration.  

Table 7 - The domain size statistics properties determined in this thesis work. 

 

The results from a domain size statistics calculation is shown in Figure 23 but the utilisa-
tion of these statistics are also demonstrated in the pharmaceutical application discussed 
in Section 8.1. 
 

7.4 Measures of homogeneity 

CONVENTIONAL HOMOGENEITY TESTING 

As earlier described (Section 2.4) the conventional homogeneity testing determines the 
chemical homogeneity, i.e. the bulk content relationship of components, but provides no 
information on the spatial homogeneity. The conventional homogeneity testing can thus 
be considered an inter-tablet homogeneity versus the intra-tablet homogeneity provided 
by NIR-CI analysis. NIR-CI provides information on the spatial homogeneity and the 
standard deviation of the histogram plot of a chemical image is an objective measure of 
the variation of image data about the mean indicating the degree of homogeneity (Sec-
tion 7.2). However, as mentioned earlier determining sample homogeneity in this way is 
dependent on the spatial resolution used, and a sample may be considered chemically 
homogenous at one spatial resolution and heterogeneous at another (Figure 22). This 
concept was therefore further developed to be a function of the spatial resolution (scale 
of scrutiny).   
 

MACROPIXEL ANALYSIS METHOD 

Instead of only using the predicted pixel values from the original spatial resolution (pixel 
size) defined by the data acquisition, the refined method for sample ‘homogene-
ity/heterogeneity’ presented samples the chemical image by many different spatial reso-
lution’s (called ‘sampling squares’ or ‘macropixels’). These macropixels are a square clus-
ter of pixels and varies in size from the original pixel size up to the size of the entire 
chemical image. For example, a chemical API image generated by CLS and consisting of 
30 × 30 pixels could be sampled by a macropixel of 10 × 10 pixels (Figure 25). The 
chemical image is sampled by all the 10 x 10 macropixels it is possible to position in the 
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chemical image by moving the macropixel systematically one original pixel size step each 
time. This sums to 441 macropixels sampling the image in Figure 25. A measure of the 
homogeneity could then be calculated as the standard deviation of the mean CLS predic-
tion obtained for each macropixel, i.e. the standard deviation of the 441 mean CLS pre-
dicted API concentrations from the 441 macropixels in the example shown. For practical 
reasons it is preferable to obtain a square chemical image (e.g. by truncation). The num-
ber of sampling squares for a certain size can then be calculated from:  
 
Total number of macropixels = (Image pixel size – macropixel size +1)2  [4] 

[For the example in Figure 25: (30 – 10 + 1)2 = 441 macropixels] 

 
This new NIR-CI homogeneity approach ensures a much more extensive and detailed 
sampling of each image, which is thought to provide a better and more comprehensive 
basis for evaluating the homogeneity of pharmaceutical samples. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 25 - Illustration of the sampling principle for the novel NIR-CI homogeneity 

measure approach. The entire chemical image is sampled by all the macropixels it is 

possible to position in the chemical image. The relative standard deviation of the CLS 

prediction values for each macropixel is calculated and plotted as a function of the 

squared macropixel size. This generates a so-called homogeneity curve. 

 

This methodology of extensively sampling a chemical image by all possible macropixels 
(‘macropixel analysis’) was first introduced by Hamad et al.63 and the method was spe-
cifically referred to as ‘Continuous-Level Moving Block’ (CLMB). The method introduced 
by Hamad et al.63 for evaluating the CLMB results is described in the following, but a dif-
ferent evaluation approach has also been developed and is presented (‘homogeneity 
curves’).  
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EVALUATION OF MACROPIXEL ANALYSIS 

Mean or standard deviation 

Each macropixel value calculated in the Continuous-Level Moving Block (CLMB) approach 
is the mean value of all the original pixel predictions contained within each macropixel. In 
the example above (Figure 25) a macropixel value is thus the average of 10 × 10 = 100 
original pixel prediction values. A histogram plot can be generated for each macropixel 
size similar to the histogram statistics described earlier in this chapter (Section 7.2). For 
each macropixel size Hamad et al.63 calculate the fractions of macropixel values within a 
90-110 % specified range of the mean value for the complete set of macropixels. This 
approach is illustrated in Figure 26. The concept is then to choose the minimum 
macropixel size that provides all its macropixel values within the 90-110 % range of the 
macropixel mean value of the image (macropixel size 43 in Figure 26b).  
 
 

   
 (a) (b) 

Figure 26 - (a) Histograms resulting from CLMB analysis of different macropixel sizes. The 

dashed vertical lines represent the specified range from 90-110% of the mean image values. 

(b) Plot of fractions of macropixel values within specified ranges as a function of macropixel 

size. The goal is to find the macropixel size with all macropixel values within the specified 

range (i.e. fraction = 1.0, e.g. macropixel 43 for the 90-110% range). (Reprinted from Hamad 

et al.63  with permission of Wiley-Liss, Inc. a subsidiary of John Wiley & Sons, Inc).    

 

In this project (II and Section 8.1), the standard deviation of the set of macropixel con-
centration prediction values for each macropixel size was calculated. The standard devia-
tion is plotted against the squared macropixel size (e.g. 102 = 100 for the example in 
Figure 25), which will generate a so-called homogeneity curve. An example of this homo-
geneity curve is shown in Figure 27 for a chemical API image of CLS predictions for a 
two-component tablet formulation.  
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Figure 27 - CLS predicted chemical API image of a two-component tablet (left) and its 

corresponding ‘homogeneity curve’ showing standard deviation of macropixel values as 

a function of squared macropixel size.  

 

Homogeneity curves 

Visual evaluation and ‘univariate’ approach 

Visual evaluation of the shape and position of the homogeneity curves would in many 
cases be sufficient for the purpose of comparing the homogeneity of different products. 
The goal for a homogenous sample is low standard deviations between macropixels, i.e. 
the lower-lying a homogeneity curve the more homogenous a sample. However, for not 
very distinct samples with closely spaced homogeneity curves, it may not be so easy to 
visually evaluate and compare their homogeneity. It would therefore also for this chemi-
cal image evaluation method be useful to move beyond the subjective and qualitative 
analysis and determine a numerical value as a quantitative measure of this homogeneity 
parameter.  
 
An option to objectively and numerical assess homogeneity from these curves would 
simply be to select a macropixel size and a standard deviation as a specification limit for 
which the homogeneity curve values would need to be below in order to be assessed ho-
mogenous. This univariate approach is actually similar to the standard deviation of the 
histogram statistics using the original spatial resolution. However, the advantage for the 
macropixel method is that the intra-tablet homogeneity can be evaluated at any suitable 
level of scrutiny (i.e. macropixel size). For example, assume the acceptance limit for ho-
mogeneity of the product in Figure 27 is a standard deviation of macropixel values below 
0.005 at macropixel size 60. As illustrated the standard deviation value for a macropixel 
value of 60 (= 0.0046) is below the acceptance criterion of 0.005 and the sample thus 
fulfils the homogeneity specification.  
 
This approach is very much in line with today’s conventional homogeneity concept in the 
way that a blend or a tablet batch is considered homogenous if the content uniformity 
results comply with the acceptance criteria determined by its purpose of use. The appro-
priate macropixel size to select for evaluation will depend on the degree of homogeneity 
(quality) needed, which depends on the purpose of use for each product. The challenge 
will be to select the appropriate macropixel size and standard deviation value as specifi-

Std. for Macropixel 60 < 0.005 
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cation limit for each product. However, strictly selecting such an acceptance limits is 
probably most useful for routine quality control purposes, whereas in formulation devel-
opment it would be sufficient to compare the standard deviations between products at a 
certain sampling square without necessarily setting a specification limit.  
 

Area Under Homogeneity Curve 

As the goal is to obtain as low standard deviations between macropixels as possible an 
obvious evaluation approach is simply to determine the area under each homogeneity 
curve. This method has the advantage that it includes all the information contained in the 
homogeneity curves. An application using this approach is presented in Section 8.1 (II). 
 

Deviation from Ideal Mixing 

A very interesting aspect of evaluating the chemical images by the macropixel analysis 
approach using the calculated standard deviations (and thus ‘homogeneity curves’) is 
that it can be related to and possible explained by the theory of mixing particles.12,106-109 

 

 
 

Tablets are produced as individual dose units from a powder mixture as a result of a mix-
ing process. However, each tablet can also be considered a ‘mixture’ when divided into 
small sub-samples (pixels). For illustration and better understanding purposes, a powder 
mixture of two components of equal quantity and identical particle size, shape and den-
sity are considered (Figure 28).  
 
 

   
  (a)  (b) 
 

Figure 28 - Illustration of two states of binary powder mixtures: 

(a) Perfect mix; (b) Random mix. There are an equal proportion 

of identical sized black and white components in each mixture.  

 

Definition of Mixing: 

Mixing may be defined as a unit operation that aims to treat 
two or more components, initially in an unmixed or partially 
mixed state, so that each unit (particle, molecule, etc.) of the 
components lies as nearly as possible in contact with a unit of 
each of the other components.12   
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If a binary mixture according to the definition of mixing above is achieved, it produces a 
theoretical ideal or perfect mix (Figure 28a). The chance of a perfect mix occurring is 
practical impossible, and also unnecessary and sometimes undesirable. In practice, the 
best type of mix obtainable is a random mix, where the probability of finding a particle of 
a given component is the same at all positions in the mixture and equal to the proportion 
of this component in the entire mixture (Figure 28b).12,107-108  
 
In formulation development and manufacturing of tablets the goal is to produce individ-
ual dose units (tablets) from the powder mixture with minimal variation in the composi-
tion. This is sought obtainable by selecting the appropriate particle sizes, mixing process 
etc. There will always be some variation in composition of samples taken from a random 
mixture. For samples taken from a random mixture the standard deviation can be calcu-
lated as:107  
 

BA
BA PPkwhere

n
k

n
PP

⋅=⋅=
⋅

= ,1σ   [5] 

 
PA and PB are proportions of the two components A and B and n is the number of parti-
cles in the scale of scrutiny sample. As obtaining the random mixture is the goal, i.e. the 
optimal mixture, the standard deviation (σ) in Equation 5 expresses the ideal degree of 
mixing. It appears from the equation that the standard deviation can be reduced by ei-
ther increasing the number of particles in the scale of scrutiny sample by decreasing the 
particle size, or by increasing the scale of scrutiny sample. Equation 5 is based on parti-
cles of identical size, shape and density, which is never the case in practice of pharma-
ceutical powder mixing. For multi-sized particle mixtures, the ideal degree of mixing for a 
binary mixture can be expressed as:  
 

W
wPwP

P
P BAAB

B

A ⋅+⋅
=σ   [6] 

 
where W is the mass of the sample, Aw  is the mean particle mass of component A 
and Bw  is the mean particle mass of component B. Equation 6 can be approximated 
powder mixtures of several components by considering them pseudo-binary-mixtures of 
component A (e.g. API) and components B (all the excipients).   
 
The principles described above can be applied to the sampling of a chemical image. The 
chemical image represents the entire powder mixture and the macropixels represents the 
scale of scrutiny. In Equation 5 the number of particles (n) in a sample is proportional to 
the sample size. The macropixels can thus substitute n in Equation 5 and a plot of the 
ideal homogeneity curves can then be obtained for every two-component mixture. The 
ideal homogeneity curve for the sample in Figure 27 (PA= 0.05 and PB = 0.95, k=0.22) is 
depicted in Figure 29. Acceptance limits can be defined around the ‘ideal’ homogeneity 
curve for which homogeneity curves of samples need to be within in order to be assessed 
suitable homogenous. The upper and lower ± 25 % limits are shown in Figure 29 (red 
curves) and it is seen that the sample from Figure 27 according to this is quite far from 
being homogenous (green curve). However, this calculation was not taking particle size 
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or density into account and there can be many other reasons for the homogeneity curve 
position of this sample.  
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Figure 29 - The ideal homogeneity curve for a 5:95 binary mixture 

(blue). The ± 25 % upper and lower limit homogeneity curves with 

regard to the ideal homogeneity curve are shown in red. The ho-

mogeneity curve for the sample in Figure 27 is shown in green.   

 

The need to investigate the behaviour and characteristics of homogeneity curves occur-
ring from different pharmaceutical samples is evident. Unfortunately, time did not allow 
enough exploration of this, but some of the work that has been done and is on-going is 
shortly presented here. The work is related to investigate the relationships between 
chemical images and the shape and position of their homogeneity curves. Such funda-
mental studies are preferable performed using simulated chemical images to standardise 
and control the concentration and homogeneity (‘randomness’) of the images. The initial 
work of these studies is presented in Figure 30, Figure 31 and Figure 32. In Figure 30 the 
concentration is identical in all three images but the particle size (and ‘homogeneity’) is 
varied. In Figure 31 the concentration and the particle size are identical for all three im-
ages but the distribution (or homogeneity/randomness) is varied. Finally, in Figure 32 the 
concentration is varied in the four images but the particle size is identical and the distri-
bution (‘homogeneity/randomness’) is attempted to be maintained. 
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Figure 30 - The concentration in the images is identical but the 

particle sizes and homogeneity are varied. 

 
 
 
 
 

 
Figure 31 - The concentration and particle sizes are identical 

in the images but the homogeneity (or randomness) is varied.  
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Figure 32 - The concentration in the four simulated chemical images is varied but the 

particle size and distribution (‘homogeneity’) are maintained.  

 

The results from Figure 30-32 suggest that the homogeneity curves may contain more 
structural information on for example particle size and the distribution of a component 
(homogeneity or randomness) in the samples, than is revealed in any of the earlier men-
tioned evaluation methods in this chapter. This information and possible relationships 
may be very relevant information and hence needs to be investigated further (cf. sugges-
tions Section 9.2).  
 

7.5 Other image processing techniques 

MASKING TECHNIQUEg  

NIR-CI analysis of larger sample areas is significantly faster using global imaging com-
pared to line mapping technique (Section 4.3). In most NIR-CI analysis using line-
mapping only a selected rectangular area of the tablet surface is analysed. This obviously 
contributes to the sampling issue discussion of how representative this area is of the tab-
let surface (more on this in Section 8.2). This particular sampling issue can however be 
eliminated by analysing the entire tablet surface area. Tablet formulations are however 
not produced in a rectangular form and this will therefore yield an area with pixels not 
belonging to the sample. These pixels must be excluded in the data processing. A mat-
lab-routine was developed for such an analysis masking the pixels not belonging to the 
sample. An example of this is shown in Figure 33, where the entire tablet surface of a 6 
mm diameter tablet is analysed by CLS and compared to a similar analysis of a 3 × 3 
mm area of the same tablet surface.  

                                                      
 
g This is a freeware function (‘BACRA’) available from http://www.models.life.ku.dk/users/jose_manuel_amigo/index.htm 
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Figure 33 - Chemical API image by Classical Least Squares (CLS) of the en-

tire 6 mm diameter tablet surface (left), and a 3×3 mm area of the same 

tablet surface (right). The sample is a two-component tablet formulation 

containing 5 % w/w API (Batch 2 - Tablet 2, Figure 36, and Paper II).  

 

COMPOSITE IMAGES 

A common way in the NIR-CI literature to visualise the distribution of multiple compo-
nents in a sample simultaneously is to produce composite images.15,71 Composite images 
provide a visualisation of the relative distribution of components and are appealing be-
cause multiple components are shown together.  

A composite image can be produced as a red, green and blue (RGB) image in an 
M×N×3 format. However, such a composite image is usually generated from binary im-
ages, i.e. it involves the difficult threshold value selection of the chemical images dis-
cussed in Section 7.3. Some of the problems and approximations needed for producing 
composite images have been discussed.44,71 The difficult task of threshold value selection 
often results in heavy overlaps of components in composite images, which may confuse 
the interpretation. Sasic71 describes how re-assignment of overlapped pixels subjectively 
can be performed, but concludes it will generate arbitrary composite images that may 
even be misleading.  

A RGB composite image based on binary images of API, cellulose and lactose from a 
five-component tablet formulation is shown as an example (Figure 34d). The three 
chemical images used to produce the composite image and the threshold values selected 
for each chemical image are also shown (Figure 34a-34c). 

Another way of producing a composite image is to directly overlay the chemical images 
(Figure 34e). Each of the chemical images of API, cellulose and lactose (Figure 34a-34c) 
are first transformed into a red, green and blue image, respectively. The colour intensity 
of each pixel in a red, green or blue image will be proportional to the intensity values 
from the chemical image it is generated from. The three red, green and blue images rep-
resenting the three components will finally be overlaid. This composite image will natu-
rally be full of overlaps but the high intensity areas of each component will protrude and 
thus show the distribution of these areas for each component (Figure 34e). 
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(a) 
 

(b) (c) 

  
  (d) 

  
  (e)  

 
Figure 34 - Chemical images of (a) API, (b) cellulose, and (c) lactose of a five-component tablet 

formulation. A red-green-blue composite image (d) is produced from binary images of the three 

chemical images (a-c) generated from threshold-values indicated by the black arrows at the colour-

bar for each image. An alternative composite image (e) is produced from directly overlaying the 

chemical images.  

 

As discussed above, composite images are appealing but not without issues and care 
should be taken in their interpretation. The individual chemical images are a more visual 
reliable outcome of the experiments and these chemical images have therefore been se-
lected as the primary image presentation form of NIR-CI analysed samples throughout 
this project.  
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CHAPTER 8 

NIR-CI IN PHARMACEUTICAL APPLICATIONS 
 
The theoretical framework and method descriptions necessary for performing a complete 
and successful NIR-CI experiment were presented in the previous chapters. This work is 
unified in this chapter presenting different studies of NIR-CI applied to pharmaceutical 
samples utilising one or more of the developed data processing method and image proc-
essing tools. 
 

8.1 Effect of different API particle size on tablet homogeneity 

The results from this study are the foundation of paper II. This section and paper II can 
be read separately, but are obviously overlapping and complementary. There will be re-
sults presented in this section not included in paper II and some of the work is on the 
other hand more detailed described in paper II. The study demonstrates how NIR-CI can 
be integrated in formulation development of tablets. The effect of using different API par-
ticle size on its distribution within the tablets is examined.  
 
During formulation development of tablets the effect of API particle size will be evaluated 
for its influence on the process and final product performance. As revealed from Equation 
5 more uniform distribution of API is in general obtained per unit dose (tablet) with in-
creased number of particles, i.e. with finer (smaller) API particle size. However, small 
particle sizes produce cohesive powders, which have poor flow properties, may cause 
segregation when mixed with larger particle sized excipients, and will tend to agglomer-
ate. This will require use of a high mixing efficiency. Using a larger API particle size will 
provide better flow properties and generally be easier to mix. However, it will also be 
more prone to segregation, especially if the particle sizes of API and excipients are too 
different. Further, larger API particle size may also be difficult to mix to a high degree of 
homogeneity if the content of API is low.12,108 The mentioned issues on particle size and 
mixing efficiency demonstrate a number of factors to be aware of. It is therefore impor-
tant to be able to analyse and characterise the effects from these factors and NIR-CI may 
be an extremely helpful tool in that context.    
 
Three different sieved fractions of API particle size were utilised in this study to produce 
three different tablet batches by direct compression of a two-component tablet formula-
tion. All other process factors were kept constant. Four tablets from each of the three 
batches were analysed by NIR-CI line-mapping (Chapter 5), data processed by CLS 
(Chapter 6) and evaluated by different image processing tools (Chapter 7). 
 
Materials and methods (see also Paper II) 

A two-component powder blend consisting of 5 % (w/w) active pharmaceutical ingredient (API) (a proprietary 

compound) and 95 % (w/w) silicified microcrystalline cellulose (ProSolv SMCC® HD90, JRS Pharma, Germany) 

was used to produce the three different batches. The three batches were manufactured with the following dif-

ferent API particle size fractions: (1) < 125 µm; (2) 125 – 355 µm; and (3) > 355 µm, in the following referred 
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to as batch 1, batch 2 and batch 3, respectively. Each blend of 150 g was loaded in a 1 L stainless-steel con-

tainer (~ 50 % of total container volume) and mixed on a lab-scale Turbula® mixer for 5 minutes at 70 rpm.  

Immediately after mixing, the two-component powder blend was tabletted on a single punch Diaf tablet 

press. The tablets manufactured had a flat surface, diameter of 6 mm and aiming at target weight 100 mg and 

target hardness 75 N. Pure compound reference samples of the API and microcrystalline cellulose (MCC) were 

also produced for the classical least squares (CLS) image analysis. 

A near-infrared line mapping system (Spectrum Spotlight 350 FT-NIR Microscope, PerkinElmer, UK) was util-

ised to obtain the hyperspectral raw data. The following instrumental settings were used: Area: 3 x 3 mm; 

Wavenumber range: 7800 – 4000 cm-1; Pixel size: 25 x 25 µm; Spectral resolution: 16 cm-1; 8 scans to aver-

age a single spectrum.     

 

CHEMICAL IMAGES 

The immediate generated chemical image of a sample is presented as non-scaled. The 
non-scaled chemical API image of ‘tablet 2-batch 1’ is compared to its scaled version 
(from 0 to 1) in Figure 35.  
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Figure 35 - The chemical API image generated by CLS of tablet 2 from 

batch 1 as non-scaled (left) and scaled [0 to 1] (right).  

 

Figure 35 illustrates that it appears seemingly easier to visually interpret a chemical im-
age of a single sample in its non-scaled version. However, to compare chemical images 
of different samples it is necessary to bring to same scale. The chemical images of API 
generated by CLS of the four tablets from each of the three batches having different in-
going API particle size are shown in Figure 36. 

The scaled chemical API images corresponding to the finest API particle size (Figure 36, 
upper row) display a higher number of smaller domain sizes than observed for the 
chemical images of API produced from medium particle size and large particle size (Fig-
ure 36, medium and lower row). The four images of tablets from batch 3 with API particle 
sizes above 355 µm only display large API domains for tablet 2 and 4. The reason is that 
there simply are no (large) API domains in the 3 x 3 mm sampled area of tablet 1 and 3. 
This is confirmed by the low CLS concentration predictions as appears from Table 8. The 
table displays the histogram statistics of the chemical images from Figure 36. It confirms 
the low content of API in tablet 1 and 3 (2.5 % and 3.4 %h) compared to tablet 2 and 4 
(12.5 % and 10.2 %) for batch 3. 
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Figure 36 - Chemical images of API generated by the CLS algorithm. The chemical images are of 

four tablets (3x3 mm) from each of the 3 batches with different API particle sizes:  < 125 µm 

(batch 1, upper row); 125-355 µm (batch 2, middle row); and > 355 µm (batch 3, lower row). All 

images are scaled from 0 to 1. 

 
 
 

 Batch 1 
(<125 µm) 

Batch 2 
(125-355 µm) 

Batch 3 
(>355 µm) 

 Mean  Std. Mean  Std. Mean  Std. 

Tablet 1 6.0 4.3 7.2 11.0 2.5 2.0 

Tablet 2 6.2 3.9 8.8 14.5 12.5 25.3 

Tablet 3 7.1 4.2 5.9 5.8 3.4 4.3 

Tablet 4 7.6 4.7 6.4 7.1 10.2 21.2 

Mean 6.7  7.1  7.2   
Std-b (between) 0.76  1.3  4.9  
Std-w (within)  4.3  9.6  13.2 

Table 8 - Histogram statistics of the CLS generated chemical API images 

from Figure 36 showing the mean value and standard deviation (Std.) of the 

API content predictions for each of four tablets within the three batches 

(CLS predictions × 100)h. The standard deviation Std-b is the standard de-

viation of the four mean values for each batch. The standard deviation Std-w 

is the mean of the four standard deviations (Std.) for each batch.    

 
                                                      
 
h The unit ‘%’ for CLS predictions (× 100) means percentage of the pure component compact used for CLS analysis and should 
not be mistaken by the common perception of ‘%’ as relative content in the actual sample. Mostly, though, the CLS prediction 
of a component approximates the mean percentage of the component in the actual sample (cf. Section 6.3, CLS).  
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The objective and quantitative histogram statistics from Table 8 are well in accordance 
with the qualitative results from the visual evaluation. The mean of the mean values for 
all four tablets for each batch are quite similar but the standard deviation (Std-b) in-
creases from 0.76 % to 1.3 % and to 4.9 % for batch 1, batch 2 and batch 3, respec-
tively. This reflects the increasing variation in content prediction between the four tablets 
from each batch and suggests an increasing in-homogeneity of API in the tablets from 
batch 1 through to batch 3. The standard deviation (Std-w) reflects a weighted mean 
value of the variation in pixel content predictions within each of the four tablets from 
each batch. The Std-w increases from batch 1 through to batch 3 (4.3 %, 9.6 % and 
13.2 %, respectively). These results also indicate a decreasing uniform distribution of API 
in the tablets going from batch 1 to batch 3. 
 
The histogram plots of the chemical images of tablet 2 for each of the three batches are 
shown as representative examples in Figure 37. This is to illustrate the basis of the sta-
tistic results in Table 8. An important difference between these histograms is the length 
and size of the tail of pixel predictions that extends toward the high CLS prediction val-
ues. The long tail of pixels for ‘batch3-tablet2’ represents regions with high API contribu-
tion (i.e. high API concentration). The short tail of pixels for ‘batch1-tablet2’ also repre-
sents regions of API but of much lower concentration. These results support what is re-
vealed from the chemical images (Figure 36). However, the histogram statistic informa-
tion is spatially independent and hence does not reveal anything about the domain size of 
the API regions. 
 

 
Figure 37 - The histogram plots of tablet 2 for batch 1 (green), 

batch 2 (red) and batch 3 (blue).  

 

The large and highly concentrated API domains can also be revealed from the measured 
NIR diffuse reflectance raw spectra (Figure 38). The spectra behind regions in the chemi-
cal images with high versus low concentration of API are shown for tablet 2 from batch 1 
(Figure 38a) and batch 3 (Figure 38b), respectively. For reference the spectra of the pure 
components are also shown (Figure 38c). The difference between the spectra is high 
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(red) and low (blue) concentrated API regions. This difference is more pronounced for the 
spectra of batch 3 (Figure 38b). Note also the high resemblance of the red spectra for 
batch 3 and the pure API reference spectrum. This indicates an API rich domain not only 
contained in the surface at this particular location of the imaged sample but likely span-
ning the entire information depth (cf. Section 4.5).  
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Figure 38 - NIR diffuse reflectance spectra from the hyperspectral data cube of tablet 2 

from batch 1 (a) and tablet 2 from batch 3 (b). The red and blue spectra correspond to 

regions of high and low API concentration, respectively. The pure component reference 

spectra of API and the excipient (cellulose) are shown for comparison (c).  

 

BINARY IMAGES AND DOMAIN STATISTICS 

With the evident visual differences in API domain sizes between the three batches in this 
study, domain statistics is an obvious image processing tool to compare and evaluate the 
chemical images. The binary images are generated from the chemical images using a 
threshold value of 0.15 for all images (Figure 39). The method used to determine this 
threshold value is described in details in Section 7.3 and (II).  From the binary images 
the effect of different ingoing API particle size on its size and distribution in the final tab-
let is even more evident compared to the corresponding chemical images in Figure 36. 
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Figure 39 - Binary images generated from the chemical images in Figure 36 using 

a threshold value of 0.15. 

 

While absolute particle size could not be determined from the binary images (Section 
7.3), the API domain size statistics above the spatial resolution (25 x 25 µm) was calcu-
lated (Table 9). These results clearly confirm the earlier visual observations with the 
number of domains decreasing but the size of domains increasing from batch 1 to batch 
3. The results for batch 3 are differing even more from the other batches if the two tab-
lets (no. 1 and 3) with hardly any API are excluded (results in brackets, Table 9).  

 

 No. of domains Mean equivalent diameter (µm) Area covered (%) 

 Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3 

Tablet 1 69 30 2 71 127 69 4.1 8.2 0.1 

Tablet 2 68 25 9 66 158 299 3.6 11.0 16.4 

Tablet 3 71 31 7 73 95 124 4.5 4.7 1.9 

Tablet 4 104 42 4 73 96 659 6.6 6.0 15.9 

Average 78 32 6 (7) 71 119 288 (479) 4.7 7.5 8.6 (16.2) 

RSD (%) 22 22 57  5 25 92  28 37 102 

Table 9 - Domain size statistic results of API based on binary images generated from CLS chemical images 

of API and a threshold value of 0.15. For batch 3 average results only calculated for tablet 2 and 4 are 

shown in brackets, i.e. excluding the two tablets with hardly any API. 

 
It should be noted that the mean equivalent diameter for batch 2 (119 µm) and for batch 
3 (288 µm) are lower than the actual ingoing API particle size fractions (125-355 µm and 
> 355 µm, respectively). This is probably due to the often several “unit-sized-pixel” (here 
25 x 25 µm) domains appearing in most binary images. Whether these “unit-sized-pixel” 
particles/domains are representative of the reality in the tablet sample is questionable, 
but they impact to a lower calculated mean equivalent diameter. There is definitely room 
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for optimising this domain size statistic methodology. This should include when or how to 
include/exclude the “unit-sized-pixel” domains but also how to separate contiguous fea-
tures in a binary image. Different mathematical morphology and image segmentation 
method are probably needed to refine this method.   

As a consequence, the obtained results in Table 9 are only a rough estimate of the do-
main sizes in the imaged sample. However, such results are still very valuable when 
comparing samples or determining the relative size changes e.g. as a consequence of 
changed process parameters. 
 

HOMOGENEITY CURVES 

The homogeneity curves (Section 7.4) obtained for the 12 tablet samples in this study (4 
tablets from each of the 3 batches) are shown in Figure 40. 
 

 
Figure 40 - Homogeneity curves showing standard deviations of CLS predictions 

versus squared macropixel size. The curves are shown for each of four tablets 

from each of the three batches. The insert enlarges the area around origin.  

 

Different approaches for evaluating homogeneity curves were discussed in Section 7.4. A 
visual evaluation and calculation of the area under the homogeneity curves (AUHC) is 
utilised here.  

The homogeneity curves in Figure 40 were generally positioned lower in the graph for 
tablet samples with smaller API domains more evenly spread out on the tablet surface 
compared to tablet samples from batch 3 where larger API domains were distributed less 
evenly throughout the tablet surface. The two curves for tablet 1 and 3 for batch 3 break 
this pattern but they actually just confirm the functionality of this methodology. As men-
tioned before, there were hardly any API in these samples and they therefore errone-
ously appear well blended. These homogeneity curves are therefore found among the 
homogeneity curves for the more homogenous batch 1 (see insert, Figure 40). Such de-
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viating samples would always easily be captured by comparing the homogeneity curves 
with the low CLS predictions of API (Table 8) or assay values from other conventional 
analytical methods.  
 
As earlier mentioned it is always desirable for image processing tools to move beyond 
subjective and qualitative analysis (as for visual evaluation) and determine objective and 
quantitative measures. The trapezoidal area under the homogeneity curves (AUHC) are 
determined as such a measure for the chemical API images (Table 10).   

 
AUHC Batch 1 Batch 2 Batch 3 

Tablet 1 49 114 (30) 
Tablet 2 30 305 457 
Tablet 3 53 99 (67) 
Tablet 4 42 122 594 

Table 10 - The area under the homogeneity curves (AUHC) 

from Figure 40 calculated by trapezoidal integration. The 

results from the deviating tablet 1 and 3 from batch 3 are 

shown in brackets.  

 
A sample is considered homogenous having low standard deviations between macropixels 
and thus a lower-lying homogeneity curve and low AUHC-values. It is seen that the 
AUHC-values are in accordance with the position of homogeneity curves in Figure 40 and 
also the results from earlier image processing approaches. The AUHC-values for batch 1 
are lower than batch 2 that again are lower than batch 3. Tablet 1 and 3 from batch 3 
will once again, due to the lack of API in the samples, erroneously be assessed homoge-
nous samples from their low AUHC-values.  
 

CONCLUSION 

From the results presented in this study and (II) near-infrared chemical imaging has 
been demonstrated to be a useful analytical technology for the study of tablets from a 
formulation development experiment. Domain sizes of API and their spatial distribution 
within tablets were determined and the homogeneity of each tablet evaluated based on 
this information. Valuable information, that is not readily obtainable by other analytical 
techniques. Small ingoing API particle sizes resulted in small and well-distributed API 
domains in the manufactured tablets. With larger ingoing API particle sizes the API do-
mains increased within the tablets and the API distribution became worse. The results are 
in line with the findings from a similar Raman chemical imaging study46 but opposite to 
an equivalent NIR-CI study.16 Both of these referenced studies determined the API do-
main size in tablets using different ingoing API particle size. The opposite results from 
the NIR-CI study were caused by agglomeration of the smallest API particle size.16 All 
these studies emphasise the valuable information and useful role the chemical imaging 
technologies can play in tablet formulation development experiments.  

This study investigated the effect of using different API particle size on the size and dis-
tribution of API in the final tablet formulation. However, the main theme was the evalua-
tion of tablets by near-infrared chemical imaging and in particular the evaluation of re-
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sults obtained using different image processing tools (Chapter 7). The study could there-
fore be considered a model-study as the tablets and evaluation approaches used could 
just as well have been from another formulation development study, e.g. studying the a 
powder mixing process (Section 2.4). Hence, a general approach for use of NIR-CI in 
formulation development studies of tablets has been demonstrated.    
 

8.2 Sampling issues 

The valuable role of NIR chemical imaging to characterise solid dosage form matrices and 
gain increased understanding from the unique spatial distribution information of compo-
nents provided has been demonstrated in this thesis and from the numerous applications 
published (cf. Table 1). In this project, it has also been shown that accurate component 
predictions and thus accurate chemical images can be obtained using NIR-CI (Section 6.4 
and I).  
 
Despite the valuable information and accurate determinations provided by NIR-CI, the 
conclusion from most of these studies has been based on chemical images from the sam-
ple surface of one or a few tablets. To further develop the NIR-CI technology, e.g. for use 
in quality assurance (QA) and quality control (QC), there is a need to define representa-
tive sampling sizes. This means determining how representative a single chemical image 
is of a tablet, and further how representative that tablet is of the whole batch. To the au-
thor’s best knowledge no studies have been published trying to thoroughly investigate 
these sampling issues.  
 

REPEATABILITY STUDY 

The importance of obtaining reliable results from repeated measurements of the exact 
same sample, the exact same area and under identical conditions was discussed in rela-
tion to the large scattering nature of diffuse reflectance measurements of solid-mixtures 
(Section 4.5). In the small experiment presented here, the repeatability is studied for 
eight repeated measurements (sample 1-8) on a single tablet. The analysed tablet was 
collected from batch 1 in the experiment discussed above (section 8.1 and II).  
 
Materials and methods 

A single tablet sample from batch 1 (section 8.1, II) was analysed. This tablet formulation was composed of 5 

% (w/w) API (a Novo Nordisk proprietary compound) sieved to a particle size < 125 µm and 95 % (w/w) 

microcrystalline cellulose (ProSolv SMCC® HD90, JRS Pharma, Germany, non-sieved). The tablet was 6 mm in 

diameter with a flat surface, so no sectioning was necessary. The tablet was fixed onto a microscope slide using 

cyanoacrylate glue and measured directly on the flat tablet surface.  

A near-infrared line mapping system (Spectrum Spotlight 350 FT-NIR Microscope) was utilised to obtain the 

hyperspectral data cube. An area of approximately 3 × 3 mm was analysed using a pixel size of 25 × 25 µm 

obtaining an image of exactly 125 × 124 pixels (= 15500 spectra) for each of the eight measurements. Each 

spectrum was the average of 8 scans from wavelength region 7800-4000 cm-1 using a 16 cm-1 spectral resolu-

tion. The eight measurements (sample 1-8) were conducted in succession analysing the exact same area and 

using the same background measurement for correction. The collected hyperspectral images were analysed by 

CLS (Section 6.3) and the mean CLS prediction value of API and the standard deviation were calculated for 

each chemical image. 
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All eight CLS generated chemical images of each component appeared visually similar. 
Hence, only the chemical images of API and microcrystalline cellulose for the samples 
with the lowest and highest mean API prediction value from the CLS analysis are shown 
(Figure 41). Table 11 displays the mean and standard deviation of all CLS pixel prediction 
values for the two components for each of the eight sample measurements.    
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Figure 41 - Chemical images (non-scaled) of API and microcrystalline cellulose for 

two samples in a repeatability study measuring the exact same tablet and area eight 

consecutive times. The two samples shown are from the measurements giving the 

highest and lowest mean API prediction value from the CLS analysis.  

 
 

 Mean 
API 

Std. 
API 

 Mean 
Cellulose 

Std. 
Cellulose 

Sample 1 4.43 3.06  90.95 8.95 

Sample 2 4.62 3.03  91.60 8.83 

Sample 3 4.75 3.05  92.22 8.99 

Sample 4 4.67 3.06  92.49 9.04 

Sample 5 4.68 3.07  92.60 8.99 

Sample 6 4.63 3.06  92.80 8.97 

Sample 7 4.58 3.05  92.79 8.93 

Sample 8 4.54 3.06  92.82 8.91 

Mean 4.61 3.06  92.28 8.95 

RSD (%) 2.1 % 0.4 %  0.7 % 0.7 % 

Table 11 - The mean values and standard deviations (Std.), 

i.e. histogram statistics, of the two components (API and 

microcrystalline cellulose) from the eight CLS generated 

chemical images (CLS predictions × 100). The eight samples 

are from a repeatability study analysing the exact same tablet 

and same area of the tablet eight consecutive times. 
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The results in Table 11 prove the high precision (repeatability) of the NIR-CI measure-
ments with the relative standard deviation (RSD) of API and microcrystalline cellulose 
mean content predictions from CLS analysis only being 2.1 % and 0.7 %, respectively. 
The results also show that the variation within each measurement is quite similar for all 
eight determinations (RSD 0.4 % and 0.7 % for API and cellulose, respectively). 

The results confirm that despite the complex and deep scattering from the NIR diffuse 
reflectance measurement in a NIR-CI data acquisition, reliable and reproducible results 
will be obtained and the spatial resolution maintained. This finding is actually a very im-
portant finding to consolidate the validity of chemical images from NIR-CI experiments.  
 

CROSS SECTIONS OF A SINGLE SAMPLE – VOLUMETRIC CHEMICAL IMAGE 

It was earlier discussed how care should be taken in the evaluation of chemical images 
and in particular for absolute determinations of particle/domain sizes of components 
(Section 4.5, 7.3 and 8.1). The domain size results will depend on the sample depth pro-
file analysed and will generally underestimate domain size of spheres and overestimate 
the size of cubes.44 This sampling issue is related to how representative a single chemical 
image is of a tablet and is investigated by the example shown below.  

A single tablet was cross-sectioned 12 times. Each cross-section was analysed by NIR-
CI to obtain hyperspectral data cubes from 13 surfaces of the tablet at different sample 
depths. First, the tablet was analysed by NIR-CI at the sample surface. A layer of ap-
proximately 200 µm was then removed by microtoming (Section 5.1) and the newly ex-
posed surface was analysed. This process was repeated until hyperspectral NIR data 
cubes were obtained from all 13 surfaces (from tablet surface to bottom). Each surface 
was analysed by identical data acquisition conditions and it was attempted to analyse the 
exact same area for each sectioned surface according to described approach by Clarke et 
al.36 For the best possible illustration purpose, a presumably heterogeneous tablet was 
selected for this study. This would increase the chances to observe some significant fea-
tures or differences in the cross-section layers. Further details of sample and data acqui-
sition are given below.  
 
Materials and methods 

The single tablet used for analysis was composed of 10 % (w/w) API (a Nordisk proprietary compound) and 90 

% (w/w) microcrystalline cellulose (AvicelPH102, FMC Biopolymer, Philadelphia, USA). A 150 g powder batch of 

this formulation was produced by mixing the two powders in a 1 L stainless steel container for half a minute (70 

rpm) in a lab-scale Turbula® mixer (WAB Maschinenfabrik, Muttenz, Switzerland). Immediately after mixing, 

the powder blend was tabletted on a single punch Diaf Tablet press. The tablets had a flat surface, diameter of 

6 mm, weight of 100 mg and a thickness of approximately 2.6 mm. 

A single tablet was selected from the tablet batch and fixed onto a microscope slide using cyanoacrylate glue. 

The tablet was first measured by NIR-CI directly on the flat tablet surface. The tablet was then sectioned using 

a microtomer (Leica EM Trim, Leica Mikrosysteme GmbH, Vienna, Austria) removing a top layer of approxi-

mately 200 µm. The newly exposed tablet surface was now analysed by NIR-CI and this process was repeated 

until 12 layers of 200 µm had been removed and a hyperspectral data cube obtained from each surface. For 

each NIR-CI surface analysis it was attempted to analyse the exact same surface location similar to the ap-

proach described by Clarke et al.36 

A near-infrared line mapping system (Spectrum Spotlight 350 FT-NIR Microscope) was utilised to obtain the 

hyperspectral data cubes. For each measurement the same area of approximately 2 × 2 mm was analysed us-
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ing a pixel size of 25 × 25 µm obtaining an image of 120 × 120 pixels (= 14400 spectra). Each spectrum was 

the average of 8 scans from wavelength region 7800-4000 cm-1 using a 16 cm-1 spectral resolution. The thir-

teen measurements (sample 1-13) were conducted in succession using the same background measurement for 

correction. The collected hyperspectral images were analysed by CLS (section 6.3) to obtain the chemical im-

ages.  

 
The chemical images of API for all thirteen surfaces analysed of the single tablet is shown 
in Figure 42. The non-scaled chemical images are displayed because it makes each image 
easier to visually interpret but recall that this makes it more difficult to directly compare 
the thirteen chemical images. 

 

Surface (1): 5.6 Section (2): 4.5 Section (3): 3.0  Section (4): 1.9 

Section (5): 2.6 Section (6): 14.5 Section (7): 7.5 Section (8): 2.0 

Section (9): 0.9 Section (10): 2.3 Section (11): 1.3 Section (12): 4.4 

Section (13): 2.3 

Figure 42 - Chemical API images of a single tablet analysed at 

approximate same area at 13 different sample depths. The dif-

ferent sample depths were obtained by sectioning the tablet each 

time removing a layer of ∼ 200 µm. The chemical images are gen-

erated from CLS analysis and the API prediction values are 

shown beneath each chemical image.  

 

The thirteen chemical images in Figure 42 clearly show the sampling issue of only analys-
ing one surface of a single tablet, particularly in the case of heterogeneous tablets. The 
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chemical images differ from almost no API appearing in section (9) to the large clump of 
API in section (6). The estimated API content by CLS analysis varied from 0.92 to 14.4 
with a mean value of 4.1 and a relative standard deviation on 90 %. The corresponding 
mean and standard deviation values for microcrystalline cellulose predictions were 75.0 
and 8 %. 

It is interesting to note how the smaller sized top and bottom of the large API clump 
from section (6) apparently appear in section (5) and (7), respectively. The API domain 
size statistics that would be calculated based on each of these chemical images would 
obviously be very different. This underlines the earlier point discussed on this matter; 
that determinations of particle/domain shapes and sizes can always only be an estimate 
when analysing one single chemical image.    
 
The example shown here only analyses one single tablet, yet it addresses many of the 
sampling issues related to NIR-CI experiments. One of these sampling issues is represen-
tative sample size area, i.e. how large an area of a tablet should be analysed to be repre-
sentative of the whole tablet. In this study a tablet surface area on 4 mm2 out of a total 
tablet surface area of approximately 28 mm2 was analysed. It is more than likely that 
measuring a larger sample area than 14 % of the total tablet surface area will improve 
the results and reduce the variation in content predictions; in particular for this appar-
ently inhomogeneous tablet. However, even with a larger surface area analysed the very 
different results from the cross sections at different depths in Figure 42 indicate, that 
measuring one single surface is unlikely to be representative of the whole tablet. The so-
lution may be to measure several cross sections of each tablet as performed in this ex-
periment, to analyse several samples of each tablet batch (as in conventional pharma-
ceutical quality control) or even better to combine the two approaches. It will require a 
well-designed study and analysis of a lot more samples of different types to thoroughly 
investigate the sampling issues addressed here further. This study has provided inspira-
tion for such further studies.   
 
An obvious use of this cross sectioning approach is in formulation development of tablets. 
The time consuming process of sectioning and subsequent profound analysis of single 
tablets is not really an issue in formulation development. The cross-section analyses are 
therefore a powerful tool to scrutinize new formulations in the initial development phase 
to obtain detailed and valuable information about the distribution of components 
throughout the tablet. 
 
With numerous cross sections of a single tablet it is possible to assemble them all in se-
quence and visualise the result as a three-dimensional volumetric chemical image. Prior 
to assembling, the binary images for the component of interest for each of the cross sec-
tions are first generated. The volumetric chemical image of API for the thirteen hyper-
spectral data cubes presented above are displayed in Figure 43. This shows the distribu-
tion of API throughout the tablet in a single image. Similar volumetric images can be 
made for each of the other components in a tablet. However, compared to the plot in 
Figure 43 the graphical computer plot of this volumetric chemical image is a much 
stronger visual tool, as it is possible to rotate the 3D plot and view the distribution from 
many different angles.  
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Figure 43 - Volumetric 3D chemical image of API in a tablet. The volumetric image is 

composed of thirteen NIR-CI analysed cross-sections of the tablet. The binary API im-

age of each cross-section sample is created and assembled to produce the volumetric 

API image. It shows the distribution of API from the surface throughout to the bottom 

of the tablet.  
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CHAPTER 9 

CONCLUSION AND FUTURE RESEARCH 
 

9.1 Conclusion 

The significant added value that near-infrared chemical imaging can provide in the devel-
opment of new pharmaceutical tablet formulations was clearly demonstrated in this the-
sis. There are, however, a number of limitations and cautions that need to be considered 
when using this technology for pharmaceutical applications. 
 
NIR-CI is capable of providing information about the composition and concentration, but 
what is unique for this technology is that it provides information on the size and spatial 
distribution of all components within a sample matrix. Having a thorough understanding 
of how to properly measure and analyse hyperspectral NIR data cubes is extremely im-
portant for obtaining this information. The NIR-CI data acquisition generates an immense 
amount of spectral data, and effective data processing methods and image processing 
tools are needed to extract accurate and meaningful information. All three steps in a 
complete NIR-CI experiment – i.e. data acquisition, data processing and image process-
ing – are of equal importance for successful results. The emphasis in this thesis was on 
data and image processing.  
 
A variety of different data processing methods have been described, and these methods 
constitute a ‘data processing toolbox’ that will be able to cover most NIR-CI applications 
in tablet formulation development. Furthermore, each of the steps typically involved in a 
full NIR-CI analysis is described in details, which provides a practical guidance for analy-
sis of hyperspectral NIR data cubes. The choice of the appropriate data processing 
method will depend on the data set and the purpose of the analysis. Suggestions are 
given for which method to use and when. 
 
Obviously, the aim of data processing is most often to generate the most accurate 
chemical images. However, the challenge for data processing methods, and generally for 
many aspects of NIR-CI, is that there exist no objective criteria for what the ‘best’ or 
most accurate results are. Such evaluation will for example require some kind of cali-
brated ‘NIR-CI tablet’. In this thesis, the problem was solved by constructing and analys-
ing a calibration data set. The data processing method providing the lowest prediction 
error from the subsequent regression analysis was considered to generate the most ac-
curate chemical images. In such a study comparing three common data processing ap-
proaches, PLS1 was demonstrated to be the superior method, but with CLS as an excel-
lent and relatively accurate alternative. Furthermore, the advantage in the general use of 
CLS is that it only requires the availability of the pure component spectra to work.  

Moreover, the general applicability of using a calibration data set for accuracy and effi-
ciency evaluations was further demonstrated. This was done by minor studies in which 
the most appropriate spectral pre-processing method and wavenumber range for data 
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processing analysis was determined. Other factors, such as instrumental settings and 
sample preparation, may also profitably be evaluated in this way.  
 
In this thesis, it was emphasised and demonstrated that in order to fully exploit the po-
tential of the NIR-CI technology it is necessary to move from the subjective interpreta-
tion of chemical images to a processing of the data into objective and quantitative infor-
mation. Such objective measures are essential for discriminating similar samples and for 
deployment of the technology in QA/QC and for PAT applications.  

Also demonstrated was the usefulness of the common image processing tools of histo-
gram statistics and domain size statistics. However, their limitations were also exposed 
and there is still an unmet need to develop accurate methods that numerically describe 
the information contained in a chemical image, e.g. spatial arrangement, relative posi-
tioning of components and domain size statistics. This thesis provides a contribution to 
this important work. A new exciting tool was developed to evaluate the homogeneity of 
the generated chemical images. The principle builds upon the concept of histogram sta-
tistics but involves a much more extensive sampling of the chemical images (‘macropixel 
analysis’). Different approaches to evaluating and extracting numerical values from the 
‘homogeneity curve’ generated for each chemical image using this method were dis-
cussed. Homogeneity is always a major concern in the development of new tablet formu-
lations, which is why this newly developed quantitative manner of describing homogene-
ity is seen as a promising and powerful image processing tool. Moreover, as discussed in 
the thesis it is plausible that the homogeneity concept can be linked to theoretical mixing 
theory of particulate systems, and it is possible that even more information can be ex-
tracted from chemical images using this approach (cf. section 9.2).   
 
The structure of the tablet matrix is assessed as being the key factor in determining the 
overall quality of a tablet formulation. This makes the relevance and importance of the 
NIR-CI technology obvious, as the key information gained from NIR-CI is the capability of 
providing insight into the structure and function of the tablet matrix.  

This was demonstrated in a tablet formulation development study which integrated 
NIR-CI and evaluated the effect on API distribution in tablets using different API particle 
sizes. Results from all the applied methods/tools were able to discriminate between 
batches with different ingoing API particle sizes. The study emphasises how the unique 
information obtained by NIR-CI and the processed data make it possible to evaluate and 
understand how the tablet matrix evolves as a function of the process or the component 
conditions used. The methodology approach presented in this application study can most 
likely be applied to other types of formulation development studies.  
 
NIR-CI is still a maturing technology and there are some important factors, limitations 
and cautions to consider, as these may affect the overall quality of the final result, either 
individually or in combination. Only a few have been addressed and discussed in this 
work:  

• Care must be taken in visual interpretation of chemical images. The goal is not 
high image contrast, but the right, i.e. most accurate, contrast, as concluded in 
Paper I. 
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• The chemical images can be quite sensitive to analytical settings such as the cho-
sen pre-processing method, wavenumber range, and generation of pure compo-
nent spectra. 

• No appropriate objective method of threshold-value selection exists for generating 
binary images from chemical images. This will affect the domain size statistic re-
sults, which should be kept in mind when evaluating such results.  

• Particle/domain size determinations from a single binary image must be evaluated 
with caution, as they can only ever be an estimate of the particle/domain sizes in 
the sample. Beware of over- and underestimations. 

• Sampling issues should always be considered. How representative a single chemi-
cal image is of the whole tablet, and how representative a chemical imaged tablet 
is of the batch requires further investigations.  

• Thoroughly and detailed understand aspects of data analysis methods, i.e. relate 
details of each method with the final result (chemical image).  

 
For some of the existing factors/limitations there are no easy answers, if any. Neverthe-
less, it is important to be aware of them when considering the actual information that 
can be obtained from the chemical images. Some of the limitations are closely linked to 
some of the future investigations that should be performed to address these issues. Sug-
gestions for such future investigations are presented in Section 9.2.  
 
Despite the limitations and cautions pointed out, the unique information obtainable by 
NIR-CI is still invaluable for studying and gaining increased understanding of tablet for-
mulations and other solid dosage forms. NIR-CI is probably most useful for comparing 
and discriminating formulations and for determining product changes in manufacturing or 
during storage. The current use is therefore primarily envisaged to be for development of 
new product formulations and for understanding manufacturing defects. To get adopted 
and deployed in QA/QC functions, or for at-line, in-line or on-line PAT applications, im-
provements are needed related to data acquisition speed, flexibility, instrument robust-
ness, automated and robust data processing approaches, etc. 

Finally, it should be emphasised that chemical imaging lead by NIR-CI is the only cur-
rent analytical technique that can extract chemical information and information on com-
ponent’s size and spatial distribution from solid-phase samples, such as tablets or other 
solid dosage forms.  
 
NIR-CI is a maturing technology, also in pharmaceutical applications, and this thesis adds 
a contribution to the knowledge foundation still being built. It is the intention and hope of 
the author that this thesis will provide both theoretical and practical knowledge useful for 
researchers working with NIR-CI, and in particular for applications related to new phar-
maceutical formulations. The involvement of formulation scientists or process chemists is 
important, as detailed knowledge of the manufacturing process is often required to relate 
variations observed in a chemical image to the responsible unit operation. 
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9.2 Future research  

The last few years increasing number of publications on the use of NIR-CI in pharmaceu-
tical applications indicate that more and more pharmaceutical research groups are using 
and implementing the technology. The contributions have been trouble-shooting cases, 
product characterisation, merely data processing development, formulation development 
applications, studies of mechanistic understanding, reviews etc. (Table 1, Section 4.6). 
These studies and more of a similar kind are very welcomed as they all contribute to the 
knowledge basis for the NIR-CI technology.  
 
An area in NIR-CI that needs more attention to further strengthen the value of the tech-
nology lies in understanding the correlation between NIR-CI data and product perform-
ance. It has been suggested that some of this information and knowledge are already 
available, e.g. at pharmaceutical organisations routinely employing NIR-CI, but that little 
incentive or inclination to publish this work exist for a variety of strategic reasons.33  
 
The limitations and cautions described in the conclusion above (section 9.1) and also fre-
quently described in literature16,33,38,44 suggest the need to do more fundamental studies 
on NIR-CI. These studies should be designed and performed to clarify and obtain a better 
understanding of the fundamentals of the NIR-CI measuring technique. Hence, more 
NIR-CI studies on the fundamental understanding of the technology, trouble-shooting 
and formulation development experiments, mechanistic understanding of pharmaceutical 
processes etc. are all welcomed in the future. During this thesis work, ideas for different 
future studies and applications have emerged and suggestions for these are given below. 
Not all suggestions are equally straightforward to carry out but may promote important 
fundamental discussions or inspire to other relevant studies. 
 

Suggestions for future studies: 

1. Study the effect of sample preparation to determine the parameters providing the 
best sample surface. This will e.g. include testing different pharmaceutical materi-
als (soft versus hard), comparing different sample preparation techniques, micro-
toming speed, type of cutting blade etc. The challenge is how to confirm the best 
sample preparation?   

2. Study the impact of variation in angle presentation of sample surface to the 
measuring NIR microscope and how to detect when such variations occur.  

3. Examine the effect of measuring the tablet sample surface compared to surfaces 
after sectioning. What are e.g. the effects of possible difference in density 
throughout a tablet? 

4. Analyse tablets produced from same powder blend but manufactured with differ-
ent compression force. The study could also include pure component compacts 
manufactured by different compression force (e.g. for CLS analysis) for further 
studying the aspect presented in this thesis (Section 6.3, CLS, Figure 18). 

5. Evaluate effect on chemical images using different instrumental settings such as 
spectral resolution, number of scans and spatial resolution. The experiments 
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should be performed on the same sample and exact same analysed area. All these 
parameters have an impact on the total data acquisition time and it would there-
fore be valuable to obtain an idea of what instrumental settings will 1) provide the 
shortest acquisition time while still obtaining an adequate quality of the chemical 
images, and 2) provide an optimum as a compromise of chemical image quality 
and acquisition time.  

6. Further investigate sampling issues discussed in Section 8.2, i.e. how representa-
tive is a single chemical image of a tablet and how representative is the tablet of a 
batch. The experiments could include comparison of results from different cross-
sectioning layers of a tablet. For example, first analyse the entire tablet surface 
by NIR-CI and then divide the results up in different sub-area sizes and generate 
chemical images by data processing. Then cross-section the tablet by microtoming 
and repeat analysis. This can subsequently be repeated for additional cross-
sectioning layers. Ideally, a calibrated NIR spectroscopy model is developed for 
the tablet formulation to non-destructively analyse the tablet by NIR spectroscopy 
prior to NIR-CI analysis and thus provide more accurate determinations of the 
bulk composition of the tablet.  

7. Perform fundamental experiments to explain, and understand, what the NIR-CI 
instrument is actually measuring by the use of pharmaceutical model systems. 
The model systems could e.g. be 20:80 % w/w two-component formulations of a 
model API compound combined with excipients that 1) does not absorb NIR light 
(e.g. potassium chloride or calcium carbonate), 2) reflects light completely (e.g. 
titanium dioxide), and 3) absorbs light entirely (e.g. black iron oxide). For com-
parison and to mimic the usual situation, similar experiments with model system 
using typical excipients should be performed.i In fact, these studies have already 
been performed during this thesis work but were not evaluated by appropriate 
data and image processing methods.  

8. It would in general be of great value if it was possible to compose model systems 
(of e.g. small ‘bricks’ or ‘spheres’ of well-characterised pure component material) 
where the exact composition, particle size and distribution was well-defined and 
could be precisely controlled. This would mimic the ‘NIR-CI calibrated tablet’ that 
has been in demand for many purposes throughout this thesis. These model sys-
tems could be used to study impact of particle sizes and forms, penetration depth, 
adjacencies of components etc., similar to the hypothetical situations presented in 
Figure 9, Section 4.5.  

9. Construct and analyse a rather large calibration data set (e.g. 20 samples) of a 
tablet formulation composed of for example five components varying the concen-
tration of each component. Ideally, a NIR spectroscopy method and HPLC analysis 
method should be available for reference analysis (for the API). Such an excellent 
data set will enable a number of experiments and factors to be studied, such as: 

                                                      
 
i This idea originates from Prof. Tony Moffat and Dr. R.D. Jee, The School of Pharmacy, University of London.  



- Conclusion and future research - 
   

 
 

 90

a. Compare different data processing methods for their ability to generate ac-
curate chemical images, similar to (I) but this time for all components in 
the formulation (present in high and low concentrations). The data proc-
essing (e.g. PLS) calibration models could be generated with either HPLC 
reference data of the batch or even better from NIR spectroscopy refer-
ence data for each tablet (due to the non-destructive nature of NIR spec-
troscopy analysis). 

b. Continue the detailed evaluation, scaling and interpretation of CLS predic-
tion results from Section 6.3.  

c. Compare the effects of using different spectral pre-processing or 
wavenumber ranges, similar to the minor study presented in Table 3, Sec-
tion 6.3.  

d. Sampling issues investigations, e.g. perform conventional content uniform-
ity analysis on tablet batches according to the pharmacopoeias but analyse 
all tablets by NIR-CI prior to HPLC analysis. 

e. With methods available to evaluate the final tablet formulation perform-
ance (such as dissolution, resistance to crushing etc.) it renders possible a 
number of experiments to study how formulation and process factors affect 
product performance.    

10. Develop a general applicable methodology, where a combination of NIR spectros-
copy and NIR-CI are integrated as the only two chemical analysis method used for 
a tablet formulation development study. The NIR spectroscopy should possibly be 
applied without developing a calibration model. The combination would rapidly 
and non-destructively provide a high level of information which would be useful in 
early formulation development, e.g. screening many different formulations, col-
lecting many samples from several mixing studies etc., which normally requires a 
heavy wet-chemistry (typical HPLC) analytical work-load. The concept was intro-
duced in (II) and similar approaches has earlier been described18,49,110 but the 
method needs refinement for developing into a generic approach. 

11. It is possible that NIR-CI can be used for different mechanistic powder compres-
sion investigations, studying e.g. particle arrangement, deformation, density dis-
tribution etc. However, it will require very accurate NIR-CI measurements and it is 
possible that Raman chemical imaging with the opportunity for higher spatial 
resolution is more appropriate for this purpose (or maybe a combination of both 
techniques in a chemical image fusion study36). A related type of experiment for 
mechanistic understanding of pharmaceutical processes was recently published 
measuring the distribution of density and tabletting force in pharmaceutical tab-
lets by chemical imaging.60 

12. More image processing tools to extract useful information from chemical images 
are desirable. As mentioned in section 7.4, work on simulated “chemical images” 
is on-going to fully understand the information that is contained within the homo-
geneity curves generated from macropixel analysis. Another approach could be to 
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determine the distances between API particles/domains (from binary images) as 
an estimate of the distribution uniformity (e.g. the Euclidean distance). 

13. In continuation of latter suggestion (no. 12) specifically develop automated and 
objective method of threshold value selection. This step is essential for generating 
binary images and hence the subsequent extraction of information from these. 
This threshold-value method development could be facilitated using model sam-
ples composed of components having well-defined forms and sizes (see sugges-
tion no. 8).  

14. NIR-CI line mapping and global imaging systems are frequently theoretically com-
pared in the literature and also in this thesis, but to the author’s best knowledge 
no practical comparative study measuring the exact same sample(s) on both sys-
tems has been reported. Numerous experiments could be performed for a thor-
ough comparison of the pros and cons for these two systems (and to further such 
studies Raman-CI could be included if available).  

15. An interesting and obvious use of NIR-CI is for stability studies of solid dosage 
forms. NIR-CI is a non-destructive method and hence it is possible to measure the 
exact same area of the same tablet at different testing points and follow the 
changes over time in the tablet matrix, e.g. appearance of impurities, polymorph, 
solvate, or hydrate changes etc.  

 
The suggestions given above for new NIR-CI research is mainly focused on fundamental 
experiments, methodology development or studies exploring what increased process and 
product understanding NIR-CI is capable of providing. This is in line with the primary ob-
jective of this project.    
 
However, it is also relevant and one of the major goals for this technology to explore and 
eventually implement NIR-CI for (near) real time process monitoring and control. This 
means monitoring CQA and CPP during processing, i.e. develop NIR-CI into a complete 
PAT tool. There have been attempts going in that direction for the NIR-CI technology. El-
Hagrasy et al.18 designed a custom made NIR-CI set-up for powder blend homogeneity 
monitoring. A stationary NIR-CI system was set up close to a V-blender to collect images 
from two thirds of the top surface of the powder blend. During a 30 minutes blending 
process images were collected every second minute. The blending process had to be 
stopped for each image collection and the blender platform was rotated to obtain images 
from both sides of the blender. With this set-up it was possible to determine an optimal 
blending time between 14 and 16 minutes.  

Bringing this concept even further, a prototype NIR-CI global imaging system has been 
mounted onto a V-blender for blend monitoring during processing (Figure 44).85,111 In 
fact, this is a joint project of a pharmaceutical company and the U.S. Food and Drug Ad-
ministration (FDA) which emphasises the high focus and beliefs in the NIR-CI technology 
and the urge to promote the PAT initiative to raise the quality standards in pharmaceuti-
cal manufacturing.111  The prototype blend monitor uses an imaging fibre bundle to col-
lect and transmit NIR spectral information from the blend back to the core NIR-CI in-
strumentation. The system is not yet fully developed and the blender still needs to be 
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halted to take measurements (non-destructively and non-invasively). However, the aim 
is to have the imaging fibre bundle mounted to take measurements during the blending 
process.  
 

 
 
Figure 44 – A prototype NIR-CI global imaging blend monitor system mounted to a V-blender 

(Source: Lewis et al.85).  

 

Currently, further development in instrument technology is needed to implement NIR-CI 
in manufacturing process environments. However, as described above work is on-going 
and it may not be long before the first commercial system is available. Once this occur a 
valuable tool for process monitoring and PAT applications will be available for pharma-
ceutical manufacturing of solid dosage forms. Until then, there is time for improvements 
and plenty of knowledge to be gained from the use of NIR-CI in laboratory environments.  
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Resumé (Abstract in Danish) 
 
Emnet for denne afhandling er anvendelsen af nær-infrarød kemisk billeddannelse (NIR-
CI) til analyse af tabletter i farmaceutisk formuleringsudvikling. NIR-CI er en teknologi i 
udvikling indenfor farmaceutisk analyse og til anvendelse ved udvikling af nye faste, 
doserede lægemiddelformuleringer. Teknologien kan give indsigt i og viden om tabletters 
struktur og funktionelle egenskaber, hvilket ikke umiddelbart kan erhverves ved brug af 
andre teknologier. Denne information er yderst værdifuld, idet mange 
kvalitetsegenskaber for tabletter er tæt knyttet til størrelsen og fordelingen af ikke kun 
den aktive komponent (API), men ligeledes de hjælpestoffer, der indgår i en tablet ma-
trix.   
Nær-infrarød kemisk billeddannelse er en teknologi baseret på nær-infrarød (NIR) 
spektroskopi, men i tillæg til identifikation og kvantificering af komponenterne bestemt 
ved NIR spektroskopi bibringer teknologien information om den rummelige fordeling af 
alle de spektroskopisk aktive kemiske komponenter i en prøve. I afhandlingen gives en 
kort beskrivelse af principperne for NIR-CI teknologien og det anvendte udstyr.    
 
En NIR-CI måling producerer enorme mængder spektrale data og anvendelsen af 
multivariat data- samt billedanalyse-metoder er vigtige for at kunne fortolke og 
ekstrahere nøjagtig og relevant kemisk information fra de målte data. Målet er at kunne 
identificere, kvantificere og lokalisere de kemiske komponenter i en prøve og skabe et 
billede af størrelsen, formen og fordelingen af hver komponent i prøven (et kemisk bil-
lede).     
Det primære formål var oprindeligt at udforske mulighederne for anvendelse af NIR-CI i 
farmaceutisk formuleringsarbejde og evaluere den øgede proces og produkt forståelse, 
der kunne opnås fra sådanne eksperimenter. Det blev dog tydeligt under den indledende 
projekt-fase, at der stadig var behov for grundlæggende teknologi-eksperimenter, 
herunder blandt andet udvikling af nøjagtige data- og billedanalyse-metoder. En stor del 
af denne afhandling beskriver derfor forskellige data- og billedanalyse-metoder til at 
analysere og ekstrahere relevant og nøjagtig information fra målte NIR-CI data. Der er 
redegjort for de enkelte trin i en typisk analyse af NIR-CI data og denne afhandling kan 
således anvendes som en vejledning til at udføre sådanne analyser. 
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Udvikling af pålidelige og nøjagtige NIR-CI data analyse metoder vurderes ud fra deres 
evne til at producere nøjagtige kemiske billeder. Med dette formål blev tre almindeligt 
anvendt data analyse metoder sammenlignet. Kalibreringsprøver blev fremstillet og 
analyseret. Nøjagtigheden for tre metoder blev sammenlignet ud fra metodernes evne til 
at producere nøjagtige kemiske billeder, hvilket blev evalueret ved metodernes 
prædiktionsevne. 

Resultater fra et farmaceutisk formuleringsudviklings-eksperiment med anvendelse af 
de udviklede NIR-CI data- og billedanalyse-metoder er ligeledes præsenteret. Kemiske 
billeder, histogram statistik, binære billeder, statistisk på partikel/domæne-størrelser og 
en metode til at evaluere homogeniteten i tabletter blev alle anvendt til at evaluere 
tabletter fra formuleringsudviklings-eksperimentet. Dette studie viser et eksempel på den 
unikke og uvurderlige information, som NIR-CI teknologien er i stand til at tilvejebringe 
for en formulerings-kemiker. Metoderne og metodikken i det aktuelle eksempel vil være 
generelt anvendelig for mange forskellige typer eksperimenter til udvikling af nye tablet 
og andre faste, doserede lægemiddelformuleringer.  
 
NIR-CI teknologien er stadig i sin vorden og nogle af dens begrænsninger og 
forsigtigheder, der bør udvises, diskuteres i afhandlingen. Der diskuteres ligeledes nogle 
af de vigtige aspekter, der kræver fortsat udvikling og forbedring, for at denne NIR-CI 
teknologi skal finde udbredt anvendelse i farmaceutisk udvikling. Det fulde potentiale for 
anvendelse af NIR-CI teknologien i den farmaceutiske industri er endnu ikke fuldt 
udforsket, men denne afhandling bidrager med grundlæggende viden hertil. I 
afhandlingen demonstreres det, hvilken unik information, der kan opnås ved anvendelse 
af NIR-CI teknologien samt den værdifulde rolle teknologien kan forestilles at have ved 
udvikling af nye faste, doserede lægemiddelformuleringer. 
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a b s t r a c t

Near-infrared chemical imaging (NIR-CI) is the fusion of near-infrared spectroscopy and image analysis.
It can be used to visualize the spatial distribution of the chemical compounds in a sample (providing a
chemical image). Each sample measurement generates a hyperspectral data cube containing thousands
of spectra. An important part of a NIR-CI analysis is the data processing of the hyperspectral data cube.
The aim of this study was to compare the ability of different commonly used calibration methods to
generate accurate chemical images. Three common calibration approaches were compared: (1) using
single wavenumber, (2) using classical least squares regression (CLS) and (3) using partial least squares
regression (PLS1). Each method was evaluated using two different preprocessing methods.

A calibration data set of tablets with five constituents was used for analysis. Chemical images of the active
pharmaceutical ingredient (API) and the two major excipients cellulose and lactose in the formulation
were made. The accuracy of the generated chemical images was evaluated by the concentration prediction
ability. The most accurate predictions for all three compounds were generated by PLS1. The drawback of
PLS1 is that it requires a calibration data set and CLS, which does not require a calibration data set,
therefore proved to be an excellent alternative. CLS also generated accurate predictions and only requires
the pure compound spectrum of each constituent in the sample. All three calibration approaches were
found applicable for hyperspectral image analysis but their relevance of use depends on the purpose of
analysis and type of data set. As expected, the single wavenumber method was primarily found useful for

compounds with a distinct spectral band that was not overlapped by bands of other constituents.
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This paper also provide
typical steps involved.

. Introduction

Near-infrared chemical imaging (NIR-CI) is an emerging tech-
ology within the pharmaceutical industry compared to the now
ell-established traditional NIR spectroscopy. Pharmaceutical NIR

pectroscopy applications range from raw material testing through
rocess monitoring to final product analysis [1–5]. The conven-
ional single point NIR spectroscopy measures a bulk average NIR

pectrum and reflects an average composition of the sample. NIR-
I adds spatial distribution information to the spectral information
y combining traditional NIR spectroscopy with digital imaging. In
IR-CI, a NIR spectrum is recorded in each pixel of the sample image
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ance for hyperspectral image (or NIR-CI) analysis describing each of the
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esulting in a hyperspectral data cube. Translating the spectral sig-
ature from each pixel into, for example, chemical concentrations
ill generate a set of chemical images showing the distribution of

ach ingredient within the sample matrix. This visualization of the
nternal structure and elucidation of the distribution and cluster
ize of each constituent in the sample is valuable in formulation
evelopment and manufacturing of solid dosage forms as well as
or troubleshooting quality defects. NIR-CI has the potential to pro-
ide increased process and product understanding which goes well
n hand with the process analytical technology (PAT) initiative of
he FDA [6]. Briefly, the concept of PAT is to build in quality by
esign instead of merely passively testing the quality of the prod-
cts and manufacturing processes. PAT promotes technologies that

an identify and monitor critical process parameters and the goal
s to enhance understanding and control the manufacturing pro-
ess. NIR-CI is such a technology and has received attention by
he FDA, which has evaluated NIR-CI for different pharmaceutical
pplications [7–10].
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Table 1
Calibration methods used for analysing hyperspectral data cubes in pharmaceutical
applications

Calibration approach Reference

Single wavelength [7,12,24,26,30,36,37]
Peak–height ratio [26,38]
Correlation coefficient [26]
PCA [19,21,24,31,33,36,38]
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The majority of the early NIR-CI literature in pharmaceutical
nalysis describes the general principle of this new technology and
ts potential use. The applications include root-cause analysis of

anufacturing problems, product development, quality assurance
nd quality control but are mostly feasibility studies on relatively
imple model systems or examples on a single pharmaceutical
ample [7,11–17]. The pharmaceutical NIR-CI research later moved
nto developing methods to analyse hyperspectral NIR images and
nvestigating the factors affecting NIR-CI of solid dosage forms
18–23]. In the past few years the number of pharmaceutical appli-
ations using NIR-CI has increased significantly [3,9,24–29] and
ecently NIR-CI is seen integrated in formulation development
30,31], used for mechanistic powder blending studies [32,33] and
review has also been published [34].

For NIR-CI to develop into a useful and well accepted technol-
gy in pharmaceutical analysis it is important to have a thorough
nderstanding of how to properly measure and analyse such data.
he analytical work of a NIR-CI experiment can be divided into three
verall steps:

Data acquisition Includes sample preparation, instrumental set-
tings and basic spectral transformation. The raw data output from
a NIR-CI measurement is organised in a 3D data structure with
two spatial axes and one wavelength axis, also called a hyper-
spectral data cube.
Data processing The processing of the hyperspectral data cube
into a, typically chemical, image by univariate or multivariate
image analysis approaches. This part includes wavelength selec-
tion, spectral preprocessing and the subsequent data analysis to
generate the chemical images showing the distribution of each of
the ingredients within the imaged sample.
Image processing The processing of the generated chemical
images into relevant and ‘useful’ information that will qualita-
tively or quantitatively describe the properties of a sample in
relation to the problem investigated. This could, for example,
be a total concentration or a measure of the distribution of the
concentration of the active ingredient.

Each of the three steps in a full hyperspectral image analysis is
mportant for a successful NIR-CI experiment. If the spectral qual-
ty from the data acquisition is poor, no multivariate image analysis

ethod is able to compensate for this and still generate accurate
esults. If the data processing method is suboptimal, inaccurate
hemical images will be generated that will lead to erroneous con-
lusions in the subsequent image processing analysis. And finally,
ven when an accurate chemical image is generated, poor image
rocessing methods may extract the wrong product or process-
elated information from the images. It is therefore imperative that
ach of the three overall steps is thoroughly investigated and their
trengths and limitations are known.

A variety of factors affect the quality of the output for each of the
hree steps. The present study focuses on the data processing part
enerating the chemical images. Unfortunately, there exists no uni-
ersal data processing method that is superior for all hyperspectral
ata cubes. The choice of proper analysis will depend on the data
et and the purpose of analysis. Table 1 presents an overview of ca-
ibration methods demonstrated in the NIR-CI literature analysing
yperspectral data cubes of pharmaceutical samples. Common for
ost of the studies in Table 1 is that the pharmaceutical appli-

ation is the main purpose. The data processing methods is of

ourse an important part of the studies but often not critically
valuated for its appropriateness. Many of the early NIR-CI studies
sed univariate approaches (single wavenumber, peak–height ratio
tc.). More attention has since been drawn to develop multivari-
te approaches to extract more information from the hyperspectral

i
w
P
g
F

LS [27,30]
LS2 (pure spectra) [7,9,14,19,24,29,32,33]
LS2 (calibration set) [26,27]

mages. For example, Jovanovic et al. [26] evaluated four differ-
nt data processing approaches to analyse mixtures of lysozyme
nd trehalose. The contrast in the chemical images were compared
y methods using intensity of a single wavelength, peak–height
atio of two wavelengths, correlation coefficient with a reference
pectrum and principal component analysis (PCA). The correlation
oefficient method was also compared with partial least squares
PLS) regression for further homogeneity investigations. Gendrin
t al. [27] compared classical least squares (CLS) and PLS regression
or best content prediction of the active pharmaceutical ingredient
API) and two excipients in pharmaceutical solid dosage forms.

Although different univariate and multivariate data processing
pproaches are applied to pharmaceutical applications it is often
ot easy to compare the results. Chemical images generated from
ifferent data processing methods may visually look similar but
ctually provide different chemical information. Thus, there is a
ack of objective criteria or, for example, a ‘NIR-CI calibrated tablet’
o assess what the ‘best’ or most accurate image is [20]. Studies are
ften seen comparing data processing methods by differences in
ontrast of the generated images. However, the goal of the data pro-
essing step in a NIR-CI experiment is not to generate high contrast
ut to generate the right, i.e. accurate, contrast.

In this study, three common calibration approaches were eval-
ated for their ability to generate accurate chemical images of the
PI and two major excipients in a five-compound pharmaceutical
olid dosage form. The aim of the study is to investigate the ability
f different commonly used hyperspectral image data processing
ethods to generate accurate chemical images. The three calibra-

ion approaches compared were (1) using a single wavenumber for
alibration, (2) using classical least squares (CLS) where estimates
f pure spectra are used to obtain concentration estimates [35] and
3) partial least squares regression (PLS) where a regression model
s built between measured spectra and known concentrations [35].
wo different spectral preprocessing methods were investigated for
ach of the three data processing approaches. They were selected
s the two best performing preprocessing methods selected from a
omparative study of a range of different preprocessing approaches
pplied to each of the data processing methods. Further, this paper
elineates the general steps involved in data processing of hyper-
pectral data cubes and can thus also be used as practical guidance
or this analytical approach.

. Materials and methods

.1. Materials

Due to intellectual property rights, the name and structure of
he active pharmaceutical ingredient (API) cannot be shown. It

s simply denoted API. The excipients for the tablet formulation

ere silicified microcrystalline cellulose (ProSolv SMCC® HD90, JRS
harma, Germany), �-lactose monohydrate (Tablettose®70, Meg-
le, Germany), magnesium stearate (Liga MF-2-V, Peter Greven
ett-Chemie, Germany) and talc (Unikem, Denmark).
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.2. Samples

A five-compound conventional pharmaceutical tablet formu-
ation was used to produce the calibration data set analysed
hroughout this study. The nominal composition was active phar-

aceutical ingredient (API: 6.3%, w/w), microcrystalline cellulose
MCC: 20.0%, w/w), lactose (lact: 71.5%, w/w), and the lubricants

agnesium stearate (0.75%, w/w) and talc (1.5%, w/w). From this
ominal composition a calibration data set of 9 batches was
esigned by a D-optimal formulation design using Modde soft-
are [39]. The design was constructed to vary the API and cellulose
30% from their nominal values. The content of the lubricants mag-
esium stearate and talc were fixed and lactose was adjusted to
ake a total of 100%. Table 2 shows the concentrations of the five

ompounds for each of the 9 calibration batches.
The dry-blend formulations were all mixed in a drum-mixer

nd compressed into tablets of 175 mg by direct compression on
6-punch station rotary tablet press. A flat punch-set was used to
btain a flat sample surface. The diameter of the tablets was 8 mm
nd the thickness 2.6 mm. Batch sizes were 500 g and tablets were
ollected from start, mid and end of the tabletting process. Pure
ompound reference samples of the API and the excipients were
lso produced. Approximately 250 mg of each raw material was
ompressed into 8 mm diameter wafers on a hydraulic tablet press
sing 10 kN pressure for 10 s. The wafers were analysed similar to
he pharmaceutical tablets and used to generate pure compound
eference spectra.

.3. Data acquisition

To get a representative sampling from each batch two tablets
rom start, mid and end of the tabletting process were analysed
rom each of the 9 calibration batches, i.e. a total of 54 samples (6
ablets from each of 9 batches).

Each tablet was fixed onto a microscope slide using cyanoacry-
ate glue and measured directly on the flat tablet surface. Samples

ere analysed on a NIR line mapping system (Spectrum Spot-
ight 350 FT-NIR Microscope, PerkinElmer, UK) from which 16
pectra were collected in each acquisition from a linear MCT detec-
or array. An area of 2 mm× 2 mm were analysed using pixel size
5 �m × 25 �m thus obtaining a total of 6400 spectra (= pixels) for
ach image. Each spectrum was the average of 8 scans from wave-
ength region 7800–4000 cm−1 using a 16 cm−1 spectral resolution.

.3.1. Spectral correction
As the spectral responses obtained from a NIR-CI measurement

ontain information from both the sample and the instrument it
s necessary to correct for the instrument response by using a
ackground reference. The raw data from the data acquisition is
hus relative NIR diffuse reflectance data (R = Rsample/Rbackground)
rganised in a 3D structure (hyperspectral data cube). The high-
eflectance standard SpectralonTM (Labsphere, Inc., North Sutton,
ew Hampshire) was used as background reference in this study.

The background corrected 3D image data files were imported
nto Matlab software [40]. All image data processing was performed
sing in-house scripts together with PLS Toolbox [41].

.3.2. Conversion to absorbance

Prior to data analysis all raw reflectance data (R) were

ransformed into absorbance (A) by the relation A = −log10 (1/R).
ssuming the path length on average is constant for the NIR dif-

use reflectance mapping measurements of the sample, a linear
elationship exists between absorbance and chemical compound
oncentration (Beer–Lambert law).

t
t

2

t
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.3.3. Unfold 3D hyperspectral data cube
Hyperspectral image data can be analysed by both ordinary two-

ay and three-way methods but the two-way methods have been
ound most suitable for this type of data [42]. In our study, ordinary
wo-way multivariate methods are compared and to make hyper-
pectral image data amenable for two-way methods it is necessary
o unfold the 3D hyperspectral data cube to a 2D matrix, in which
ach row is a spectrum related to one of the pixels. Once all data
cquisition and data processing has been performed the resulting
D matrix is refolded to retain the pixel location of each spectrum
nd generate the chemical image.

.4. Data processing

Prior to applying the actual data analysis method that generates
he chemical image the wavenumber range and spectral prepro-
essing methods must be selected. These two steps are described
elow together with the specific settings used in this study.

.4.1. Variable selection
Multivariate methods often excel above univariate methods

ecause of their ability to use the entire measured wavenumber
ange. Nevertheless, the precision of a multivariate method can,
n some cases, be improved by a proper variable selection. In this
tudy, variable selection by variable importance in the projection
VIP) [43,44] was used to select the optimal wavenumber range(s)
or the PLS1 model. For CLS the noisy wavenumber ends were
emoved and the spectral range was reduced to 7500–4200 cm−1.
or the single wavenumber method the wavenumber was selected
t positions with a distinct spectral absorption band having lit-
le spectral overlap from the other compounds. This was assessed
isually.

.4.2. Spectral preprocessing
The raw NIR diffuse reflectance spectra obtained from a NIR-CI

easurement contain both chemical and non-chemical informa-
ion about the solid sample [45]. The source of the non-chemical
nformation may be from the sample (e.g. uneven sample surface
r differences in sample density) and/or the instrumentation (e.g.
hanges in lamp intensity or detector response). The effects are
ypically observed as spectral baseline offsets or a sloping baseline.

As it is the chemical information that is of interest the non-
hemical biases are sought and removed by different preprocessing
echniques. These preprocessing techniques are routinely used in
onventional NIR spectroscopy and their effects on hyperspectral
IR images have also been investigated [21,27]. The most common
reprocessing approaches used in NIR-CI experiments on pharma-
eutical solid dosage forms are first and second Savitzky–Golay
erivative transformation [46], standard normale variate (SNV)
47], multiplicative scatter correction (MSC) [48] or a combination
ereof.

In this study a calibration data set was available. It was thus
ossible to perform regression analysis by all three calibration
pproaches trying different preprocessing treatments and choosing
he preprocessing giving best results. Using this approach the two
est preprocessing methods found for each data processing method
ere selected and used for comparison throughout this study.

avitzky–Golay derivative transform implies choosing derivative
rder, filter width and polynomial order. For example a first deriva-
ive transform with a nine-point filter width and polynomial order

hree is denoted here as “first (or 1st) derivative (9/3)”.

.4.3. Calibration methods
At this stage of the overall NIR-CI analysis the spectral data are

ranslated into concentrations producing the NIR chemical images.
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Table 2
Composition (% w/w) of the five-compound pharmaceutical tablet formulations constituting the 9 calibration batches

Ingredients (particle size*) 1 2 3 4 5 6 7 8 9

API (2.4/11/129) 4.38 8.14 4.38 8.14 4.38 8.14 6.26 6.26 6.26
Cellulose (43/121/272) 14.00 14.00 26.00 26.00 20.00 20.00 14.00 26.00 20.00
Lactose (13/62/152) 79.37 75.61 67.37 63.61 73.37 69.61 77.49 65.49 71.49
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agnesium stearate (1.7/4.7/19) 0.75 0.75 0.75
alc (3.5/13/44) 1.50 1.50 1.50

* Particle size measures (�m) of the cumulative volume distribution given by
astersizer 2000 laser diffraction system.

imilar to preprocessing treatments there do not exist any standard
alibration method that is superior for analysing all hyperspectral
ata cubes. The choice of calibration method will depend on the
ype of data set and the purpose of analysis.

The goal of this study was to compare the ability of three com-
on calibration methods to generate accurate chemical images of

he major ingredients in a solid dosage form. Hyperspectral NIR
mage data from 54 tablets (6 tablets from 9 calibration batches)

ere analysed by a single wavenumber method, CLS and PLS1.
The nine predicted concentrations (mean of 6 replicates) were

alculated for API, cellulose and lactose for each of the three
ethods. The method that generated the most accurate chemical

mages was evaluated by the accuracy of prediction of the overall
oncentration in the image, which was assessed by the model pre-
iction error (root mean square error of cross-validation; RMSECV).
haracteristics of the three common calibration methods are sum-
arized in Table 3.
All commonly used calibration approaches share the feature that

hey do not actively exploit the spatial information in the images.
lternatives that do exploit this are available [49] but they are not
ommonly used and are hence not included in this work. A general
escription of the principles for each of the three calibration meth-
ds used to analyse hyperspectral NIR images follows together with
he specific settings used for each data processing method in this
tudy.

.4.3.1. Single wavenumber method. The single wavenumber
ethod is a univariate approach and the chemical images gen-

rated from this method are based on the absorbance intensity
alues in each pixel at one specific wavenumber. To obtain an
mage with chemical information for a specific compound it is
mportant to select a wavenumber with a strong and distinct
bsorption band for that particular compound, i.e. with as little
bsorption interference as possible from the other compound’s
pectra in the sample. The most distinct absorption band is best
elected from the pure compounds NIR spectra if available and

referably from a derivative form of the spectra as this transform
ill enhance the spectral resolution of overlapping bands and
ighlight subtle spectral peaks. Second derivatives spectra are
ften preferred as the absorption peaks from this preprocessing
echnique appear at the same position as for the original peaks.

t
c
l
b
p

able 3
omparison of the three calibration methods used to analyse the hyperspectral NIR data c

alibration method Samples required for method

ingle wavenumber (univariate) NIR spectra of pure compounds (to
distinct absorption peaks)

LS (multivariate—supervised) NIR spectra of pure compounds

LS (multivariate—supervised) Calibration data set of known comp
0.75 0.75 0.75 0.75 0.75 0.75
1.50 1.50 1.50 1.50 1.50 1.50

%, 50% and 90% percentiles (D[v,0.1]/D[v,0.5]/D[v,0.9]) obtained using a Malvern

In this study, pure compound spectra normalised using SNV
ollowed by second derivative (9/3) were used to select the most
istinct absorption band for each of the three analysed com-
ounds in the tablets. This preprocessing method was selected
ogether with a second derivative (15/3) preprocessing for the sin-
le wavenumber regression analyses.

.4.3.2. Classical least squares (CLS). The multivariate classical least
quares (CLS) algorithm is often used in simpler spectroscopic
pplications and also appears to be an obvious choice for analysing
yperspectral images such as those in this paper [35]. The CLS
odel is based on the assumption that the measured spectra are

he sum of pure compound spectra weighted by the concentration
f the compounds. The relative concentrations of the compounds
n the sample can thus be estimated using only the pure compound
pectra according to Beer–Lambert’s law.

In our study, the pure compound spectrum for each of the five
onstituents was calculated as the mean spectrum of the hyper-
pectral data cube for each pure compound reference sample. Using
ll five pure compound spectra and the image cube mean spec-
rum of a sample the relative concentrations of the compounds in
he sample matrix were estimated by the CLS model. To generate a
hemical image for each compound in a sample, all spectra from the
yperspectral data cube were used to estimate the concentration
alues for each compound in each pixel.

The wavenumber range used for CLS in our study was selected
y removing the noisy end channels thus reducing the wavenum-
er range to 7500–4200 cm−1. The lowest prediction error was
btained using either the first derivative (9/3) or the second deriva-
ive (9/3) preprocessing of spectra and these two preprocessing

ethods were therefore selected for comparison.

.4.3.3. Partial least squares (PLS1). PLS is a multivariate regression
ethod used to build quantitative calibration models [35,50]. It

s a regression method that relates two data matrices, X (spectra)
nd Y (reference values), with each other. PLS requires a calibra-

ion data set composed of several samples spanning an appropriate
oncentration range to build a model for new predictions. This may
imit the use of the PLS method as calibration data sets can often
e difficult to obtain, for example, in the early development of a
harmaceutical formulation.

ubes in this study

Characteristics of method and preferred use

identify Qualitative use. Easy, seemingly intuitive and fast.
Exploratory analysis, valid for simple sample matrices.
Distinct spectral band for compounds required.

Quantitative use.
Relatively accurate, fast and easy.
Requires only pure compound spectra. Assumes Beer’s law valid.

ositions Quantitative use.
Accurate, robust predictive precision.
Requires full calibration data set.
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Table 4
Results from concentration predictions of API, cellulose and lactose for the single wavenumber method, CLS and PLS1
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or each calibration method results are presented for the two preprocessing treat
btained.

When a new hyperspectral data cube of a sample with identical
ngredients but unknown concentrations is applied to a PLS model
t will convert the spectral information of each pixel into predicted
oncentrations. The generated PLS prediction image of each com-
ound therefore shows the predicted concentration in each pixel
= chemical image). The predicted compound concentration of the
maged sample is calculated by the mean value of all predicted pixel
oncentrations.

In our study, PLS1 models were developed for each of the three
ajor compounds API, cellulose and lactose. The image cube mean

pectrum for each of the 54 calibration samples was first calcu-
ated followed by computing the mean spectrum of the 6 replicates
or each of the 9 calibration batches. The resulting 9 mean spec-
ra formed the data matrix X. The reference values in the Y matrix
ere the 9 theoretical concentrations (% w/w) for each of the three

ajor constituents given in Table 2. Each PLS1 model was developed

nd optimised regarding number of PLS components, wavenum-
er range(s) and preprocessing methods evaluated from regression
nalysis. Cross-validation was performed by leave-one-out cross-
alidation. The chosen preprocessing methods were first derivative

t
t
b
s
t

ig. 1. Pure compound reference spectra of the three major compounds constituting the
econd derivative (9/3) (right). The arrows point out the wavenumbers used for the single
showing best predictions. The grey-shaded area points out the best predictions

9/3) and second derivative (9/3) both followed by mean centering
nd the wavenumber ranges optimised for each model can be read
rom Table 4.

. Results and discussion

.1. Pure compound spectra and mean spectra of calibration
amples

The normalised (SNV) NIR absorbance spectra of the pure com-
onents API, cellulose and lactose were first examined to select
pecific wavenumbers for the single wavenumber analysis (Fig. 1,
eft). A distinct, sharp absorption band for API at 5984 cm−1 was
asily identified. It was more difficult to identify distinct absorption
ands for cellulose and lactose. They both showed broad absorp-

ion bands and were difficult to distinguish from each other due
o their similar spectral pattern caused by their chemical resem-
lance. The second derivative (9/3) of the NIR normalised (SNV)
pectra were therefore generated (Fig. 1, right). A distinct absorp-
ion band for lactose at 5168 cm−1 was now resolved but it was still

calibration batches. Spectra are preprocessed by SNV (left) and SNV followed by
wavenumber analysis.
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ig. 2. Image cube mean spectra of the 9 calibration batches normalised by standard
ormal variate (SNV).

ifficult to find a characteristic band for cellulose. Enlargement of
pectral regions finally identified wavenumber at 4280 cm−1 for
ellulose single wavenumber analysis although it was not as clear
nd well resolved as for the two other compounds and selection of
ther wavenumbers could be argued.

The CLS method used the pure compound spectra shown in
ig. 1 together with those of the two minor ingredients (not shown
ere). The PLS1 method used the mean spectra from each of the 9
alibration samples as matrix X (Fig. 2).

.2. Prediction of concentrations

The concentration predictions of API, cellulose and lactose
valuated by correlation coefficient, slope and prediction error
RMSECV) are shown in Table 4. In general, reasonable prediction
esults (low RMSECV values) were obtained by all three methods
nd for each of the two preprocessing methods examined.

For all three calibration methods the predictions of API
RMSECV: 0.18–0.54%) were more accurate compared to predic-
ions of the two excipients (RMSECV: 0.62–3.38%). This is not

urprising as the API component showed a very distinct absorption
eak with no large spectral interference from the other compo-
ents in the pharmaceutical tablet (Fig. 1). The predictions of
PI for all three methods with the preprocessing giving the best
redictions are shown in Fig. 3.

e
b
a

t

ig. 3. Linear regression results of API concentration for single wavenumber method (left
iving the best regression and concentration predictions.
iomedical Analysis 48 (2008) 554–561 559

Excipient predictions were less accurate for API and with a
enerally poorer prediction of lactose compared to cellulose. This
ay be surprising as lactose had a more resolved and characteristic

bsorption peak than could be found for cellulose. The difference
ould probably be explained by the more narrow lactose concen-
ration range between the different calibration batches (9 levels in
teps of ∼ 2%) compared to cellulose (3 levels in steps of 30%, cf.
able 2).

PLS1 was the superior regression method to predict concentra-
ions for all three compounds. The best predictions were obtained
or PLS1 using first derivative (9/3) followed by mean centering
Table 4, shaded area). For this PLS1 model API prediction was
ighly accurate with low prediction error (RMSECV = 0.18%) and
orrelation 0.99. The API prediction for the two other calibration
ethods showed less accurate but still reliable results with CLS pre-

ictions being slightly better than the single wavenumber method.
The better concentration predictions of cellulose compared to

actose were observed for CLS and single wavenumber but not for
LS1. The PLS1 predictions of the two major excipients were simi-
ar and quite accurate with RMSECV < 0.88% and correlation > 0.97.
or CLS and single wavenumber the prediction error values and
orrelations followed API < cellulose < lactose.

For the PLS1 models the results illustrate that first derivative
9/3) preprocessing gave better prediction than second derivative
9/3) preprocessing both followed by mean centering. This may only
e the case for this data set and it should also be noted that the re-
ults were only slightly better for the first derivative preprocessing.

.3. Chemical images

The aim of this study was to evaluate the selected methods
bility to generate accurate chemical images. As discussed in the
revious section, PLS1 was the method that generated the most
ccurate overall predictions and therefore presumably the most
ccurate chemical images can be obtained using PLS. Fig. 4 shows
he chemical images of API, cellulose and lactose for a tablet of
atch 9 composition (cf. Table 2) analysed by single wavenumber,
LS and PLS1 methods using their best performing preprocessing
reatment. The images show the distribution of the predicted con-
entrations of the three major compounds.

The chemical images of API appeared visually similar for the
ingle wavenumber, CLS and PLS1 methods with only minor differ-

nces in the distribution information. Again, this can be explained
y the distinct, well resolved absorption band for API which makes
ll three methods suitable for mapping API within the sample.

The single wavenumber method did not extract the distribu-
ion information of cellulose and lactose very well which was also

), CLS (middle) and PLS1 (right). Results are shown for the preprocessing methods
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Fig. 4. Chemical images of a tablet of batch 9 composition (cf. Table 2) generated from data processing using single wavenumber, CLS or PLS1. The chemical images show
t ction
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he distribution of the three major compounds API, cellulose and lactose. The predi
olor intensities relates to high/low concentration of the component of interest. (Fo
he web version of the article.)

eflected in the higher RMSECV values. CLS and PLS1 provided com-
arable visual distribution information of cellulose and lactose but
ith differences in the image contrast. The highest contrast for the

mages of cellulose was obtained by CLS whereas for lactose it was
y PLS1. In both instances the best concentration prediction, and
hus presumably the most accurate chemical image, was obtained
y PLS1. The observation that the best concentration prediction
ot necessarily produces images with the highest contrast is not
nusual (and could, for example, also be shown for images by the
ther preprocessing methods used in this study but not presented

ere).

This also delineates one of the limitations of NIR chemical imag-
ng. No tablet calibration standard exists for NIR chemical imaging
nd it is therefore not possible to set any objective criteria or con-
rm what the ‘correct’ chemical image is. Only with a calibration

4

o
i

errors (RMSECV) from Table 4 are shown beneath each image. High/low (red/blue)
rpretation of the references to colour in this figure legend, the reader is referred to

ata set available is it possible to statistically evaluate the most
ccurate generated images as performed in this study. A calibration
ata set is a prerequisite and always available for PLS but not for the
eneral use of the single wavenumber method and CLS (cf. Table 3).
his is both the advantage and disadvantage of PLS. Data processing
sing PLS may generate the most accurate chemical images but it
equires a calibration data set which is time consuming to produce
nd often not available (e.g. for a single trouble-shooting case or in
arly formulation development).
. Conclusion

This study emphasizes the importance of data processing as part
f a successful near-infrared chemical imaging analysis. Compar-
ng a single wavenumber method, CLS and PLS1 by their ability to
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redict API and excipient concentrations from hyperspectral data
ubes of pharmaceutical solid dosage forms, PLS1 proved most
ccurate. This means that PLS1 can be assumed to provide the most
ccurate chemical images when using the model on single-pixel
pectra. PLS1 is therefore also the preferred method when further
mage processing to extract process-related information from the
hemical images is needed.

All three calibration approaches were found applicable for
nalysing hyperspectral data cubes and generate chemical images.
ut their use depends on the purpose of analysis, type of data set
nd the accuracy of the generated chemical images required. The
ingle wavenumber method should primarily be used for initial
xploration of compound distribution in a sample and it requires
distinct NIR absorption band for the compound of interest. CLS
roved to be an excellent alternative to PLS1 generating only
lightly less accurate concentration predictions. An advantage of
LS is that it is relatively fast as it only requires pure compound
pectra of the sample constituents to perform the data processing.
LS1 is the method of choice when accurate concentration predic-
ions are required but the disadvantage is that a calibration data set
s needed which in many cases may not be available. Other calibra-
ion approaches to analyse hyperspectral image data cubes than
nvestigated in this study may also be used with similar success.
owever, the three common calibration approaches presented here
ill cover a wide range of possible pharmaceutical samples and

pplications.
The wavenumber and preprocessing selections were also found

o be an important part of data processing hyperspectral images.
his study indicated the importance of a careful selection of both
avenumber range(s) and preprocessing treatment in order to
btain the most accurate results but a more thorough investiga-
ion of the issue is needed to fully understand the impact of these
wo factors.

The general principles of each calibration approach and the typi-
al steps involved in a NIR-CI analysis is described in this work. This
aper may therefore be used as practical guidance for analysing
yperspectral image data of pharmaceutical solid dosage forms.

This study demonstrates the usefulness of NIR chemical imag-
ng when spatial distribution information of compounds in a solid
osage form is needed. But the message is also that care should be
aken not to over-interpret the chemical images. Chemical images
an be obtained by several different data processing methods but
he obtained accuracy might be quite different as shown in this
tudy. One should not be misled by images with high contrast as it
s not high contrast but the right, i.e. accurate, contrast that is the
oal. And the right contrast or accuracy of the chemical images can
o far only be evaluated using a calibration data set as demonstrated
ere. Generating accurate chemical images is of high importance

or the subsequent image processing analyses used to extract use-
ul information and, for example, numerically describe the quality
f the images. Different pharmaceutical conclusions may be drawn
rom chemical images of the same sample analysed by different
rocessing methods having different accuracies as shown in this
tudy. Developing image processing tools is not simple but is highly
eeded to further develop the technology of NIR chemical imaging.
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Abstract 

This study demonstrates how near-infrared chemical imaging (NIR-CI) can be used as 

a valuable analytical tool in formulation development of tablets or other solid dosage 

forms using conventional NIR spectroscopy for comparison.  

NIR-CI was used to study the API domain size and its distribution uniformity within a 

tablet formulation. A two-component powder blend consisting of the active pharmaceuti-

cal ingredient (API) and microcrystalline cellulose was used to manufacture tablets by a 

direct compression process. Three different tablet batches were produced which only var-

ied by the ingoing API particle size. Images showing the spatial distribution of API 

(chemical images) for four tablets per batch were obtained by Classical Least Squares 

(CLS) and evaluated visually and by their histogram statistics. The CLS method was 

clearly capable of generating chemical images revealing the spatial distribution informa-

tion of API and estimating the concentration within each chemical image. Two image 

processing tools were utilised to obtain objective and numerical information from the 

chemical API images about the number and size of API domains and homogeneity of the 

API distribution. The latter was obtained from a novel promising image processing 

method to evaluate homogeneity directly from the chemical images. The results from ap-

plied methods reflected a higher number of smaller API domains more uniformly distrib-

uted in tablets prepared with small in-going API particles compared to a lower number of 

larger API domains unevenly distributed in tablets prepared with larger in-going API par-

ticle size. For comparison, tablets were also analysed by conventional NIR spectroscopy 

and the homogeneity of API in the tablets evaluated by this approach confirmed the find-

ings from NIR-CI. This suggests NIR-CI and NIR spectroscopy as a beneficial and power-

ful combination in formulation development of tablets.   

 

Keywords: formulation development; tablets; solid dosage forms; near infrared chemical imaging (NIR-CI); 

hyperspectral imaging; image analysis; homogeneity; content uniformity; classical least squares (CLS); uni-

formity of distribution; macropixel analysis; homogeneity curves. 
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Introduction 

Formulation development of tablets comprise a series of experimental studies that to-

gether form the basis for selecting the optimally formulated drug product regarding qual-

ity, therapeutic performance and production costs. Much time and effort is spend on de-

veloping new tablet formulations and its quality is indeed determined by the structure of 

the evolving matrix. The quality of powder samples and/or tablets produced from these 

studies is traditionally evaluated by conventional analytical techniques (HPLC, mass spec-

trometry, dissolution etc.) to determine identity, strength, purity, and quality. Unfortu-

nately, these tests destroy the formulated tablet matrix, are time consuming and only 

provide a single value for one tablet or a group of tablets. No insight into the internal 

structure and spatial distribution of components in the final product matrix is obtained. 

Information, which is valuable and can elucidate intra-tablet variations helping the for-

mulator to see how the process actually performed. Spectroscopic or chemical imaging 

techniques such as near infrared chemical imaging (NIR-CI) can provide this information 

(Hammond, 1998; Lewis et al., 2001; Lewis et al., 2004).  

Investigating the homogeneity in pharmaceutical powder blends or tablets is always a 

main concern in formulation development and is related to a uniform distribution of the 

active pharmaceutical ingredient (API) throughout the blend/tablets. There is no defini-

tive definition of homogeneity of a powder blend or tablet batch. Homogeneity of tablets 

is indirectly assessed by calculating an acceptance value based on the mean and stan-

dard deviation of individual active substance content from 10 or 30 dosage units and 

comparing the results with predetermined acceptance criteria (USP31-NF26 S1 <905>; 

Ph.Eur 6th Ed. <2.9.40>). As the content uniformity of tablets primarily depends on the 

uniformity of the powder blend, it is also important to determine blend uniformity. This is 

the basis of the FDA guidance describing how sampling and assessment of uniformity in 

powder blends and finished dosage units can be conducted to comply with good manu-

facturing practice requirements (U.S. FDA Guidance for Industry, Stratified sampling, 

2003).  
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The blend uniformity obtained during a mixing process may be affected by the subse-

quent process steps such as transporting the mixing container to the tablet press, emp-

tying the blend into the hopper, the movement in the hopper, filling of powder into the 

die during the tabletting process etc. The blend uniformity or homogeneity is therefore 

best determined as late in the manufacturing process as possible, i.e. determining con-

tent uniformity of the final dosage form. The quality of the formulation in this study is 

therefore assessed by analysing the final tablets.  

The employment and usefulness of particularly near infrared (NIR) spectroscopy 

(Blanco et al., 1998; Ciurczak and Drennen, 2002; Lyon et al., 2003; Reich, 2005; 

Luypaert et al., 2007) but also increasingly near-infrared chemical imaging (NIR-CI) 

(Hammond, 1998; Lewis et al., 2001; Koehler et al., 2002; Clarke and Hammond, 2003; 

Clarke, 2004; Lewis et al., 2004; Lewis et al., 2005a; Reich, 2005; Gowen et al., 2008) 

in pharmaceutical development and manufacturing of solid dosage forms is well docu-

mented. NIR spectroscopy measures a bulk average NIR spectrum and reflects an aver-

age composition of the sample. NIR chemical imaging builds on the NIR spectroscopy 

technology and adds spatial information to the spectral information by combining it with 

digital imaging. In NIR-CI, a NIR spectrum is recorded in each pixel of the sample image, 

resulting in a hyperspectral data cube. By utilising appropriate data processing methods 

this immense amount of spectral information can be translated into a set of chemical im-

ages, providing information not only on the composition and concentrations but most im-

portantly on the distribution of all spectroscopically active components (API and excipi-

ents) within each sample.  

Several univariate and multivariate approaches for data processing hyperspectral data 

cubes obtained from NIR-CI analysis into chemical images have been developed and 

compared for pharmaceutical samples (de Juan et al., 2004; Jovanovic et al., 2006; 

Sasic, 2007; Gendrin et al., 2007; Clark et al., 2007; Amigo et al., 2008; Ravn et al., 

2008). The information immediately apparent from chemical images can be very convinc-

ing but care must be taken in the subjective and qualitative interpretation of these re-

sulting chemical images. Developing methods to derive objective and numerical informa-
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tion contained in the images is therefore essential for the advancement of the NIR-CI 

technology; however there has been a lack of development of these image processing 

tools probably because it is not so straightforward. The reported image processing tools 

of chemical images is so far confined to the two most obvious tools being particle/domain 

size statistics and histogram statistics. The particle/domain size statistics relates to calcu-

lating the number, size and shapes of domains from threshold generated binary images 

(Clarke and Hammond, 2003; Clarke, 2004; Lewis et al., 2005b; Henson and Zhang, 

2006; Clark et al., 2007; Sasic, 2007; Lewis et al., 2007; Ma and Anderson, 2008; Li et 

al., 2008; Hilden et al., 2008). The histogram statistics concerns representing all pixel 

intensity values in a single chemical image as a histogram, where the mean value is 

taken as an estimate of the bulk content of the component and the standard deviation as 

a quantitative measure of the overall sample homogeneity (Lyon et al., 2002, Lewis et 

al., 2007, Gendrin et al., 2008; Jovanovic, 2006; Ma and Anderson, 2008, El-Hagrasy et 

al., 2001, Furukawa et al., 2007). This homogeneity concept from histogram statistics 

introduced for NIR-CI analysis is different from the traditional homogeneity concept de-

scribed earlier. The thousands of individual measurements obtained from microscopic 

pixel locations of each sample provide data for intra-sample statistical analysis. The ho-

mogeneity is thus pertaining to each sample, i.e. intra-tablet homogeneity, more than 

the overall batch as in conventional homogeneity testing. However, it can be shown that 

the current NIR-CI homogeneity concept from histogram statistics is not always ade-

quate, so a new method has been developed. This new method and a pharmaceutical ap-

plication hereof is described and presented in this paper.  

Three tablet batches were produced to illustrate a general formulation development 

case. The difference between the batches was the in-going API particle size The API do-

main size and its distribution uniformity within the tablets were evaluated from NIR 

chemical imaging and conventional NIR spectroscopy analysis. 
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Experimental Section 

Samples 

A two-component powder blend consisting of 5 % (w/w) active pharmaceutical ingredi-

ent (API) (a proprietary compound) and 95 % (w/w) silicified microcrystalline cellulose 

(ProSolv SMCC® HD90, JRS Pharma, Germany) was used to produce three different 

batches. The three batches were produced with the following different API particle size 

fractions: (1) < 125 µm; (2) 125 – 355 µm; and (3) > 355 µm, in the following referred 

to as batch 1, batch 2 and batch 3, respectively. The API particle size fractions were ob-

tained from a mechanical agitation dry sieving process using sieve sizes of 500, 355, 

180, 125, 90 and 63 µm. The residue on the collection pan was also used and the frac-

tions within each of the three selected intervals was collected and gathered. Each two-

component powder blend of 150 g was loaded in a 1 L stainless-steel container (~ to 50 

% of total container volume) and mixed on a lab-scale Turbula® mixer (WAB Maschinen-

fabrik, Muttenz, Switzerland) for 5 minutes at 70 rpm. Immediately after mixing, the 

two-component powder blend was tabletted on a single punch Diaf tablet press. The tab-

lets manufactured had a flat surface, diameter of 6 mm and aiming at target weight 100 

mg and target crushing strength 75 N.  

Pure compound reference samples of the API and microcrystalline cellulose (MCC) were 

also produced for the classical least squares (CLS) image analysis. Approximately 250 mg 

of each pure compound material was compressed into 8 mm diameter compacts on a hy-

draulic tablet press using 10 kN pressure for 10 seconds. The compacts were analysed 

similar to the pharmaceutical tablets and used to generate pure compound reference 

spectra for the CLS analysis. 

  

NIR-CI analysis 

A near infrared line mapping system (Spectrum Spotlight 350 FT-NIR Microscope, 

PerkinElmer, UK) was utilised to obtain the hyperspectral raw data. Four tablets from 

each of the three batches were analysed by NIR-CI. Each tablet was moved across the 
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field of view of a 16-element MCT linear detector array and the 2D image was built up 

line by line in steps determined by the pixel size. The third dimension was added as NIR 

diffuse reflectance spectra were collected for each of the 16 detectors to obtain the 3D 

hyperspectral data cube. Tablets were fixed in a suitable rubber-ring holder and analyzed 

on the tablet surface. An area of 3 x 3 mm was analysed for each tablet using a pixel size 

of 25 x 25 µm thus obtaining images of 120 by 120 pixels with a total of 14400 spectra 

(= pixels). Each spectrum was the average of 8 scans from wavelength region 7800-

4000 cm-1 using a 16 cm-1 spectral resolution. The NIR diffuse reflectance spectra from 

the data acquisition were first background corrected (R=Rsample/Rbackground) using the high 

reflectance standard SpectralonTM (Labsphere, Inc., North Sutton, NH) as background ref-

erence and then converted into absorbance (A) by the relation A = log10(1/R). 

  

Chemical images using CLS 

The processing of the hyperspectral absorbance data cube into chemical images was 

conducted using Classical Least Squares (CLS) (Martens and Naes, 1989; Gallagher, 

2007). CLS is often used in simpler spectroscopic applications but its usefulness has also 

been demonstrated for analysing hyperspectral NIR data of pharmaceutical samples 

(Gendrin et al., 2007; Gendrin et al., 2008, Amigo et al., 2008, Ravn et al., 2008). CLS 

estimates concentrations from pure spectra and generates chemical or concentration im-

ages rather than abstract score images (Gallagher, 2007). A prerequisite for using CLS is 

that all the spectra of the pure compounds constituting the sample are available. This is 

almost always the case in developing a new tablet formulation. An important implication 

of using pure component spectra in CLS is that the concentrations of the chemical images 

vary from approximately zero to one because the pure component spectra are arbitrarily 

set to concentration one. The CLS prediction values for a component are thus fractions or 

percentages of the pure component sample, which mostly though approximates the 

mean percentage of the component in the actual sample.   

All CLS analyses were performed in Matlab® 7.5.0 (R2007b) software (Mathworks, 

www.mathworks.com). Prior to the CLS analysis the 3D hyperspectral absorbance data 
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cubes were unfolded to obtain a two-dimensional matrix. Each pure compound spectrum 

was calculated as the mean spectrum of all pure compact sample spectra. The hyper-

spectral data cube and the pure spectra were both pre-processed using a first derivative 

Savitzky-Golay transform with a nine-point filter width and polynomial order three (de-

noted ‘1st derivative (9/3)’). The noisy wavenumber ends were also removed reducing 

the spectral range to 7500-4200 cm-1 (Ravn et al., 2008). 

 

NIR spectroscopy  

Transmission NIR spectra were measured through both sides of thirty tablets from each 

batch and an average spectrum was calculated for each tablet. The NIR transmission 

spectra were collected using an FT-NIR Bruker Multi Purpose Analyzer instrument (Bruker 

Optics, Ettlingen, Germany). A spectral resolution of 16 cm-1 and 64 scans per spectrum 

were used. The wavelength region from 12500 cm-1 to 5800 cm-1 was measured. Air was 

used to record a background spectrum.  

The resulting NIR spectra were analysed by two approaches used as reference analysis 

methods to determine a measure of the tablet uniformity for each batch, i.e. an overall 

measure of the batch homogeneity. The first method was principal component analysis 

(PCA) using PLS_Toolbox (version 4.1.1, www.eigenvector.com). The transmission spec-

tra were pre-processed by multiplicative scatter correction (MSC) followed by mean-

centering prior to PCA analysis. The standard deviation of the PCA score values for the 

thirty tablets from each batch was calculated assuming correlation between one of the 

principal component (PC) score values and the API concentrations. This was ensured by 

using the principal component that had a loading vector most similar to the API spec-

trum. In the second method, a single standard deviation value of the thirty spectra from 

each batch was calculated similar to earlier described approaches (Sekulic et al., 1998; 

El-Hagrasy et al., 2001). The spectra were pre-processed by a second derivative (9/3) 

transform and a wavenumber region around the major contribution from the API was se-

lected (defined from the pure API spectrum). The standard deviation of the absorbance 

values for each wavenumber was calculated over the thirty pre-processed spectra, result-
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ing in a standard deviation spectrum. The pooled standard deviation over all wavenum-

bers of the standard deviation spectrum for each batch was finally determined and re-

ported as a single value. The results obtained using these two approaches on the NIR 

spectroscopy data were compared with the NIR-CI results.  

 

Binary images and domain statistics 

To calculate the particle/domain statistics of a NIR-CI analysed sample the chemical 

image was translated into a binary image reflecting either presence or absence of a com-

ponent. This involves setting a threshold on the intensity or ‘concentration’ scale of the 

chemical image. Setting the threshold is not an easy task and to the author’s knowledge 

no objective method has been reported to select such a threshold in hyperspectral imag-

ing of pharmaceutical products. A general, objective method of automatic image thresh-

old selection was introduced by Otsu (1979) but it was not found useful for the samples 

in this study. Until appropriate NIR-CI spatial and spectral standards are available it is 

not possible to confirm the appropriateness of an objective threshold selecting method. 

Thus, currently the best way seems to determine the threshold as a function of the sam-

ple and problem investigated. In this study, however, an objective and well-defined 

method for determining the threshold value to generate binary images of the API is sug-

gested. The threshold value was determined from analysing the hyperspectral data cube 

of the pure API compact by CLS using only the mean API spectrum from this sample. The 

histogram plot of the resulting pure chemical API image shows a symmetrical distribution 

around the mean of 1.0 (Fig. 1). The spread of the data around the mean was used to 

represent an estimate of the methods precision assuming a uniform pure API compact. 

The threshold value was determined as equal to three times the standard deviation (Std. 

= 0.051, Fig. 1) from the CLS analysis of the pure API image; resulting in a threshold 

value of 0.15. The interpretation of this threshold selecting approach is that a concentra-

tion value of 0.15 in a chemical image could within statistical probability (three standard 

deviations) just as well be regarded as zero (or vice versa) as found in the ‘precision’ 
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analysis of the pure API image. So in order to statistically confirm API in a chemical im-

age the concentration/intensity values must be above 0.15. 

 
Fig. 1. Histogram representation of the chemical API image from analysing the 

pure API compact by CLS using only the mean API spectrum. The threshold limit 

is set as three time the standard deviation from this analysis (= 0.15).   

  

The domain statistics of the binary images were calculated from in-house routines in 

Matlab® 7.5.0 (R2007b) software using functions from the Image Processing Toolbox 6.0 

(Mathworks, www.mathworks.com). The domain statistics calculated were the number of 

domains, mean equivalent diameter and the area covered in percentages. The mean 

equivalent diameter represents the diameter of a circle with the same area as the region 

of the domain of interest. The area covered is the number of pixels of the calculated 

component in percent of the total number of image pixels. The percent area covered thus 

gives an estimate of the component concentration based on the binary image approach.  

 

NIR-CI homogeneity measure 

In addition to the domain statistics, the uniformity of API distribution of each chemical 

image was evaluated by yet another image processing method to extract numerical in-

formation from the chemical images. This was done by sampling the chemical images by 

several moving squares (called ‘macropixels') varying in size from the inherent pixel 

resolution up to the size of the entire chemical image. For example, an image consisting 
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of 30 by 30 pixels could be sampled by a macropixel of 10 by 10 pixels (Fig. 2). The 

chemical image is sampled by all the macropixels possible to position in the chemical im-

age, i.e. 441 squares in Fig. 2. This methodology of extensively sampling a chemical im-

age by all possible macropixels (‘macropixel analysis’) was first introduced by Hamad et 

al. (2007) and the method was specifically referred to as ‘Continuous-Level Moving Block’ 

(CLMB). However, the approach used in this study to evaluate the macropixels is differ-

ent. The measure of homogeneity is calculated by the standard deviation of the mean 

CLS prediction for each macropixel, i.e. the standard deviation of 441 mean CLS pre-

dicted API concentrations from the 441 possible macropixels in the example shown (Fig. 

2). This new NIR-CI homogeneity approach ensures a more extensive and detailed sam-

pling of each image, which may provide a better and more comprehensive basis of evalu-

ating the homogeneity of samples. 

In this study, the standard deviation was calculated for the quadratic macropixels of 1, 

2, 3, 4, 6, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and 120 pixel length and height. 

With the standard deviation calculated for each of these macropixels a homogeneity 

curve was constructed for each image with the standard deviation on the y-axis and the 

squared macropixel size (pixel length × pixel height) on the x-axis. All data analysis for 

this methodology was performed in Matlab® 7.5.0 (R2007b) software (Mathworks, 

www.mathworks.com) using in-house written routines. 
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Fig. 2. Illustration of the sampling principle for the novel NIR-CI homogeneity 

measure method. The entire chemical image is sampled by all the macropixels 

it is possible to position in the chemical image. The standard deviation of the 

mean CLS prediction values for each macropixel size is calculated and plotted 

as a function of the macropixel sizes. This generates a homogeneity curve. 
 

  

Results and discussion 

Chemical images and prediction of API content in the tablets 

The CLS generated chemical API images of the four tablets from each of the three 

batches having different ingoing API particle sizes are shown in Fig. 3. The colour-scale 

images display the CLS predictions in each pixel and visualises the abundance, distribu-

tion and domain size of API within the analysed tablets. As the formulation is made up of 

only two components the high intensity values (red) indicate areas of high API content 

and the low intensity values indicate low API content and therefore most likely high cellu-

lose concentration (blue). The mean value and standard deviation of all CLS pixel predic-

tions of API for each tablet are listed in Table 1 (histogram statistics for each chemical 

API image). In Table 1, also the mean of the mean prediction values for the four tablets 

from each batch and its standard deviation is shown. This standard deviation (denoted 

Std-b) reflects the variation in API content prediction ‘between’ all four tablets analysed 

for each batch. Finally, the mean of the four standard deviation values (Std.) for each 

batch is calculated and presented in Table 1. This standard deviation (denoted Std-w) 
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reflects a weighted mean-value of the variation in pixel content predictions ‘within’ each 

of the four tablets from each batch.  
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Fig. 3. Chemical images of API generated by CLS. The chemical images (3x3 mm) are of the four tablets from 

each of the 3 batches with different in-going API particle sizes:  < 125 µm (batch 1, upper row); 125-355 µm 

(batch 2, middle row); and > 355 µm (batch 3, lower row). All images are scaled from 0 to 1. 

 

 

 Batch 1 
(<125 µm) 

Batch 2 
(125-355 µm) 

Batch 3 
(>355 µm) 

 Mean  Std. Mean  Std. Mean  Std. 

Tablet 1 6.0 4.3 7.2 11.0 2.5 2.0 

Tablet 2 6.2 3.9 8.8 14.5 12.5 25.3 

Tablet 3 7.1 4.2 5.9 5.8 3.4 4.3 

Tablet 4 7.6 4.7 6.4 7.1 10.2 21.2 

Mean 6.7  7.1  7.2   
Std-b (between) 0.76  1.3  4.9  
Std-w (within)  4.3  9.6  13.2 

Table 1. Histogram statistics of the CLS generated chemical API images from Fig. 3 

showing the mean value and standard deviation (Std.) of the API content predic-

tions for each of four tablets within the three batches (CLS predictions × 100). The 

standard deviation Std-b is the standard deviation of the four mean values for each 

batch. The standard deviation Std-w is the mean of four standard deviations (Std.) 

for each batch.     
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Just by visual inspection of the chemical API images valuable information about the 

distribution and relative content of API and thus the overall blend quality are obtained 

(Fig. 3). The distribution mapping of API clearly illustrates what could be expected from 

the knowledge of the ingoing API particle sizes. A high number of small domain sizes well 

distributed over the sample surface are observed for batch 1 with the finer API material 

(< 125 µm). As the particle size increases for the ingoing API material, the API domain 

sizes in the chemical images also increases and the number of domains decreases (batch 

2 and 3). However, for the four images of batch 3 with in-going API particle size above 

355 µm only images of tablet 2 and 4 display chemical images with large API domains. 

The reason is that there simply are no (large) API domains in the 3 x 3 mm sampled area 

of tablet 1 and 3. This is confirmed by the low CLS concentration predictions of 2.5 %1 

and 3.4 % for tablet 1 and 3, respectively with hardly any API compared to 12.5 % and 

10.2 % for tablet 2 and 4, respectively having large API domains (Table 1, Batch 3).    

These results are in accordance with what intuitively would be expected from the 

knowledge of the ingoing API particle sizes. However, other less conceivable results 

might have been obtained and it is therefore important to have the results verified in the 

final dosage form as demonstrated here for the chemical images. For example, it is well 

known that small particles become more cohesive with greater risk of agglomeration, 

which could have been observed for the smallest particle size fraction (Clark et al., 

2007). Also, large agglomerates of API can be broken down during the mixing process 

and could therefore have shown smaller particles than the ingoing size for batch 3. This 

clearly illustrates the unique and invaluable information that can be provided by NIR-CI 

and which helps the formulator visualise how the process actually performed.   

The qualitative conclusions that can be drawn from the visual inspection of the chemi-

cal images are fast and very informative but also subjective and non-operational. For less 

distinct and illustrative chemical images than presented here it could be a lot harder to 

visually distinguish blend quality between samples. It emphasises the need to translate 

                                                   
1 Note, that the unit ‘%’ for CLS predictions (× 100) means percentage of the pure component compact used for CLS analysis 
and should not be mistaken by the common perception of ‘%’ as relative content in the actual sample. Mostly, though, the CLS 
prediction of a component is approximate to the mean percentage of the component in the actual sample. 
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the information from the chemical images into objective and numerical values. The most 

obvious method to obtain quantitative measures is from the statistical analysis of a 

chemical image represented as a histogram, where the mean value provides an estimate 

of the component abundance and the standard deviation is an indication of the compo-

nent homogeneity at the utilised spatial resolution. The qualitative results described 

above are all well reflected by the histogram statistics for all API chemical images using 

CLS (Table 1). The mean of the mean values for all four tablets for each batch are quite 

similar but the standard deviation (Std-b) increases from 0.76 % to 1.3 % and to 4.9 % 

for batch 1, batch 2 and batch 3, respectively. This reflects the increasing variation in 

content prediction between the four tablets from each batch and suggests an increasing 

in-homogeneity of tablets from batch 1 through to batch 3. The standard deviation (Std-

w) that for each batch reflects the variation in pixel content predictions within the tablets 

also increases from batch 1 through to batch 3 (4.3 %, 9.6 % and 13.2 %1, respec-

tively). These results also indicate a decreasing uniform distribution of API in the tablets 

from batch 1 to batch 3.   

 

NIR spectroscopy results  

The visual inspection and histogram statistics indicated increasing in-homogeneity with 

increasing ingoing API particle size fraction. This is supported by the PCA analysis of the 

transmission NIR spectroscopy data. The score values for principal component 3 (PC3) 

are shown for the thirty tablets from each of the three batches (Fig. 4). Principal compo-

nent 3 was utilised because the loading of PC3 resembled the pure API spectrum (Fig. 5). 

This indicates that the score values of principal component 3 will reflect the variation in 

API concentration. It must be noted though, that this method is quite ad hoc. There is no 

exact scientific justification for scores being equal to concentrations when the loading and 

the spectrum of a constituent are almost identical. The actual principal component may 

not only reflect the constituent content but also other things in the tablet which are not 

desirable. However, the method can be used as an approximate qualitative approach to 

evaluate the uniformity of a constituent in the tablets. In this context, the PCA analysis of 
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the NIR spectroscopy data illustrates the increasing in-homogeneity of the API in the tab-

lets for the 3 batches. The calculated standard deviation between the score values shown 

in Fig. 4 for each batch confirm this with increasing values of 0.02, 0.06 and 0.10 for 

batch 1, batch 2 and batch 3, respectively. 

 The second approach used to evaluate the NIR spectroscopy data confirmed the re-

sults from the PCA analysis. As described for the method in the experimental section, 

batch homogeneity was determined by comparing the second derivative spectra of thirty 

tablets from each batch and by calculating the pooled mean standard deviation. The re-

sults showed a progressively increase of the mean standard deviation on 0.0061, 0.0085 

and 0.0094 with the increasing ingoing API particles size for batch 1, batch 2 and batch 

3, respectively. 

NIR spectroscopy is a fast, non-destructive method for obtaining reference data to 

compare with the imaging data. The results demonstrate the beneficial use of NIR-CI and 

NIR spectroscopy in conjunction to provide a rapid and very informative approach to 

evaluate pharmaceutical tablets. The promising results suggest that NIR spectroscopy 

and NIR-CI can be used together alone for certain experimental studies in formulation 

development work without the need for slower conventional analytical techniques. How-

ever, once again is must be underlined that the two methods are ad hoc and cannot be 

assumed to generally apply to all formulations. The methods are based upon the as-

sumptions that either the principal component score values or selected spectral regions 

of API mainly reflect the variation in API concentration and not other characteristics of 

the tablets. These assumptions must be used with caution and evaluated case-by-case 

for each formulation.  
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Fig. 4. Results from PCA analysis of the NIR spectroscopy data of 30 tablets for each of 

the three batches (28 tablets for batch 2 – two outliers removed). The plot shows the 

score values of principal component 3 (PC3). The PC3 was selected due to the high 

correlation with the pure API spectrum (cf. Fig. 5).  
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Fig. 5. Comparison of the pure API NIR absorbance spectrum with the loading spectrum for principal 

component 3 (left) and the corresponding first derivative (9/3) spectra (right). 

 

Binary images and domain statistics 

With the evident visual differences in API domain sizes between the three batches in 

this study, domain statistics is an obvious image processing tool to compare and evaluate 

the chemical images. To perform this quantitative analysis it is necessary initially to cre-

ate a binary image. From binary images domain statistics such as number of particles 

and their sizes can be determined.     
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Discriminating between one large particle, agglomerated particles or closely spaced but 

separate particles in binary images is often not possible. It is therefore more the domain 

size distribution rather than the particle size distribution that is determined and hence 

the term ‘domain statistics’ is used. Even so, the domain statistics are useful to deter-

mine if any changes in domain size or form happen during the manufacturing process 

and to compare different product/processes.   

It should also be noted that the spatial resolution decides the smallest domain size 

possible to determine. It therefore makes most sense to measure domain/particle sizes 

for components where the ingoing particle size is larger than the pixel resolution. Other-

wise, what is determined as one particle/domain may actually be made up of many small 

particles or there may be many particles smaller than the pixel size that will not be in-

cluded in the calculation. While this domain statistics after all only is an approach of the 

real particle sizes in the solid-phase mixtures it provides a fine estimate and a valuable 

tool for comparing different formulations. Further, to the author’s knowledge chemical 

imaging is the only non-destructive method that can measure this unique domain size 

information within solid mixtures.   

The binary images of ‘tablet 2’ analysed from each of the three batches using the cal-

culated threshold value of 0.15 are presented in Fig. 6. From these binary images the 

effect of different ingoing API particle sizes on its size and distribution in the final tablet 

is even more evident compared to the corresponding chemical images in Fig. 3. Table 2 

summarizes the calculated API domain size statistics above the spatial resolution (25 x 

25 µm) for all twelve binary images using the threshold value 0.15. The results clearly 

confirm the earlier visual observations with the number of API domains decreasing but 

the size of domains increasing from batch 1 to batch 3. The results for batch 3 are differ-

ing even more from the other batches if the two tablets (no. 1 and 3) with hardly any API 

are excluded (cf. results in brackets, Table 2). The calculated domain statistics demon-

strate one possible approach on how to extract numerical information from the generated 

chemical images to distinguish between samples.  
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Fig. 6. Binary images of ‘tablet 2’ from each of the three batches with different ingoing API 

particle sizes. Similar binary images were made for all twelve tablets. The same threshold 

value of 0.15 was used to create all binary images.  

 

 

 No. of domains Mean equivalent diameter (µm) Area covered (%) 

 Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3 

Tablet 1 69 30 2 71 127 69 4.1 8.2 0.1 
Tablet 2 68 25 9 66 158 299 3.6 11.0 16.4 
Tablet 3 71 31 7 73 95 124 4.5 4.7 1.9 
Tablet 4 104 42 4 73 96 659 6.6 6.0 15.9 

Mean 78 32 6 (7) 71 119 288 (479) 4.7 7.5 8.6 (16.2) 
RSD (%) 22 22 57  5 25 92  28 37 102 

Table 2. Domain statistics of API based on binary images generated from CLS chemical images of API and a 

threshold value of 0.15. The mean results only calculated for tablet 2 and 4 for batch 3 are shown in brackets, i.e. 

excluding the two tablets with hardly any API. 

 

NIR-CI homogeneity measure results 

The mean standard deviation (std-w) of the API predictions for the four images in-

creased from 4.3 % to 9.6 % to 13.2 % for the three batches with increasing in-going 

API particle size fraction (Table 1). These results were based on the inherent pixel size of 

25 x 25 µm, but this measure of homogeneity only tells something about the homogene-

ity at this certain spatial resolution or macropixel size. In the presented method of a ho-

mogeneity measure for chemical images the function of spatial resolution is taken into 

account in the calculation. This ensures a more extensive and detailed sampling of each 

image, which may provide a more comprehensive estimate of the component homogene-

ity within each sample.  

The resulting homogeneity curves from this novel method obtained for the twelve tab-

let samples in this study are shown in Fig. 7.   
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Fig. 7. Homogeneity curves showing standard deviations of CLS predictions versus 

squared macropixel size. The curves are shown for each of four tablets from each of 

the three batches. The insert enlarges the area around origin.  

 

Fig. 7 shows that the homogeneity curves were generally lying lower (smaller Std. val-

ues) for tablet samples with smaller API domains more evenly spread out on the tablet 

surface compared to tablet samples from batch 3, where larger API domains were dis-

tributed less evenly throughout the tablet surface. The two curves for tablet 1 and 3 for 

batch 3 break this pattern but they actually just confirm the functionality of this method-

ology. As mentioned before, there were hardly any API in these samples and they there-

fore erroneously appear well blended. These homogeneity curves are therefore found 

among the homogeneity curves for the more homogenous batch 1 (see insert, Fig. 7). 

Such deviating samples would always easily be captured by comparing the homogeneity 

curves with the low CLS predictions of API (Table 1) or assay values from other conven-

tional analytical methods.  

The visual evaluation of the shape and position of the homogeneity curves would as 

demonstrated in Fig. 7 in many cases be sufficient for the purpose of comparing the ho-

mogeneity of different products. But not all products compared by their homogeneity 
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curves of the chemical images may be so easy to visually differentiate as for the very il-

lustrative and distinct samples in this study. It would therefore also for this method be 

useful to move beyond this subjective and qualitative analysis and determine a numerical 

value as a quantitative measure for this homogeneity parameter. An option to numerical 

assess homogeneity from these curves would simply be to define a macropixel size and 

set a specification limit (standard deviation) for which the homogeneity curve values 

need to be below. This univariate approach is actually similar to the histogram statistics 

using the inherent spatial resolution but the advantage for the macropixel method is that 

the intra-tablet homogeneity can be evaluated at any suitable level of scrutiny (i.e. 

macropixel size). A tablet determined inhomogeneous when sampled with the original 

pixel size could easily be determined homogenous using other macropixels. And note that 

a sample is considered homogenous once it complies with acceptance criteria defined by 

its purpose of use. With the homogeneity curves it is possible to select the acceptance 

criteria most suitable for the particular product of interest. In practise this would for ex-

ample mean that for a specific product a standard deviation below 0.005 for squared 

macropixel size 3600 on the homogeneity curve is assessed satisfactory, which could be 

based on experience from several development experiments. This evaluation would of 

course be based on correlation to different product performance results evaluated by 

other analytical tests. This approach is in accordance with the current homogeneity con-

cept, stating that a blend or tablet batch is considered homogenous if the content uni-

formity results comply with the acceptance criteria determined by its purpose of use. Se-

lecting the appropriate macropixel for calculation will thus depend on the degree of ho-

mogeneity (quality) needed which depends on the purpose of use for each product. It is 

still a challenge how to select the appropriate macropixel size and standard deviation 

value as specification limit for each product. However, selecting these parameters is 

probably most useful for routine quality control purposes, whereas in early formulation 

development it would be sufficient to compare the standard deviations between products 

at a certain sampling square without necessarily setting a specification limit.  
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Another option for numerical evaluation would be to use all the information contained 

within the homogeneity curves.  As the goal is to obtain as low standard deviations be-

tween macropixels as possible an obvious evaluation approach is simply to determine the 

area under each homogeneity curve (AUHC). This method has the advantage that it in-

cludes all the information contained in the homogeneity curves. The results from such a 

calculation by trapezoidal integration are presented in Table 3. These AUHC results also 

confirm the earlier findings as the area under the curve increases, i.e. higher standard 

deviations, with increasing ingoing API particle size. 

 

AUHC Batch 1 Batch 2 Batch 3 

Tablet 1 49 114 (30) 
Tablet 2 30 305 457 
Tablet 3 53 99 (67) 
Tablet 4 42 122 594 

Table 3. The area under the homogeneity curves (AUHC) from 

Fig. 7 calculated by trapezoidal integration. The results from the 

deviating tablet 1 and 3 from batch 3 are shown in brackets.  

 

More knowledge and experience from many different types of products are needed to 

learn more about how these homogeneity curves derived from chemical images can and 

should be evaluated and interpreted. However, from the homogeneity curve results ob-

tained in this study, the novel homogeneity approach of chemical images seems promis-

ing. Another important image processing tool for evaluating and extracting useful infor-

mation from chemical images is hereby available.  

 

Conclusion 

It is demonstrated in this study, how NIR-CI can be used as a valuable analytical tool 

to study tablets from formulation development experiments. The results emphasise how 

the unique information obtainable by NIR-CI on particular the spatial distribution of com-

ponents makes it possible to determine and understand how the final tablet matrix 

evolves as a function of the process or ingredient conditions used. For the present formu-
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lation experiment it was specifically revealed, how the difference in in-going API particle 

size affected its size and distribution within the final tablets. However, the experimental 

approach can most likely be used for many different types of formulation development 

experiments.  NIR-CI was clearly capable of visually revealing the spatial distribution of 

API and estimating the API concentration in the chemical images. Two image processing 

methods were also employed. The domain size statistics such as number and size of API 

domains were calculated from binary images and a novel method to evaluate the homo-

geneity degree of API within each analysed sample was developed. To advance the NIR-

CI technology there is a need to develop such image processing tools to extract useful 

information from the chemical images preferable by objective and numerically results. 

Both image processing methods used contributed to this by providing quantitative meas-

ures that proved capable of distinguishing the quality of the different tablets and batches.  

Traditional NIR spectroscopy and NIR chemical imaging have both proven valuable in 

pharmaceutical analysis. The benefit of using these two techniques in conjunction was 

shown in this study where the NIR spectroscopy results confirmed the NIR-CI findings. It 

suggests NIR spectroscopy and NIR-CI to be used in combination and possibly as the 

only analytical techniques for some formulation development studies. This may be very 

useful in early formulation development, for example in screening different formulations, 

and opens up for a reduced analytical package and thus reduced time and cost for formu-

lation development studies and can also be useful for troubleshooting at later stages. The 

applied evaluation methods of the NIR spectroscopy data are however ad hoc and not 

generally valid methods and should therefore be used and evaluated carefully.  

Much can still be learnt about the NIR-CI technology and its application to pharmaceu-

tical samples. Despite the limitations and room for improvement in all steps of a full NIR-

CI pharmaceutical analysis, the technique provides unique information from solid sam-

ples that are invaluable for many pharmaceutical applications. This study adds to the in-

creasing number of NIR-CI applications in pharmaceutical analysis and contributes to the 

important knowledge foundation being built for the NIR-CI technology. 
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a b s t r a c t

Near Infrared Chemical Imaging (NIR-CI) is an attractive technique in pharmaceutical development and
manufacturing, where new and more robust methods for assessment of the quality of the final dosage
products are continuously demanded. The pharmaceutical manufacturing process of tablets is usually
composed by several unit operations such as blending, granulation, compression, etc. Having reliable,
robust and timely information about the development of the process is mandatory to assure the quality
of the final product.

One of the main advantages of NIR-CI is the capability of recording a great amount of spectral information
in short time. To extract the relevant information from NIR-CI images, several Chemometric methods,
like Partial Least Squares Regression, have been demonstrated to be powerful tools. Nevertheless, these
methods require a calibration phase. Developing new methods that do not need any prior calibration
patial distribution in surfaces

LS
CR-ALS

ugmented MCR-ALS

would be a welcome development.
In this context, we study the potential usefulness of Classical Least Squares and Multivariate Curve

Resolution models to provide quantitative and spatial information of all the ingredients in a complex
tablet matrix composed of five components without the development of any previous calibration model.
The distribution of the analytes in the surfaces, as well as the quantitative determination of the five
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components is studied an

. Introduction

The analytical techniques of hyperspectral imaging, like Near
nfrared Chemical Imaging (NIR-CI) or Raman Chemical Imaging
Raman-CI), comprise a group of attractive techniques in the devel-
pment and manufacturing of pharmaceutical tablets (Chan et al.,
003; Shah et al., 2007; Zhang et al., 2005) where more robust
ethods are continuously demanded for assessment of the quality

f the final products. This attractiveness is due to the capability of
he mentioned techniques to obtain a great amount of spectral and
patial information in defined surfaces of pharmaceutical products
Furukawa et al., 2007). The possibility of recording one spectral
rofile in a wide wavelength range for each defined pixel area of

he tablet poses new challenges for the development of robust and
eliable methodologies of data analysis to extract all the desirable
nformation.
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Basically, the expectations on Chemical Imaging are focused on
btaining quantitative information about the content of each com-
onent in the tablet (Chevallier et al., 2006; Zhang et al., 2005)
roviding at the same time reliable information about the distribu-
ion of the component in the surface of the tablet (Furukawa et al.,
007; Lyon et al., 2002) to assure the quality of the final product.

As mentioned above, the great interest of CI techniques relies in
he capability to obtain thousand of spectra of a defined surface of
he tablet. To extract the quantitative information, powerful math-
matical tools are demanded. In this context, several Chemometric
ethods, like Principal Components Regression (PCR) (Hamilton

t al., 2002), Partial Least Squares Regression (PLS) (Burger and
eladi, 2006; Furukawa et al., 2007; Jovanovic et al., 2006; Lied
t al., 2000; Roggo et al., 2005; Svensson et al., 2006) or its variant
LS2 (Gendrin et al., 2007; Li et al., 2008), have already been demon-
trated to be powerful tools. Nevertheless, these methods require

previous calibration phase, being tedious and time-consuming.
onsequently, the development of new methods that do not need
ny prior calibration stage would be a welcome development.

To overcome the problem of the previous calibration stage,
everal alternatives can be proposed (Amigo et al., 2008), being

http://www.sciencedirect.com/science/journal/09280987
http://www.elsevier.com/locate/ejps
mailto:jmar@life.ku.dk
dx.doi.org/10.1016/j.ejps.2009.01.001
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lassical Least Squares (CLS) (Chan et al., 2005; Gendrin et al.,
007), Multivariate Curve Resolution-Alternating Least Squares
MCR-ALS) (de Juan et al., 2004; Zhang et al., 2005) and MCR-ALS
n augmented fashion (Amigo et al., 2008; de Juan et al., 2004) the

ost promising techniques.
In this context, we study and test the potential usefulness of

lassical Least Squares and Multivariate Curve Resolution models
o provide quantitative and spatial information about the distri-
ution of each analyte in the surface of a complex pharmaceutical
ixture composed of five components without the development of

ny previous calibration model and by using Near Infrared Chemical
maging.

. A brief theoretical background

An exhaustive theoretical background of the proposed models
ill not be given here but readers are encouraged to look for more

nformation in the supplied references.
When a NIR-Chemical Image is measured for a single tablet,

he structure of the obtained dataset is a three-dimensional array
nown as hyperspectral cube, D, whose dimensions are (X × Y × �)
Zhang et al., 2005). X and Y refer to the spatial dimensions of the
urface; whereas � refers to the spectral pattern measured in a
hole wavelength range for each xyth pixel of the tablet.

The basis of CLS and MCR-ALS could be argued to be the
ame. Both methods assume that the absorbance follows a linear
ehaviour with the concentration (Beer–Lambert Law) and that the
um of the individual absorbances for each component equals the
otal absorbance for each pixel (Eq. (1)).

xy� = c1xyε1� + c2xyε2� + c3xyε3� + . . . + cfxyεf� (1)

here axy� is the absorbance at each xyth pixel dimension and at
ach wavelength (�) and, cfxy and εf� the concentration and molar
bsorptivity, respectively, for each f component of the surface.

Mathematically speaking, both are bilinear models. So a pre-
ious stage of unfolding is mandatory in order to adapt the

hree-dimensional structure to bilinear models (Fig. 1). Conse-
uently, the dimensions of the unfolded image D are (XY × �).

The main difference between CLS and MCR-ALS relies in the way
f obtaining the quantitative information. CLS is aimed to obtain the
oncentration of each component by direct regression of D by using

t
o
i
i
d

Fig. 1. Augmentation of images and MCR-ALS analysis. The example
rmaceutical Sciences 37 (2009) 76–82 77

he pure spectra (Chan et al., 2005; Gendrin et al., 2007). Despite the
asiness of calculating this concentration matrix, CLS has one main
rawback: it works perfectly if the spectra of the components are
nown and, what is more important, if there is no other variability
ource in the sample (for example, interaction between compo-
ents, distribution of moisture and hydration/adsorption water,
tc.) that can promote other features in the sample not related to
he pure components. CLS is constrained to model all the variabil-
ty of the sample by using just the pure spectra. For this question,
more feasible method would be preferred.

Multivariate Curve Resolution-Alternating Least Squares (MCR-
LS) (de Juan and Tauler, 2006; de Juan et al., 2004; Tauler, 1995)
ecomposes the matrix D (XY × �) into the product of two matri-
es, C (XY × F), containing the concentration profiles and ST (F × �),
ontaining the spectral profiles for each F component (Eq. (2)):

= CST + E (2)

here E (XY × �) contains the experimental error. The main differ-
nce from CLS is that MCR-ALS works by iteratively optimizing the
atrices C and ST. Thus, the result is not constrained to the pure

pectra, allowing MCR-ALS to cope with minor sources of variability
hat may be in the tablet.

To start the iterations, MCR-ALS needs initial estimates, as well
s several constraints based on chemical knowledge of the sam-
le studied. Using the pure spectra of the components (if they are
vailable) as initial estimations becomes one of the most attractive
ays of including information about the tablet. Several constraints
ased on chemical knowledge or on mathematical features of the
ata can be imposed to the iterations, being the most useful in the
uantification of mixtures by means of Chemical Image analysis
re: (1) non-negativity in concentration and/or spectral profiles,
hich imposes that concentration profiles of the components are

upposed to be always positives and (2) closure, where each pixel
an be supposed to accomplish a constant mass balance of 1, rep-
esenting 100% of global concentration.

The main disadvantage of MCR-ALS in Chemical Imaging is

he lack of selectivity in the surface (Amigo et al., 2008); i.e., to
btain good results, each component must have a selective area
n the tablet, accounting for the variability of the concentration
n the sample. This lack of selectivity can be associated to a rank-
eficiency problem. MCR-ALS only works properly if the rank of

is illustrated by assuming three components in the samples.
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he surface, e.g. the number of mathematical components, is equal
o the number of chemical components present in the tablet. Sev-
ral alternatives has been already proposed to study the chemical
ank of images, like Principal Component Analysis (PCA), or more
pecifically, the Fixed Size Image Window-Evolving Factor Analysis
FSIW-EFA) (de Juan et al., 2004). But, still, this is a complicated
ssue to solve when the quantification of minor components is pur-
ued.

To overcome the problem of lack of selectivity in MCR-ALS, an
lternative has already been formulated: the augmentation of the
riginal sample with more images. This method, proposed by de
uan et al. (2004), treats to analyse several samples simultaneously,
rofiting the qualities of one to each other (de Juan and Tauler,
006). The main feature of the matrix augmentation is that the
nfolded target sample (D2) is augmented with an image without

ack of selectivity problems (full-rank, or standard image, D1) in a
olumn-wise fashion (Eq. (3)):

D1

D2

]
=

[
C1

C2

]
[S]T +

[
E1

E2

]
(3)

here D1 (X1Y1 × �) represents the full-rank image and D2
X2Y2 × �) is the rank-deficient image (the target image). X1, Y1 and
2, Y2 represent the dimensions of the first and the second unfolded

mage, respectively. C1 (X1Y1 × F) and C2 (X2Y2 × F) are the concen-
ration surfaces simultaneously obtained for each image and ST

F × �) is the transpose of the global spectral profiles. E1 (X1Y1 × �)
nd E2 (X2Y2 × �) correspond to the residual matrices.

This “standard” image is composed by specific sections of each
ure component of the tablet (Fig. 1), and can be easily provided
y creating it with images of the pure components. Working with
his standard sample, much more valuable and reliable informa-
ion is modelled by MCR-ALS at the same time, since experimental
ariability is also reflected in the augmented image, allowing MCR-
LS to get hold of selective information in the iterations and, thus,
inimizing the possible lack of selectivity in the target sample.

. Experimental

.1. Reagents and instruments

Six replicates of a five-compound conventional pharmaceu-
ical tablet formulation were used to produce the dataset. The
ominal composition was Active Pharmaceutical Ingredient (API:
.3%, w/w), MicroCrystalline Cellulose (MCC: 20.0%, w/w), Lactose
Lact: 71.5%, w/w), and the common lubricants Magnesium Stearate
0.75%, w/w) and Talc (1.5%, w/w).

The mixing of dry-blend formulation was performed in a drum-
ixer and compressed into tablets of 175 mg on a six-punch station

otary tablet press. A flat punch-set was used to obtain a flat sample
urface of 8 mm of diameter and 2.6 mm of thickness. Pure com-
ound reference tablets of the five components were also produced
y compressing 250 mg of each into 8-mm diameter wafers on a
ydraulic tablet press using 10 kN pressure during 10 s. The stan-
ard sample used for augmentation in MCR-ALS was performed by
ectioning a representative area of 10 square pixels of each pure
omponent image and rearranging the five areas in a new image
ith 500 spectra (100 for each component).

.2. Data acquisition and preprocessing
Each tablet was fixed onto a microscope slide using cyanoacry-
ate adhesive and measured directly on the flat tablet surface.
amples were analysed on a NIR line mapping system (Spectrum
potlight 350 FT-NIR Microscope, PerkinElmer, UK) from which 16

d

S

rmaceutical Sciences 37 (2009) 76–82

pectra were collected in each acquisition from a linear MCT detec-
or array. An area of 2 mm × 2 mm were analysed using pixel size
5 �m × 25 �m thus obtaining a total of 6400 spectra (=pixels) for
ach image. Each spectrum was the average of 8 scans from wave-
ength region 7800–4000 cm−1 using 16 cm−1 spectral resolution.

ore information about the data collection can be found in refer-
nce, Ravn et al. (2008).

One previous step of unfolding the 3D hyperspectral data cube
o a 2D matrix is mandatory to adapt the three-dimensional data
ube (hyperspectral image) for further preprocessing and mod-
lling steps with bidimensional methods (Amigo et al., 2008; Ravn
t al., 2008) (First step in Fig. 1).

Standard Normal Variate (SNV) and Savitzky–Golay smoothing
f the spectral pattern with a window size of 15 and a second poly-
omial order were applied to the unfolded six samples as well as
o the standard sample.

.3. Models application and validation of the results

CLS, Savitzky–Golay smoothing and SNV algorithms were
mplemented in a routine named BACRA working under Mat-
ab v. 7.5 (MathWorks, Massachusetts). The software and detailed
asy-to-follow instructions are freely available from the authors
r via Internet (http://www.models.kvl.dk/users/jose manuel
migo/index.htm). For MCR-ALS and augmented-MCR-ALS applica-
ion, the software provided by Tauler et al., was used (http://www.
b.es/gesq/mcr.htm; Jaumot et al., 2005).

For MCR-ALS analysis, non-negativity of concentration profiles
nd closure constraints were imposed. Pure spectra of the five com-
onents were used as initial estimations. The percentage of lack of
t (% LOF) between the obtained results and the original data gives
measure of the fit quality and has been calculated as follows:

LOF = 100 ×

√√√√∑X
x=1

∑Y
y=1

∑�
�=1e2

xy�∑∑∑
d2

xy�

(4)

here exy� and dxy� represent the xy�th terms of the residuals and
riginal dataset, respectively.

The precision and the predictive capabilities of the different
odels were evaluated by calculating the Root Mean Square Error

f Prediction (RMSEP) and the Standard Error of Prediction (SEP)
etween the mean value of concentration obtained for each com-
onent in each sample and its nominal concentration accordingly
ith Eqs. (5) and (6), respectively.

MSEP =
√∑n

i=1(ĉi − ci)
2

n
(5)

EP =
√∑n

i=1(ĉi − ci − bias)2

n − 1
(6)

here ĉi denotes the mean value of concentration obtained for each
omponent in the surface of each n sample and ci is the nominal
oncentration. The bias was calculated as follows:

ias =
∑n

i=1(ĉi − ci)

n
(7)

To evaluate the distribution of the analytes in the tablet,
istograms of the concentration surfaces were studied and the
tandard Deviation Between Pixels (SDBP) (Furukawa et al., 2007;
ovanovic et al., 2006) was calculated (Eq. (8)) accounting for the

ispersion of the analyte in the surface of the sample:

DBP =

√∑X
x=1

∑Y
y=1(ĉxy − c̄)2

XY − 1
(8)

http://www.models.kvl.dk/users/jose_manuel_amigo/index.htm
http://www.models.kvl.dk/users/jose_manuel_amigo/index.htm
http://www.ub.es/gesq/mcr.htm
http://www.ub.es/gesq/mcr.htm
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Table 1
CLS, MCR-ALS and augmented MCR-ALS mean concentrations (%) obtained for the six replicates.

APIa MgStb MCC Lact Talcc

6.2d 0.75d 20d 71.49d 1.5d

CLS
Mean 8.0 (20.2)e 41.2 (20.3) 18.7 (3.3) 80.2 (3.1) 50.2 (0.2)
RMSEP 18.7 44.9 3.5 9.5 48.7
SEP 20.3 20.4 3.3 3.2 0.2

MCR-ALS
Mean 1.0 (1.4) 0.1 (0.1) 22.2 (3.4) 76.0 (3.2) –
RMSEP 4.9 0.6 3.7 6.1 –
SEP 25.1 0.2 10.2 43.5 –

Augmented MCR-ALS
Mean 4.6 (0.4) 3.8 (0.2) 19.2 (2.2) 71.1 (3.2) 1.7 (0.2)
RMSEP 1.6 3.1 2.5 2.8 0.3
SEP 0.4 0.2 2.6 2.9 0.2

a MCR-ALS: values obtained without sample 2.
b MCR-ALS: values obtained without samples 2, 3, 4 and 5.
c
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Table 2
Correlation coefficients between pure spectra.

API MgSt MCC Lact Talc

API 1.0000 0.9377 0.9072 0.9086 0.9539
MgSt 1.0000 0.9243 0.9233 0.9503
M
L
T

(
e
t
a
t
r
t
b

MCR-ALS: not possible to obtain an estimation of the concentration for Talc.
d Nominal.
e Standard deviation in parenthesis.

here ĉxy is the calculated concentration in each xyth pixel, c̄ repre-
ents the mean value of the concentration obtained for each analyte
nd XY denotes the total number of pixels.

. Results and discussion

.1. Quantitative results

CLS results for the six samples are depicted in Table 1. At first
ight, it can be observed that good values of mean concentration
nd standard deviation have been obtained for the two major com-
onents (MCC and Lact). RMSEP and SEP values obtained for MCC
re slightly high, but still under a good predictive capability. For
act, RMSEP value is higher than SEP, indicating certain overfitting
f the model.

Despite these reasonably good results for MCC and Lact, results
btained for the minor components (API, MgSt and Talc) did not
over all the expectations. Results are far away from being rep-

esentative of the nominal concentration of these components in
he tablet. The reason may be found taking into consideration the

utual correlation between components (Fig. 2). To illustrate this,
he correlation coefficients between pure spectra have been calcu-
ated and are shown in Table 2.

c

e
c
a

Fig. 2. Pure spectra of the five components composing the
CC 1.0000 0.9829 0.9291
act 1.0000 0.9187
alc 1.0000

In general all the correlation coefficients present a high value
more than 0.90). Due to their similar chemical structure, the high-
st value of correlation is found between MCC and Lact whereas
he lowest values are between the minor components (API, MgSt
nd Talc) and the major components (MCC and Lact). One point
o consider is that the concentration of the two major components
epresents more than 90% of the sample. Both facts make CLS unable
o obtain reliable estimations of the minor components, with CLS
eing highly affected for the high values of correlation between the

omponents of the sample.

For MCR-ALS models the percentage of lack of fit (%LOF) and
xplained variance were of 3.80% and 99.87%, respectively, indi-
ating that the models are of good quality. Nevertheless, looking
t the quantitative results in Table 1, it can be observed that the

samples (after SNV and smoothing pretreatments).
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Table 3
Standard Deviation Between Pixels (SDBP) for the concentrations obtained with
augmented MCR-ALS.

API MgSt MCC Lact Talc

Sample 1 2.9 2.2 6.2 7.4 1.4
Sample 2 2.6 2.1 9.1 10.1 1.4
Sample 3 4.1 2.4 9.3 10.9 1.5
Sample 4 2.8 2.2 10.2 11.0 1.4
S
S
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oncentrations obtained with MCR-ALS did not correspond to the
ominal composition of the tablets. For major components, the
alculated concentration covers the expected range. Nevertheless,
heir RMSEP and SEP values indicate that the predictive capability
f the model is not of good enough quality. Attending to the minor
omponents it is remarkable that it was unable to quantify Talc in
ny of the six samples; whereas it was only possible to quantify API
nd MgSt in one and five of the samples, respectively. These bad
esults for minor components reflect the above-mentioned prob-
em of lack of selectivity (see Section 2).

The results obtained using the augmented version of MCR-ALS
re highly worth mentioning (Table 1). The percentage of Lack
f Fit (%LOF) and explained variance were of 3.90% and 99.80%,

espectively. The concentrations obtained for major components
Lact and MCC) are in the same quality as those obtained with
LS. Nevertheless, the low values obtained for RMSEP and SEP

ndicate the high predictive capability of augmented MCR-ALS.
he good results obtained for Talc are especially remarkable. Its
alculated concentration and standard deviation contained the
ominal concentration in the tablet. Also good result of RMSEP
nd SEP were obtained. For API, lower prediction was obtained;
hereas a higher concentration was obtained for MgSt. Never-

heless, their standard deviations as well as their RMSEP and SEP
alues were of high quality, indicating a good predictive capability
f the model. These results may conclude that augmented MCR-
LS is a good methodology to offer reliable and semi-quantitative

nformation about the concentration of minor components in
ablets, being very accurate in the quantification of major
omponents.

It should be noted that none of the methods actually provide
atisfactory quantification results in relation to the European stan-
ard practice that the active ingredient in drug products should
ange between 95% and 105% of the declared content. Nevertheless,

easuring an area of 2 mm × 2 mm and the surface of the tablet
ould also be inadequate for that purpose. The aim is to provide

ccurate/reliable quantitative results to obtain the most accurate
nformation of the spatial distribution of components. To evalu-
te the quantitative results from the different models in this study

o
t
p
c
o

ig. 3. Concentration surfaces obtained for one of the tablets by applying CLS (upper), M
olor intensity values.
ample 5 2.5 2.3 11.0 11.7 1.2
ample 6 4.7 2.2 8.8 9.8 1.3

e compare with the theoretical concentrations which is obviously
nd approximation.

.2. Spatial distribution of the analytes in the surface

As an illustrative example, the concentration surfaces for sample
obtained with the three methodologies proposed are depicted in

ig. 3. The concentration surfaces obtained with CLS (upper row)
enoted the lack of predictive capability of this method for MgSt
nd Talc. Looking at the concentration maps obtained with MCR-
LS (middle) similar conclusions can be extrapolated from the CLS
esults.

As we expected from the quantitative results, the augmented
ersion of MCR-ALS offered a more reliable semi-quantitative
verview of the distribution of each component in the sample
Fig. 3, bottom). This distribution was studied by calculating the
DBP (Table 3) and depicting the histograms of the distribution
or each sample (Fig. 4). Several conclusions can be extracted from
he histograms: in general, very close distribution histograms
ere obtained in the six samples, giving an idea of the similar
istribution of the analytes between the samples. Moreover, most

f the distributions presented a Gaussian shape. The distribution of
he minor components is characterized by having a high number of
ixels of 0 concentration, being their distribution very close to this
oncentration. Another remarkable information is that histograms
f API and MgSt are highly correlated in the six samples. The

CR-ALS (middle) and augmented MCR-ALS (below). All images are scaled to same
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Fig. 4. Histograms of concentrations obtained f

istribution of the major components was as expected, covering
ost of the concentration range.
One special feature of the obtained histograms is that none of the

aussian distribution showed a thin shape. This fact is corroborated
ith the high values of SDPB obtained (Table 3) in all the samples,

ndicating a high level of dispersion in all the samples for major
omponents, specially.

. Conclusions and further perspectives

In this work, several methods have been tested to overcome the
ossibility of direct quantification of major and minor components

n pharmaceutical samples by using NIR-Chemical Imaging without
previous stage of calibration.

The quantitative results obtained denoted that the most robust
nd reliable results have been obtained by means of the augmented
ersion of Multivariate Curve Resolution. This working method-
logy has been demonstrated to offer reliable and quantitative
nformation about the concentration of major components, as well
s a semi-quantitative estimation of minor components in tablets.
hese features allow the augmented version of MCR-ALS to become
very useful methodology in the field of, for example, blending

rocesses monitoring.
It is also remarkable the usefulness of studying the distribution

f each analyte in the surface of the tablet. This target has been
vercome by using the histograms and SDBP of the results obtained
ith augmented MCR-ALS. These two parameters have offered an

stimation of the real distribution of each analyte in the sample,
eing very useful when the total homogeneous distribution in the
ablet in a blending process is pursued.
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a b s t r a c t

In hyperspectral analysis, PLS-discriminant analysis (PLS-DA) is being increasingly used in conjunction
with pure spectra where it is often referred to as PLS-Classification (PLS-Class). PLS-Class has been pre-
sented as a novel approach making it possible to obtain qualitative information about the distribution
of the compounds in each pixel using little a priori knowledge about the image (only the pure spectrum
vailable online xxx

eywords:
yperspectral imaging
LS
LS-DA

of each compound is needed). In this short note it is shown that the PLS-Class model is the same as a
straightforward classical least squares (CLS) model and it is highlighted that it is more appropriate to view
this approach as CLS rather than PLS-DA. A real example illustrates the results of applying both PLS-Class
and CLS.

© 2009 Published by Elsevier B.V.
LS-Classification
LS-Class

. Introduction

The powerful combination of hyperspectral images and mul-
ivariate analysis has not been overlooked by the pharmaceutical
ndustry and the number of pharmaceutical applications has
ncreased significantly the past few years (Gowen et al., 2007). One
f the major challenges is selecting the appropriate data analysis
ethodology for extracting desired information from hyperspec-

ral images. In hyperspectral images, a high-resolution spectrum
s obtained for each pixel and for example, principal compo-
ent analysis (PCA) (Amigo et al., 2008; Kohler et al., 2007) has
een used for unsupervised pixel classification, multivariate curve
esolution—alternating least squares (MCR-ALS) (Amigo and Ravn,
009; de Juan et al., 2004) has been used for chemical mapping and

nterpretation of images, and partial least squares (PLS) regression
as been used for quantification (Ravn et al., 2008).

PLS-discriminant analysis (PLS-DA) (Chevallier et al., 2006) is
eing increasingly used in conjunction with pure spectra where it
Please cite this article in press as: Amigo, J.M., et al., A comparison of a
and classical least squares in hyperspectral imaging. Int J Pharm (2009

s often referred to as PLS-Classification (PLS-Class) or ‘PLS2 using
library of pure component spectra’ (see, for example references
larke, 2004; Furukawa et al., 2007; Henson and Zhang, 2006;
yon et al., 2002; Ma and Anderson, 2008; Weiyong et al., 2008;

∗ Corresponding author.
E-mail address: rb@life.ku.dk (R. Bro).

378-5173/$ – see front matter © 2009 Published by Elsevier B.V.
oi:10.1016/j.ijpharm.2009.02.014
Westenberger et al., 2005). This method is based on the develop-
ment of a PLS2 calibration model with a calibration matrix with
one pure spectrum for each chemical component and a dummy
matrix as target matrix. It has been advocated as attractive because
it merges the easiness of obtaining a calibration set (just the pure
spectra of the components) and the exploratory and visualizing
properties of the PLS2 model. In this paper, it is demonstrated that
the PLS-Class approach is equivalent to performing classical least
squares (CLS) (Amigo et al., 2008; Gallagher, 2007; Martens and
Naes, 1984; Naes and Martens, 1984). This is shown both mathe-
matically and by means a practical example.

2. PLS-Classification in hyperspectral imaging and its
similarity with CLS

PLS-DA is a PLS2-based model, and therefore, the general model
form can be written as Eq. (1):

XB̂ = Y (1)

where X is an M × J matrix of calibration spectra with a corre-
sponding M × I class membership matrix Y and where residuals are
common approach to partial least squares-discriminant analysis
), doi:10.1016/j.ijpharm.2009.02.014

avoided for simplicity. The matrix B̂ holds the estimated regression
coefficients. The number of spectra used for calibration is M and
the number of spectral channels is J. The I columns of Y (a dummy
matrix) correspond to class memberships in classes i = 1, . . ., I. Rows
with a 1 in column i indicates membership in class i. The model

dx.doi.org/10.1016/j.ijpharm.2009.02.014
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:rb@life.ku.dk
dx.doi.org/10.1016/j.ijpharm.2009.02.014
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s applied to new data Xnew (e.g., all the spectra in a hyperspectral
mage) by using the estimated B̂ (Martens and Naes, 1989) (Eq. (2)):

ˆ new = XnewB̂ (2)

here Ŷnew is the estimated class membership matrix for the new
ata.

Because it can be difficult in hyperspectral imaging to iden-
ify classes a priori, a modification of the PLS-DA approach that
ses measured pure component spectra for X can be employed.
o avoid confusion with PLS-DA, this approach is called PLS-Class.
n PLS-Class, the calibration matrix now contains the pure compo-
ent spectra S (I × J) and Y is replaced with a corresponding dummy
atrix I (I × I) which is an identity matrix. The PLS-DA model then

ecomes

B̂PLS-Class = I (3)

The regression matrix B̂PLS-Class can then be estimated using a
LS algorithm. As there are typically only I samples in the data, it is
ot possible to calculate a PLS-Class model with more components
han the number of classes. Even when there are more samples than
he number of classes, the chemical rank will usually be I because
dditional samples are just replicates of the pure spectra. Analo-
ously, it is not meaningful to calculate the PLS-Class model with
ewer components than the number of classes as it would imply
hat the I analytes do not have distinct spectral features. Hence, the
LS-Class model is really not a low-rank regression model typical
f PLS. Note that the use of this PLS-Class model is only one specific
pplication of PLS-DA. Mostly, PLS-DA is used in applications where
ow-rank models are expected to outperform full rank models.

Eq. (3) is in the form of an inverse least squares (ILS) model and
ˆ

PLS-Class can be estimated using any ILS regression algorithm that
andles rank deficient systems of equations. This is because the

east squares estimate of B̂PLS-Class is

ˆ
PLS-Class = (ST S)

−1
ST I (4)

However, for spectroscopic applications, it is typical that J > I
and often J � I). Therefore the J × J matrix STS is at most rank I and
s not invertible. PLS is a common method for estimating B̂PLS-Class,
ut principal component regression (PCR) could easily be employed
s well. To see this, define the singular value decomposition of the
Please cite this article in press as: Amigo, J.M., et al., A comparison of a
and classical least squares in hyperspectral imaging. Int J Pharm (2009

ure component spectra as

= U�VT (5)

here U(I × I) and V(J × J) are orthogonal matrices of left- and right-
ingular vectors respectively, and � (I × J) is a diagonal matrix.

Fig. 1. Unfolded sample
 PRESS
Pharmaceutics xxx (2009) xxx–xxx

Because J > I, only the first I singular values are non-zero. Keeping
only the factors that correspond to non-zero singular values (and
considering that UTU is I) gives

ST S = V�UT U�VT = V�2VT (6)

Therefore, the pseudo-inverse is given by Eq. (7):

(ST S)
† = V�−2VT (7)

and the least squares estimate is

B̂PLS-Class = (ST S)
†
ST I = V�−2VT ST I = V�−2VT ST (8)

Eq. (8) is a PCR model, but because the weights identified for an I-
component PLS model span the same space as V, B̂PLS-Class identified
by PCR and PLS will be identical for this application.

Substituting Eq. (5) into the last expression of Eq. (8) gives

B̂PLS-Class = V�−2VT V�UT = V�−1UT = V�−1UT U�−1VT V�−1UT

= V�−1UT (U�VT V�UT )
−1 = ST (SST )

−1
(9)

Classical least squares regression is a well-known method for
calibration. It is very useful in hyperspectral analysis because of the
simple chemical interpretation it allows (Gallagher, 2007; Ravn et
al., 2008). The only requirement of CLS is that the pure spectra of
all the analytes must be available and that any mixture spectrum
can be described as a linear combination of these spectra. Once the
pure spectra are known (S) the concentrations in a hyperspectral
unfolded sample, xnew, can be easily calculated by direct regression
as is indicated in Eq. (10):

ŷnew = xnewST (SST )
−1

(10)

Comparing the last two equations (Eqs. (9) and (10)) it can be

noticed that the last expression of Eq. (9) [B̂PLS-Class = ST (SST )
−1

]
is the CLS estimate of B̂PLS-Class. Therefore, the CLS and PLS-Class
models are identical and will provide exactly the same results.

3. Example

3.1. Experimental
common approach to partial least squares-discriminant analysis
), doi:10.1016/j.ijpharm.2009.02.014

The data set used in this demonstration is described in detail in
Amigo and Ravn (2009) and Ravn et al. (2008). A five-compound
conventional pharmaceutical tablet formulation was used to pro-
duce the data set analysed (active pharmaceutical ingredient (API),

and pure spectra.

dx.doi.org/10.1016/j.ijpharm.2009.02.014
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Fig. 2. Upper: concentration surface for API predicted by PLS-Class and

.3%; microcrystalline cellulose, 20.0% (w/w); lactose, 71.5%; mag-
esium stearate, 0.75%; and talc, 1.5% (w/w)). Pure compound
eference tablets of the five components were also produced. The
ample selected was analysed on a NIR line mapping system (Spec-
rum Spotlight 350 FT-NIR Microscope, PerkinElmer, UK). An area
f 2 mm × 2 mm was analysed using pixel size 25 �m × 25 �m,
overing 6561 pixels in total. The spectrum of each pixel was col-
ected from wavelength region 7800–4000 cm−1 using a 16 cm−1

pectral resolution, providing a total of 476 wavelength channels
Fig. 1).

The PLS-Class calibration model was performed by using the
ure five spectra as X, and constructing a square diagonal dummy
atrix I with five classes, denoting as 1 the belonging of each

pectrum to each class (as in Eq. (4)). The prediction of the five
omponents of the tablet was performed with this PLS-Class model.
n the other hand, the CLS prediction was developed by direct

egression of Xnew by using the pure spectra matrix S.
PLS-Class algorithm was performed by using the PLS2 algo-

ithm implemented in PLS-Toolbox (Eigenvector Research Inc.).
Please cite this article in press as: Amigo, J.M., et al., A comparison of a
and classical least squares in hyperspectral imaging. Int J Pharm (2009

LS for hyperspectral analysis algorithm from references (Amigo
t al., 2008) was used. This algorithm is freely available
t http://www.models.kvl.dk/users/jose manuel amigo/index.htm
February 2009). Both algorithms work under MatLab v. 7.5
MatLab(R)).
ethods. Bottom: CLS predictions against PLS-Class predictions for API.

3.2. Results and discussion

Only results for the prediction of the active pharmaceutical
ingredient are depicted in Fig. 2. The color denotes the intensity
for the concentration of API obtained for each pixel (moving from
deep blue, low concentration to light red, highest concentration).
As can be observed, the predictions are exactly the same for the two
methods and the same relationship was obtained for the other four
components. This result verifies that both methods offer the same
response.

In a practical application, the PLS-Class model involves two dif-
ferent steps (calculation of the calibration model, B̂PLS-Class, and
prediction of the concentrations of the new sample). CLS, on the
other hand, is typically performed by just a direct regression of the
new sample onto the pure spectra.

4. Conclusion

It has been demonstrated, mathematically and with an exam-
common approach to partial least squares-discriminant analysis
), doi:10.1016/j.ijpharm.2009.02.014

ple, that the PLS classification methodology (PLS-Class) provides
exactly the same results as CLS. There are many advantages in avoid-
ing the use of the PLS engine for building models as above. First
of all, the PLS-Class model is not a low-rank model and therefore
does not provide the usual benefits of PLS. More importantly, CLS is

dx.doi.org/10.1016/j.ijpharm.2009.02.014
http://www.models.kvl.dk/users/jose_manuel_amigo/index.htm
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very well-defined method and it offers theoretical and practical
ools, e.g., for calculating well-defined uncertainties of estimated
arameters (see Appendix A and Draper and Smith, 1981; Gallagher,
007).

While the comparison in this paper has been using hyperspectral
amples, the results are generic and valid for any type of data. The
se of the term PLS-Class model, though, is almost exclusively seen

n hyperspectral imaging.
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ppendix A. Theoretical background of the calculation of
ncertainty boundaries in CLS model

Having an unfolded hyperspectral sample, X (M × J), and the pure
pectra matrix, S (J × I), the CLS model to calculate the individual
oncentration of each component in each pixel can be expressed as
ollows:

ˆT = xT ST (SST )
−1

(A.1)

The errors in the individual measurements of x are assumed to
ominate the estimation error. The differential of Eq. (A.1) is

dŷT ) = (dxT )ST (SST )
−1

(A.2)

Therefore, the error covariance for the CLS model estimate of the
oncentrations is given by (Draper and Smith, 1981):

(dŷ dŷT ) = (SST )
−1

ST E(dx dxT )ST (SST )
−1

(A.3)

here E() is the expectation operator. For CLS, it is assumed that
he noise on each channel is of similar magnitude and uncorrelated,
herefore:

(dx dxT ) = �2I (A.4)

Substituting Eq. (A.4) into the variance of the estimation gives

(dŷ dŷT ) = �2(SST )
−1

SST (SST )
−1

(A.5)
Please cite this article in press as: Amigo, J.M., et al., A comparison of a
and classical least squares in hyperspectral imaging. Int J Pharm (2009

(dŷ dŷT ) = �2(SST )
−1

(A.6)

Eq. (A.6) accounts for the final estimation of the uncertainty
n CLS models. Further information can be found in the supplied
eferences (Draper and Smith, 1981; Gallagher, 2007).
 PRESS
Pharmaceutics xxx (2009) xxx–xxx
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