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“A man should look for what is, and not for what he thinks should be” 
 
 
 

Albert Einstein 
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SummarySummarySummarySummary    

Metabolomics is the analysis of the whole metabolome and the focus in 
metabolomics studies is to measure as many metabolites as possible. The use 
of chemometrics in metabolomics studies is widespread, but there is a clear 
lack of validation in the developed models. The focus in this thesis has been 
how to properly handle complex metabolomics data, in order to achieve 
reliable and valid multivariate models. This has been illustrated by three 
case studies with examples of forecasting breast cancer and early detection of 
colorectal cancer based on data from nuclear magnetic resonance (NMR) 
spectroscopy (Paper IIPaper IIPaper IIPaper II), fluorescence spectroscopy (Paper IIIPaper IIIPaper IIIPaper III) and gas 
chromatography coupled to mass spectrometry (GC-MS). 

The principles of the three data acquisition techniques have been briefly 
described and the methods have been compared. The techniques complement 
each other, which makes room for data fusion where data from different 
platforms can be combined. 

Complex data are obtained when samples are analysed using NMR, 
fluorescence and GC-MS. Chemometrics methods which can be used to 
extract the relevant information from the obtained data are presented. Focus 
has been on principal component analysis (PCA), parallel factor analysis 
(PARAFAC), PARAFAC2 and partial least squares discriminant analysis 
(PLS-DA) all being described in depth. It can be a challenge to determine the 
appropriate number of components in PARAFAC2, since no specific tools have 
been developed for this purpose. Paper IPaper IPaper IPaper I is a presentation of a core 
consistency diagnostic aiding in determining the number of components in a 
PARAFAC2 model. It is of great importance to validate especially PLS-DA 
models and if not done properly, the developed models might reveal spurious 
groupings. Furthermore, data from metabolomics studies contain many 
redundant variables. These have been suggested to be eliminated using an 
approach termed reduction of redundant variables (RRV), which is time 
consuming but efficient, since the curse of dimensionality is reduced and the 
risk of over-fit is decreased. 
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The use of appropriate multivariate models in metabolomics studies has been 
presented in the three case studies. In the first case study, plasma samples 
from healthy individuals have been analysed by NMR. Some have developed 
breast cancer later in life and these have been separated from healthy 
individuals by means of a properly validated PLS-DA model based on NMR 
data with RRV and known risk markers. The sensitivity and specificity 
values are 0.80 and 0.79, respectively, for a test set validated model. 

The second case study is based on plasma samples with verified colorectal 
cancer and three types of control samples analysed by fluorescence 
spectroscopy. The acquired data have been analysed by PARAFAC models 
and the components from the PARAFAC models have been used as variables 
in seven PLS-DA models in order to separate the cancer samples from the 
control groups. Sensitivity and specificity values of approximately 0.75 make 
fluorescence spectroscopy a potential tool in early detection of colorectal 
cancer. 

Finally, plasma samples have been analysed using GC-MS. The method 
requires extensive sample preparation and therefore the study can only be 
considered a feasibility study with room for optimization. However, 14 plasma 
samples were analysed and the results indicate that GC-MS-based 
metabolomics in combination with PARAFAC2 modelling is applicable for 
extracting relevant biological information from the plasma samples. 

Overall, the work in this thesis shows that suitable and properly validated 
chemometrics models used in metabolomics are very useful in forecasting and 
early detection of cancer. The use of chemometrics in metabolomics can e.g. 
increase the understanding of the underlying etiology of cancer and could be 
extended to cover other diseases as well. 
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ResuméResuméResuméResumé    

Metabolomics er undersøgelse af hele metabolomet, og fokus i metabolomics-

studier er at måle så mange metabolitter som muligt. Brugen af kemometri i 
metabolomics-studier er udbredt, men der er en klar mangel på validering af 
de udviklede modeller. Fokus i denne afhandling har været, hvordan 
metabolomics-data bliver håndteret korrekt, således at pålidelige og valide 
multivariate modeller opnås. Dette er blevet illustreret ved tre casestudier 
med eksempler på forudsigelse af brystkræft og tidlig detektering af 
kolorektalkræft baseret på data fra nuklearmagnetisk resonans (NMR) 
spektroskopi (Artikel IIArtikel IIArtikel IIArtikel II), fluorescens-spektroskopi (Artikel IIIArtikel IIIArtikel IIIArtikel III) og 
gaskromatografi koblet til massespektrometri (GC-MS). 

Principperne bag de tre måleteknikker er blevet kort beskrevet og 
sammenlignet. Teknikkerne komplementerer hinanden, hvilket giver 
anledning til datafusion, hvor data fra forskellige platforme kombineres. 

Når prøver analyseres ved NMR, fluorescens og GC-MS, opnås komplekse 
data. Kemometriske metoder, der kan anvendes til at udtrække den relevante 
information fra de opnåede data, er præsenteret. Fokus har været på 
principal component analysis (PCA), parallel factor analysis (PARAFAC), 
PARAFAC2 og partial least squares discriminant analysis (PLS-DA). Det kan 
være en udfordring at bestemme antallet af komponenter i PARAFAC2, idet 
ingen specifikke værktøjer er blevet udviklet til dette formål. Artikel IArtikel IArtikel IArtikel I er en 
præsentation af en core consistency diagnostik, der hjælper til at bestemme 
antallet af komponenter i en PARAFAC2-model. Det er utrolig vigtigt at 
validere især PLS-DA-modeller, og hvis det ikke er gjort ordentligt, vil de 
udviklede modeller vise ukorrekte grupperinger. Ydermere indeholder data 
fra metabolomics-studier mange redundante variable. Det er foreslået, at 
disse elimineres ved at anvende en metode kaldet reduktion af redundante 
variable (RRV), som er tidskrævende, men effektiv, da ”the curse of 
dimensionality” reduceres, og risikoen for overfit derved mindskes. 

Brugen af egnede multivariate modeller i metabolomics er blevet præsenteret 
i de tre casestudier. I det første studie er plasmaprøver fra raske individer 



Resumé 

IX 

blevet analyseret med NMR. Nogle har udviklet brystkræft senere i livet, og 
disse er blevet adskilt fra de raske individer ved hjælp af en PLS-DA-model 
baseret på data fra NMR med RRV og kendte risikomarkører. Sensitiviteten 
og specificiteten er henholdsvis 0,80 og 0,79 for en testsætvalideret model. 

Det andet studie er baseret på plasmaprøver med verificeret kolorektalkræft 
og tre typer kontrolprøver analyseret med fluorescens-spektroskopi. De 
opnåede data er blevet analyseret med PARAFAC-modeller, og 
komponenterne fra PARAFAC-modellerne er blevet brugt som variable i syv 
PLS-DA-modeller for at separere kræftprøverne fra kontrolgrupperne. 
Sensitiviteten og specificiteten på cirka 0,75 viser, at fluorescens-

spektroskopi er et potentielt redskab til tidlig detektering af kolorektalkræft. 

Til sidst er plasmaprøver blevet analyseret med GC-MS. Teknikken kræver 
omfattende prøveforberedelse, og derfor kan studiet kun betragtes som et 
forstudie med plads til optimering. Dog blev 14 plasmaprøver analyseret, og 
resultaterne indikerer, at GC-MS-baseret metabolomics kombineret med 
PARAFAC2-modellering kan anvendes til at udtrække relevant biologisk 
information fra plasmaprøverne. 

Alt i alt viser arbejdet i denne afhandling, at egnede og ordentligt validerede 
kemometriske modeller anvendt i metabolomics er meget anvendelige til at 
forudsige og tidligt detektere kræft. Brugen af kemometri i metabolomics kan 
eksempelvis øge forståelsen af den underliggende kræftetiologi og kunne 
meget vel udvides til andre sygdomme. 
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Chapter 1 

IIIIntroductionntroductionntroductionntroduction    

1.1.1.1.1.1.1.1. BackgroundBackgroundBackgroundBackground    

Over the past decades, studies of the human metabolism in relation to 
various diseases have evolved. Metabolomics is now a well-established term 
in life sciences and the number of publications are greatly increasing [1;2]. 
One focus in metabolomics is the research regarding detection of cancer and 
the common analytical techniques in metabolomics research are nuclear 
magnetic resonance (NMR) and gas or liquid chromatography coupled to mass 
spectrometry (XC-MS). A method used as a supplement to the common 
techniques is fluorescence spectroscopy, which is rarely applied in 
metabolomics, but has a potential. All the methods provide complex data, and 
several multivariate mathematical methods are applicable in order to extract 
the information of interest from these complex data.  

However, there is especially one issue in (some) metabolomics studies that 
need to be handled: Doing proper data analysis. In many research areas, 
classic univariate statistical methods are applied. However, univariate 
models are not adequate when tens of thousands of metabolites are to be 
compared simultaneously to reveal differences between for example healthy 
and diseased subjects. Picking out selected metabolites on the sole 
assumption that this or these particular metabolites are the only important 
ones is unfortunate, and potential relevant information might be lost. 
Fortunately, most metabolomics studies have embraced the usefulness of 
multivariate models and chemometrics, where all measured metabolites are 
investigated simultaneously, but sometimes single metabolites are picked out 
(e.g. Sreekumar et al. from 2009 [3]). However, despite the increasing role of 
multivariate data analysis in metabolomics, much of the developed models 
lack reliability. A thorough review of the applications of multivariate data 
analysis and chemometrics in metabolomics studies has been published by 
Madsen et al. in 2010 [1]. In the review, the authors pinpoint that missing 
validation is generally a major issue in the data analysis in many studies. It 
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is of utmost importance that prediction models are capable of predicting for 
example the cancer status of new samples and not just the status of the 
samples used to build the model. Otherwise, nothing general can be revealed 
from the research. 

In this thesis, development of proper multivariate models will be exemplified 
using data from plasma samples of breast cancer and colorectal cancer. 
Breast cancer is the most common type of cancer among women in the 
Western part of the world. In Denmark, approximately 4,700 women are 
diagnosed with breast cancer each year [4]. Despite a good prognosis in many 
cases (the five-year survival rate is higher than 80%) the greatest chance of 
survival is early detection of the tumour. Today, mammography screenings 
are offered to middle aged women in many Western countries. One important 
(and controversial) drawback of mammography is the risk of too many false 
positives. Some detected (and treated) tumours would never progress to a 
stage that would affect the well-being of the patient. This is called over-

diagnosis, and has been heavily discussed in recent years [5]. Colorectal 
cancer is one of the most frequent malignant diseases in the Western part of 
the world among men and women. In Denmark, 1,575 men and women on 
average were diagnosed with colorectal cancer each year from 2006 – 2010 
[6]. For colorectal cancer, the five-year survival rate is 56% for men and 60% 
for women. The survival rate is very likely to increase if an increasing 
fraction of colorectal cancer is detected in earlier stages. Today, screening for 
colorectal cancer is carried out by home sampling of faeces to detect the 
presence of occult blood. In case of a positive sample, the test is followed up by 
colonoscopy. This procedure is uncomfortable for many people resulting in low 
compliance of the screening programme. In addition, only six out of ten 
individuals with colorectal cancer are detected using this method [7]. With 
the drawbacks of today’s primary screening methods, there is a considerable 
need for the development of methods which are able to non-invasively detect 
cancer at an early stage of the disease or maybe even anticipate cancer before 
the disease can be detected clinically. 

 

1.2.1.2.1.2.1.2. Aim of thesisAim of thesisAim of thesisAim of thesis    

Multivariate data analysis in metabolomics offer many challenges, and the 
work in this thesis focuses on how to properly handle metabolomics data and 
on the development of valid models. This will be illustrated using different 
examples: (i) forecasting breast cancer status from healthy females by NMR 
spectroscopy with data reduction, (ii) early detection of colorectal cancer by 
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fluorescence spectroscopy, and (iii) early detection of colorectal cancer by GC-

MS. 

 

1.3.1.3.1.3.1.3. ThesisThesisThesisThesis    outlineoutlineoutlineoutline    

This thesis is based on three quite diverse papers all published in or 
submitted to peer-reviewed journals, and a feasibility study (not published). 
The main focus in the thesis is on the multivariate methods applied on 
complex metabolomics datasets, using examples from NMR on healthy 
plasma samples with later development of breast cancer, fluorescence 
spectroscopy on plasma samples with colorectal cancer and GC-MS on 
standard plasma samples. 

Chapter 2 describes the term metabolomics and discusses why it is an 
interesting and relevant research area. 

In Chapter 3, the three data acquisition techniques NMR spectroscopy, 
fluorescence spectroscopy and GC-MS are briefly described.  

Chapter 4 is devoted to description and discussion of the relevant models in 
multivariate data analysis, and is one of the main cores of this thesis. The 
chapter is divided into several major topics: an explorative part concerning 
PCA, MCR, PARAFAC and PARAFAC2 (Paper I), a classification part 
concerning PLS-DA and OPLS-DA, and the challenges when using these 
models. Also variable reduction and selection will be discussed and finally the 
term data fusion will be discussed. 

Chapter 5 is the second core of this thesis, where two specific applications 
from Paper II (NMR) and Paper III (fluorescence) are illustrated in detail, 
and unpublished work on acquiring GC-MS data from plasma samples is 
presented. Issues concerning sample preparation prior to GC-MS analysis are 
also discussed. 

Finally, in Chapters 6 and 7, the conclusions from the work of this thesis, and 
perspectives and ideas for future research, are presented. 
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Chapter 2 

What is Metabolomics?What is Metabolomics?What is Metabolomics?What is Metabolomics?    

The terms metabonomics and metabolomics were first introduced in the late 
1990s and the early 2000s, respectively [8;9]. The two terms are very much 
alike and are used interchangeably by scientists in the field. However, there 
is a slight distinction between the two terms. According to the paper by 
Nicholson et al. 1999 [9], metabonomics is defined as “the quantitative 
measurement of the dynamic multiparametric metabolic response of living 
systems to pathophysiological stimuli or genetic modification” – a response or 
reaction when state changes occur in the organism are measured 
quantitatively from changes in the metabolites. Fiehn (2001) [8] is addressing 
the term metabolomics to be “a comprehensive and quantitative analysis of 
all metabolites…” focussing on the study of the metabolome. Throughout this 
thesis the term metabolomics will be used for consistency, but either term 
could be equally appropriate. 

The metabolome is the complete set of low molecular weight compounds of a 
specific physiological state found in cells [10]. There are different approaches 
to the analyses of the metabolic response, and these can roughly be divided in 
four groups [8;11;12]: (i) metabolite targeted profiling, (ii) metabolite 
profiling, (iii) metabolomics and (iv) metabolic fingerprinting. Metabolite 
targeted profiling is the analysis of specific changes of the metabolome 
directly related to for example enzyme activity. Metabolite profiling 
(sometimes denoted metabolic profiling) is the analysis of a group of 
metabolites associated with a specific pathway. Metabolomics is the analysis 
of the whole metabolome, and finally metabolic fingerprinting is the 
classification of samples based on their biological relevance, where it is not 
necessary to determine the levels of all metabolites. In this thesis, the aim is 
to detect the widest possible range of metabolites, and therefore the 
metabolomics approach is called for. 

The metabolomics approach was first applied in plant science [13] and 
toxicology [14], but the field quickly emerged to other areas, for example 
disease diagnosis in humans. Most metabolomics studies in disease diagnosis 
analyse body fluids or tissue samples to detect changes in metabolites related 
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to the specific disease. The analyses are carried out using different analytical 
techniques. The most commonly applied methods are Nuclear Magnetic 
Resonance (NMR) spectroscopy, Liquid Chromatography-Mass Spectrometry 
(LC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). The 
technique fluorescence spectroscopy is not commonly applied in metabolomics 
studies, due to the limited range of metabolites which are detectable by 
fluorescence spectroscopy. However, the method has previously been applied 
to classify breast cancer samples [15]. 

In the present thesis, metabolomics studies of forecasting and early detection 
of cancer are used as examples, and metabolomics in cancer diagnosis and 
detection has been investigated in numerous publications – see for example 
[16-22]. Some studies on early detection of cancer have been published 
[16;23], but no studies – to the knowledge the author – have been published 
on forecasting cancer before the disease is clinically detectable. In a paper by 
van der Greef et al. from 2004 [24], the relevance of metabolomics as a 
potential tool for detection of early metabolite pertubations in relation to 
diseases before symptoms are appearing is presented. 

One general drawback of the majority of cancer related metabolomics studies 
so far, is the low number of samples. In the above mentioned publications, the 
minimum number of samples included in the analysis is 14 cancer patients 
and ten control samples. The remaining analyses included from 40 to 160 
samples. One of the case studies presented in this thesis (Paper II) is based 
on samples from 838 samples. This number greatly increases the robustness 
of the developed models as will be discussed in Chapters 4 and 5. 
Additionally, the publications above present data from patients with 
diagnosed cancer. In Paper II, the subjects were all healthy when 
participating in the study and half of them developed breast cancer later in 
life. 
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Chapter 3 

Data Acquisition TechniquesData Acquisition TechniquesData Acquisition TechniquesData Acquisition Techniques    

In this chapter, the principles of proton NMR spectroscopy, fluorescence 
spectroscopy and GC-MS will be described briefly. Additionally, the 
advantages and disadvantages for each technique will be summarized.  

 

3.1. 3.1. 3.1. 3.1. Nuclear Magnetic Resonance spectroscopyNuclear Magnetic Resonance spectroscopyNuclear Magnetic Resonance spectroscopyNuclear Magnetic Resonance spectroscopy    

Nuclear magnetic resonance (NMR) spectroscopy was first introduced in the 
1930s by Breit and Rabi [25]. NMR is a non-invasive, quantitative and highly 
reproducible analytical method, which provides detailed information about 
the metabolic profile of the analysed samples. Especially the possibility of 
measuring the contributions of small organic molecules has made proton 
NMR (1H NMR) an attractive tool in metabolomics research, where changes 
in the biochemical composition can be monitored during progression of a 
disease [26]. With current 1H NMR spectroscopy technology, it is common to 
measure down to concentration levels about one ppm, but this is highly 
dependent on the strength of the magnetic field, the number of scans of each 
sample (affecting the total acquisition time), and the number of identical 
protons originating from one molecule (many identical protons will give a 
higher signal). 

There are several different experiments that can be used for acquiring spectra 
in NMR. For 1D analyses, the two most common techniques for bio-fluids are 
Carr-Purcell-Meiboom-Gill (CPMG) and 1D Nuclear Overhauser Effect 
Spectroscopy (NOESY) [27]. In this section, the principle of 1H NMR will be 
described briefly and the differences between CPMG and NOESY will be 
illustrated. A more detailed description of 1H NMR can be found in for 
example [28]. 
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3.1.1. Principle 

In 1H NMR, the interaction between the spin states of protons and radio 
waves in an external magnetic field is studied. Protons are positively charged 
and have spin or rotation and can therefore be considered magnetic dipoles. 
The orientation of these dipoles will be along the rotational axis. When 
exposed to an external magnetic field, these dipoles will only be directed in 
two different states which are parallel or anti-parallel to the vertical axis. In 
order to obtain an observable signal, the protons are radiated with a radio 
frequency pulse equal to the frequency of the proton called the Larmor 
frequency. This absorbed energy induces the orientation of the protons spin 
states to be flipped to a horizontal position, and the return to an equilibrium 
status will result in the emission of an observable radio frequency signal, 
namely Free Induction Decay (FID) that is acquired. The FID is then 
converted from the time domain to the frequency domain by means of Fourier 
transformation giving rise to a spectrum which contains signals (peaks) 
characteristic of the different populations of protons. The position of these 
signals is determined by the chemical shift, which is expressed in parts per 
million (ppm). The chemical shift is the frequency difference between the 
studied proton and a selected reference molecule. The shift occurs due to 
shielding. Due to interactions between the protons and other nuclei within a 
molecule, different degrees of shielding are possible resulting in different 
resonating frequencies and therefore different chemical shifts. In the 
reference molecule – usually TSP (3-(trimethylsilyl)-propionic acid-d4) for 
aqueous samples – the proton shielding is almost complete. Hence, TSP 
proton signal will be located at 0 ppm and the studied protons will have 
positive ppm values, because of a lower degree of shielding. 

The number of scans, which increases the signal intensity summing a new 
FID on top of the previous ones, is important for the signal-to-noise ratio. 
More scans will result in a higher signal-to-noise ratio; however the time of 
conducting the experiment will increase and it is therefore a trade-off 
between increasing the signal-to-noise ratio and fast data acquisition. 

Most biological samples contain large amounts of water. Since 1H NMR 
measures protons, the water in such samples will contribute to a major signal 
dominating the spectra and affecting its dynamic range in such a way that it 
will be impossible to detect small molecules. It is therefore necessary to 
induce water suppression during acquisition. This can be achieved using pre-

saturation, where the water signal is irradiated and suppressed by a “long” 
radio frequency pulse. 

The two types of techniques applied in the work of this thesis are CPMG and 
NOESY. The two methods complement each other, but many molecules are 
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observed in both methods. In CPMG, the bulky and wide signals due to the 
larger molecules such as proteins are suppressed, which results in spectra 
with a very flat baseline. The advantage of CPMG is that far more sharp 
signals ascribable to small compounds will be observable in the spectra. 
Figure 1 (top) shows an example of an average CPMG profile of human 
plasma. In NOESY, most compounds are observable, including the large 
proteins. Generally, NOESY gives a good overview of all molecules [27], but 
smaller molecules may be lost due to the fluctuating baseline. In Figure 1 
(bottom) the average NOESY profile of human plasma is shown. 

 

 

Figure 1. Top: Average CPMG profile of human plasma with suppression of large molecules 
(i.e. protein). Bottom: Average NOESY profile of human plasma 

 

3.1.2. Pre-processing 

After acquiring the spectra, a couple of aspects need to be considered prior to 
data analysis. Due to unavoidable experimental variations and small pH 
changes, there might be small shifts in the position of equal protons 
(unwanted changes in the chemical shift), baseline, etc. During the work of 
this thesis (Paper II), two pre-processing tools were applied prior to data 
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analysis in addition to automatically implemented phase correction: 

Alignment and normalization. 

 

3.1.2.1. 3.1.2.1. 3.1.2.1. 3.1.2.1. AlignmentAlignmentAlignmentAlignment    
In metabolomics studies, it is essential that shifts in the NMR signals are 
corrected. Otherwise, it will be difficult to locate and identify signals of 
interest. There are several ways to align spectral shifts, e.g. by binning, but 
the sole method applied here is interval-correlation-shifting (icoshift) [29]. 
icoshift is based on alignment of user-defined intervals in the NMR spectra. A 
starting point is to align according to the reference compound (TSP). 
However, alignment according to α-glucose has been performed prior to the 
data analysis in Paper II, since TSP binds the proteins present in blood and is 
therefore not reliable. 

 

3.1.2.2. 3.1.2.2. 3.1.2.2. 3.1.2.2. NormalizationNormalizationNormalizationNormalization    
1H NMR is a quantitative method, and ideally the integrals of the signals are 
directly proportional to the concentration of the corresponding molecule. Due 
to possible experimentally induced variations and biological variations in 
body fluids, the concentration and signal of specific compounds can vary 
considerably. This can most easily be exemplified when considering the 
variation in urine concentration with water intake. Urine will be diluted with 
increased water intake, and the signal intensity will therefore be affected and 
unwanted variations will occur. These unwanted variations make it difficult 
to compare spectra between samples, and some adjustments are needed in 
order to reduce the variations. Normalization can aid in reducing the 
intensity or concentration variations by normalizing with a factor expressing 
the variations. Commonly, each spectrum is set to have a unit total intensity, 
where each data point is expressed as a fraction to the total spectral integral 
[30]. However, Craig et al. [30] state that concentration related problems are 
limited in plasma samples. The work in Paper II is based on normalized data 
(2-norm) on plasma samples, which is a common normalization technique in 
metabolomics [31]. However, the differences between the results in the data 
analysis performed on normalized and on raw spectra were minimal (not 
shown). 
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3.2. 3.2. 3.2. 3.2. Fluorescence spectroscopyFluorescence spectroscopyFluorescence spectroscopyFluorescence spectroscopy    

The measurements in Paper III are obtained using fluorescence spectroscopy. 
The principle of fluorescence was discovered by Herschel in 1845 [32], but 
especially during the last two decades fluorescence spectroscopy has emerged 
in biological sciences [33]. Fluorescence spectroscopy is an analytical 
technique, where the intensity of light from different molecules is measured. 
A very brief description of the principles will be presented in the following. 

 

3.2.1. Principle 

When electrons of a molecule are excited from the ground state, there is a gap 
in the energy levels between the two states. If a molecule is exposed to light 
with a wavelength equal to this gap, the electrons of the molecule will go from 
the ground state to an excited state, which is also known as the molecular 
absorbance of light. After being excited, the molecule will decay from the 
excited state back to the ground state. This relaxation will for some molecules 
result in emission of light, also known as fluorescence. The energy states can 
be visualised using a Jablonski diagram, see for example [33]. The energy 
from emission is lower than the energy from excitation hence the wavelength 
at which emission occurs is longer than the wavelength at excitation. The 
difference between the excitation and emission wavelengths is called the 
Stoke’s shift. When a wide range of wavelengths are recorded for excitation 
and emission their properties can be expressed by an excitation-emission 
matrix (EEM) represented by a fluorescence landscape. An example of a 
fluorescence landscape of human plasma can be seen in Figure 2. 
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Figure 2. Example of a fluorescence landscape acquired from human plasma 

 

Only few molecules exhibit fluorescent behaviour. These are called 
fluorophores.  Typically, fluorescence occurs from aromatic molecules or 
conjugated double bonds. In human plasma, the most important naturally 
occurring fluorophores are NAD(P)H, flavins, tryptophan and tyrosine [34]. 

 

3.2.2. Pre-processing 

As in NMR, acquired data from fluorescence need to be pre-processed prior to 
data analysis. First, the non-chemical phenomenon Rayleigh scatter [35] 
needs to be eliminated from the EEM. This has been done in Paper III by 
replacing the Rayleigh scatter with missing numbers, which is also visible in 
the fluorescence landscape in Figure 2.  

Additionally, the samples should be intensity corrected. Intensity correction 
is performed to obtain comparable results between different instruments. In 
Paper III, the intensities of the samples have been calibrated according to the 
integral of the water Raman signal [36]. 
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3.3. 3.3. 3.3. 3.3. Gas ChromatographyGas ChromatographyGas ChromatographyGas Chromatography-Mass SpectrometryMass SpectrometryMass SpectrometryMass Spectrometry    

Gas Chromatography (GC) was introduced in 1952 [37] and the coupling to 
mass spectrometry (MS) has been applied since the 1970s for analysing 
metabolites in plasma and urine [38]. The technique is two to four times more 
sensitive than 1H NMR, but the samples need to be heavily pre-treated prior 
to analysis. The sensitivity is greatly dependant on injection volume, 
separation and detection techniques, but it will usually detect concentrations 
down to approximately 10 ppb. Using GC-MS, it is possible to get detailed 
information of especially hydrophobic molecules and, depending on the 
specific pre-treatment, carbohydrates and amino acids can also be measured. 
The principles of GC-MS are described briefly in this section, and details can 
be found elsewhere [39;40].  

 

3.3.1. Principle 

In GC-MS, vaporized compounds in a mixture are separated followed by 
detection in a mass detector. The compounds are separated based on their 
volatility or ability to evaporate. This is achieved by adhesion of the 
compounds to the surface of a slightly heated GC column (stationary phase). 
The column is placed in an oven, where heating and cooling of the column can 
take place. After adhesion, the column is heated and the compounds are 
released from the column according to volatility and carried to the mass 
detector by a carrier gas (mobile phase). Hence, the most volatile compounds 
are released first. When the compounds reach the mass detector, ionization 
and fragmentation of the compounds take place. This can be achieved using 
different ionization techniques, but the ionization applied in the feasibility 
study presented in Chapter 5 is the electron-impact (EI). EI has a good 
sensitivity and unique fragmentation; however, this heavy fragmentation can 
result in reduced possibilities of identification of unknown compounds [41]. 
The fragments (which are ions) are detected by their mass to charge ratio 
(m/z). In the feasibility study, the applied mass analyzer is a quadrupole. 
Unique fingerprints of the compounds are then obtained by mass spectra and 
elution profiles. An example of a GC-MS landscape, a mass spectrum and an 
elution profile from a human plasma sample is seen in Figure 3. 
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Figure 3. Raw GC-MS data for one human plasma sample. Top: Landscape of a selected area 
over 61 elution times and 499 mass channels. Bottom left: Profile of the mass spectra 
summed over the 61 elution times. Bottom right: Elution time profile summed over the 499 
scans 

 

Before the compounds can reach the column, they need to be brought to a 
volatile state. Polar metabolites are not volatile by nature, and therefore the 
samples need to be prepared prior to injection to the GC. Additionally, the 
compounds of interest in blood need to be extracted from the blood matrix. 
These aspects are the subjects of the GC-MS feasibility study in Chapter 5. 
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3.3.2. Pre-processing 

The pre-processing steps applied in this thesis include peak selection, since it 
is difficult to model GC-MS data by PARAFAC2 (see Chapter 4) on the entire 
chromatogram. This can be done by manual inspection of the chromatogram, 
where intervals with visible peak areas are selected. In Paper I, 
chromatographic datasets of wine and apple samples were manually 
inspected resulting in 50 intervals selected in the wine dataset and 26 
intervals selected in the apple dataset.  

In GC-MS-based metabolomics studies, deconvolution is often applied for pre-

processing of the chromatograms [42]. Deconvolution is a method to extract 
the pure signals of the metabolites. The method is not applied in the work of 
this thesis, and will therefore not be touched upon further. 

 

3.4. 3.4. 3.4. 3.4. Advantages and disadvantagesAdvantages and disadvantagesAdvantages and disadvantagesAdvantages and disadvantages    

The above mentioned three methods are quite different from each other and 
all three methods present advantages and disadvantages. For comparison, 
the advantages and disadvantages are listed in Table 1 [33;43]. 

 

Table 1. Overview of advantages and disadvantages of the three data acquisition techniques 

TechniqueTechniqueTechniqueTechnique    AdvantagAdvantagAdvantagAdvantageseseses    DisadvantagesDisadvantagesDisadvantagesDisadvantages    

1111H NMRH NMRH NMRH NMR    Non-destructive 
No need for sample pre-
treatment 
Fast acquisition 
Measures many compounds 
Many metabolites are already 
identified 

Low sensitivity 
Requirement of relatively large 
sample size 
Cannot detect compounds 
without protons 

FluorescenceFluorescenceFluorescenceFluorescence    Non-destructive 
Fast acquisition 
Very sensitive 
 

Only few compounds can be 
measured 
Complete metabolomics profile 
impossible 

GCGCGCGC-MSMSMSMS    Sensitive 
Low sample size needed (down 
to 50-100 µL) 
Measures many compounds 
Software for metabolite 
identification 

Extraction of metabolites 
necessary 
Derivatization of samples 
necessary 
Time consuming sample 
preparation 
Slow acquisition 
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The advantages and disadvantages listed prove the applicability of all three 
methods and that they complement rather than surpass each other. In the 
presented case studies in Chapter 5, the methods are applied for different 
purposes, but the relevance of applying all three methods on the same sample 
sets is discussed as a future perspective. The acquired data from the methods 
can be combined, and the strengths of the methods can be extracted by data 
fusion (see Chapter 4). Hence, the advantages of the methods might be 
enhanced, whereas the disadvantages might be reduced. 
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Chapter 4 

Multivariate Data AnalysisMultivariate Data AnalysisMultivariate Data AnalysisMultivariate Data Analysis    

4.1. 4.1. 4.1. 4.1. Exploring the dataExploring the dataExploring the dataExploring the data    

The very first step in analysing any set of data is always to explore the raw 
data. Plotting the raw data in a suitable way (line plots, landscapes, 
histograms, etc.) can e.g. give a rough overview of structures and noisy parts 
in the data, expected biomarkers can be located and outlying or deviating 
samples can be detected. For example, if an extreme sample is included in the 
analysis e.g. if one blood sample differs remarkably from the others – it could 
be a sample containing a large amount of ethanol – this particular sample 
will most likely have an extreme intensity in the metabolite relating to 
ethanol compared to the remaining samples. This will give an indication of a 
possible outlying sample, and if so, an explanation of the outlier is found 
directly in the raw data. 

However, small deviations in the samples are most often not visible directly 
from the raw data, especially if many samples are measured. Furthermore, 
looking at variables one or a few at a time will mostly not reveal important 
relations between variables. Therefore, it will be useful to apply multivariate 
models to investigate these more subtle variations in the data – models that 
can reveal underlying patterns in the data structure. 

The first part of this chapter explains the concepts and uses of the explorative 
multivariate models PCA, MCR, PARAFAC and PARAFAC2, which are all 
applied to investigate and extract the features “hidden” in the raw data. In 
these methods, the major variations in data are investigated. 

In the second part, the classification model PLS-DA is presented. Here, the 
model development is based on the relation between the samples and the 
target of the investigation. In addition, the importance of proper validation of 
classification models will be discussed followed by an explanation of how to 
quantify the quality of PLS-DA classification models. Specifically, sensitivity, 
specificity and ROC curves will be explained in some detail, as these are often 
used for evaluation of such models.  
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Considering the huge amount of data obtained in metabolomics studies, it is 
often of great interest to reduce the number of redundant variables and to 
include all relevant information. In the last three parts of this chapter, 
preliminary variable reduction, variable selection and data fusion are 
discussed.  

 

4.2. 4.2. 4.2. 4.2. Explorative models Explorative models Explorative models Explorative models     

4.2.1. Principal Component Analysis 

Principal Component Analysis (PCA) [44-46] is a classical method for 
exploring two-way data arrays (a matrix). PCA can be used on any dataset 
with a two-way structure originating from for example 1D NMR data, 
integrated NMR or integrated XC-MS data, unfolded XC-MS data and data 
extracted from questionnaires. 

In PCA, a data matrix XXXX of size I × J (I being the number of samples and J 
being the number of variables) is decomposed into a systematic part (TPTPTPTPT) 
and a residual part (EEEE). This can be expressed by the equation 

� = ��� + �                            (1) 

Here TTTT (I × G) denotes the score matrix (G being the number of principal 
components – see below), PPPPT (G × J) denotes the transposed loading matrix 
and EEEE (I × J) denotes the residuals, which is the part of the data that is not 
explained by the model. The loadings hold information of e.g. the metabolites 
in blood, while the scores contain information of the amount, or importance, 
of the loadings for each sample. The systematic part holds the main variation 
in XXXX expressed by fewer latent variables termed principal components (PC). 
Principal components consist of the score vectors (tttt) and the loading vectors 
(pppp). The score vectors are the columns in TTTT and the loading vectors are the 
rows in PPPPT as illustrated in Figure 4. The score and loading vectors are 
orthogonal; that is  

�	
��
 = 0, 
	

�
� = 0, ∀	��  (2) 

which makes the PCA solution unique. In Figure 4, the PCA model is 
illustrated using two components. The first principal component captures the 
largest variation in the data, XXXX, (it could be the difference between men and 
women based on measurements on blood samples); the second principal 
component captures the second largest variance. The number of components 
cannot exceed the rank of the data matrix, but generally much fewer 
components are needed to extract the relevant features in data.  
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Figure 4. Schematic illustration of a two-component PCA model, where the raw data matrix 
(XXXX) is decomposed into score vectors (tttt) and loading vectors (pppp). EEEE represents the residuals 

 

Prior to any multivariate data analysis, it is important to pre-process the 
data in a meaningful way. Commonly, centering of data (mean centering) is 
applied [47]. In this case, the average value of a variable is subtracted from 
the variable for the individual samples. The loadings form a new coordinate 
system, and when data are mean centred, the scores will have their centre in 
origo. The concept of mean centering is illustrated in Figure 5. Another pre-

processing method is scaling. When the variables are scaled, each variable is 
normally divided by the standard deviation within the variable. Hence, 
scaling scales the variable to unity standard deviation. The combination of 
mean centering and scaling is commonly applied as a pre-processing 
technique and is denoted autoscaling [47]. Using autoscaling, all variables are 
weighted equally in a least squares sense. This is important when the dataset 
is composed of discrete variables, possibly measured in different units (e.g. 
height in cm, weight in kg, carbohydrate intake in grams per day, etc.). 
Autoscaling is also illustrated in Figure 5.  

 

Figure 5. Illustration of mean centring and autoscaling, J being the number of variables 

 

4.2.1.1. 4.2.1.1. 4.2.1.1. 4.2.1.1. Visualization of the PCA modelVisualization of the PCA modelVisualization of the PCA modelVisualization of the PCA model    
A dataset with 100 variables can be considered as a 100-dimensional sub-
space where each dimension represents a variable. A four-component PCA 
model based on these 100 variables can be represented in four dimensions 
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within this 100-dimensional space; hence the data representation is reduced 
from 100 to four dimensions. Commonly, the model is depicted by the first two 
components, since these describe the majority of the variance, in score and 
loading plots. However, plotting all combinations of the four components is 
beneficial, as not all relevant variance is captured in the first components. 
The samples are easily visualised in score plots based on the score vectors 
presented in a coordinate system – a “map” of the samples. From these plots, 
groupings and trends in the data can be revealed and extremely deviating 
samples (outliers) can be detected. Samples situated close to each other have 
similar loading profiles. Likewise, the variables can be visualized in a loading 
plot based on the loading vectors. The score and loading plots are connected 
in the sense that the position or location of the samples in the score plot can 
be explained in terms of the variables in the loading plot. For example, 
variables with high positive loading values in the first component explain 
samples with high positive scores in the first component. However, variables 
close to origo have no influence on the model and do not explain anything 
concerning the samples.  

In order to illustrate the PCA model, a part of the questionnaire data applied 
in Paper II is used. The present PCA model is based on a total of 43 physical 
measurements and eating habits for ten men and nine women. Hence, XXXX is 
individuals × discrete numbers (19 × 43), each representing a specific feature 
(e.g. height, alcohol intake, etc.). A separation between the males (squares) 
and females (triangles) is evident from the score plot of a PCA model on 
autoscaled data as seen in Figure 6. 

  

 

Figure 6. PCA model on data from questionnaires. The samples (men (squares) and women 
(triangles)) are represented in the score plot and the variables (data from questionnaires) are 
represented in the loading plot 
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The separation between men and women is observed when plotting the scores 
from the first and third components against each other. The explanation of 
the separation can be found in the loading plot (the number of variable labels 
has been reduced for simplicity), and the trend is that these women i.e. have 
a higher fat percent, more body fat and drink more water. The men, on the 
other hand, consume more alcohol, have a higher energy intake and are 
taller.  

As mentioned, outlying samples can be observed in the score plot. However, 
samples with semi-extreme profiles are not always visible in the score plot. 
Outliers can be detected based on Hotelling T2 [45] values and on the 
residuals. The Hotelling T2 value is calculated from the square of the score 
values, the standard deviation of the score values and the number of 
components. The residuals, EEEE, are measures of the samples’ distance to the 
model and in a perfectly fitted model, EEEE is all zero. If the values are too 
extreme in one sample compared to the remaining samples, the influence of 
this sample should be carefully investigated and understood, as it can 
strongly affect the model. If the sample turns out to be a true outlier (it 
strongly deviates from the other samples), it should be eliminated from the 
analysis, or more samples exhibiting the same type of variation should be 
included. However, there are no final answers when to eliminate a sample 
with outlying behaviour from the analysis. The most feasible approach is to 
apply a priori knowledge of the samples and common sense. 

 

4.2.1.2. 4.2.1.2. 4.2.1.2. 4.2.1.2. PCA in metabolomicsPCA in metabolomicsPCA in metabolomicsPCA in metabolomics    
The PCA model is frequently applied in metabolomics studies, and the model 
often gives a reasonable overview of the data structure. Many metabolomics 
studies with focus on cancer diagnosis are based on few samples and the 
representation of samples in a score plot is clear [22;48]. When many samples 
and thousands of variables are included in the model, there are a couple of 
drawbacks when using the PCA model. In the complex data from 
metabolomics studies, the interesting information is buried deep within the 
data. For example, measurement techniques like NMR and GC-MS detect 
many metabolites in blood, but the specific metabolite(s) related to cancer is 
difficult to locate. Many PCA components might be needed to capture the 
variation in the data related to cancer. Using many components (say above 
30), the number of samples also needs to be correspondingly large. A rough 
rule of thumb is to include four to five samples for each component as a 
minimum, if there is no a priori knowledge about the data. A PCA model with 
30 components will therefore require a dataset containing at least 120 
samples, and if too many components are included, with respect to sample 
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size, there is a risk of over-interpretation. In Figure 7, a PCA model of NMR 
data from Paper II are presented. Data consist of 838 samples (controls and 
future breast cancer patients) and 129 discrete NMR variables; the data are 
described in detail in Chapter 5. The control samples seem to be slightly more 
spread out in the score plot compared to the cancer samples. However, the 
separation is not clear and the high number of samples does not facilitate the 
interpretation of the plot, and this PCA model should therefore be interpreted 
with caution. 

 

Figure 7. PCA model of NMR data from Paper II. A minor distinction can be observed, but 
due to the large amount of samples, the visual separation becomes poor 

 

4.2.2. Multivariate Curve Resolution 

Multivariate Curve Resolution (MCR) [49] is a curve resolution technique 
which can be used as an alternative to PCA. An MCR model decomposes a 
data matrix into two matrices by fewer MCR components. The structure of 
MCR also resembles that of PCA and with I samples and J variables, the 
equation for a G-component MCR model can be written as 

� = ��� + �        (3) 

Here, XXXX (I × J) denotes the raw data, CCCC (I × G) is a matrix holding the 
concentration loadings and SSSST (G × J) is a matrix holding the spectral 
loadings. EEEE (I × J) is the part of the data not explained by the model. MCR is 
oftentimes applied when spectral signals are overlapping. The main purpose 
of MCR is, then, to estimate the true concentration profiles from the samples 
and the true spectral profiles from the variables. This, indeed, is the main 
difference from PCA. While PCA gives an account of the variance (rank), 
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MCR finds the true underlying physicochemical information often by using 
the previously determined rank.   

However, one of the main drawbacks of MCR models compared to PCA is that 
the solution as written above is not unique. Several solutions, which fit the 
data equally well, can be found due to rotational freedom and intensity 
issues. It is therefore often necessary to impose constraints such as non-

negativity (assuming that the spectral profiles and the concentrations are 
non-negative). This constraint will aid in finding the real solution describing 
the underlying chemistry in the data.  

Figure 8 shows an example of an MCR model. Plasma samples from 3419 
individuals have been measured by NMR, and the presented dataset consists 
of 3419 samples and a small region of the NMR spectrum (61 ppm values). In 
the upper part of the figure, every 20th sample is plotted and it seems that 
there is an overlap between two compounds in this region. In the lower part of 
the plot, a two-component MCR model has been calculated. To the left, the 
concentration profiles are shown (CCCC) for and to the right, the two loading 
profiles (SSSS) are shown. In Paper II, MCR has been applied as an integration 
technique on selected NMR regions. This is further described in Chapter 5.  
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Figure 8. Example of a two-component MCR model. Raw data (top), concentration profiles 
(bottom left) and spectral profiles (bottom right) 

  

4.2.3. Parallel Factor Analysis 

For higher order data (> 2D), PCA is inapplicable, if the multi-way structure 
of the data is to be maintained. PARAllel FACtor analysis (PARAFAC) [50;51] 
is an extension of PCA handling higher order data. The theory is described in 
some detail in Paper I and will be briefly discussed and illustrated in this 
section. 

An I × J data matrix    XXXXk, with k = 1,…, K as the kth slab of an I × J × K three-
way array XXXX with a low-rank trilinear structure is suitable for decomposition 
by PARAFAC. Data are decomposed into three loading matrices, AAAA    (I × G), BBBB    
(J × G), and CCCC    (K × G); however, the matrix holding the loadings of the 
samples can be termed the score matrix to make the terminology similar to 
that of PCA. The extension from PCA lies in the third loading matrix CCCC which 
is the additional dimension. In for example fluorescence excitation-emission 
spectroscopy, the dimensions are the samples, the emission wavelengths and 
the excitation wavelengths. The differences between PCA and PARAFAC are 
illustrated in Figure 9, where residuals are excluded for simplicity. The 
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matrix DDDDk (G × G) is a diagonal matrix containing parameters of the kth row 
of CCCC on its diagonal.  

 

 

Figure 9. Illustration of the differences between PCA and PARAFAC. The extension of 
PARAFAC lies in the matrix CCCC with DDDDk on the diagonal 

 

The PARAFAC model decomposes data into fewer PARAFAC components in a 
manner very similar to that of PCA. In PARAFAC, the loading matrices 
provide unique estimates of the underlying main variations in the data. 
However, in order to obtain a solution estimating the pure chemical profiles, 
it is very important to use the optimal number of components. The optimal 
number of components can be found using the core consistency diagnostic 
[52], originally presented by Bro (1998) [53]. As already mentioned, data must 
be low-rank trilinear and core consistency is a measure of how well only low-

rank trilinearity is captured by the model. This means that if there are three 
types of low-rank variations in data, the data must be modelled with three 
components. If this is the case, the core consistency will be high (close to 100). 
If the model is over-fitted – if too many components are included – the core 
consistency will be close to zero or negative. However, it is important to note 
that the core consistency diagnostic can only be used as an indicator of the 
number of components. The PARAFAC model obtained should be carefully 
inspected regarding loadings and residuals and any a priori knowledge 
concerning the chemical rank should be included in the decision as well. If the 
correct number of components is not determined, the estimated loadings from 
the PARAFAC model will not only reflect the true nature of the data, despite 
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the unique properties of the PARAFAC model [50]. An example from Paper I 
is the frequently applied dataset of three different amino acids in five samples 
analysed by fluorescence spectroscopy. Figure 10 shows a PARAFAC model 
with five components calculated on the amino acids dataset. For a five-

component PARAFAC model, the core consistency becomes negative, 
indicating that this model is over-fitted. This is supported by inspection of the 
loadings in the first two modes, where neither the emission profiles nor the 
excitation profiles are correctly estimated. 

 

 

Figure 10. Example of a five-component PARAFAC model. The plot to the left shows the 
emission loadings, the middle plot shows the excitation loadings and the far right plot shows 
the sample mode. The core consistency is negative, which indicates over-fit 

 

One limitation of PARAFAC is that the second mode loadings, BBBB, are assumed 
to be equal for each slab of XXXXk. This is often not the case in e.g. GC-MS, where 
identical compounds may elute at slightly different retention times from run 
to run. If a chromatogram of a single analyte with shifting retention times is 
modelled by PARAFAC, the solution is most likely to include additional 
components in order to describe the shift. This is shown in Paper I, where an 
example based on data from a study by Amigo et al. [54] is used to illustrate 
the problem in determining the number of components in such cases. The 
problem can be handled by extending PARAFAC to PARAFAC2 where the 
second mode loadings are no longer assumed to be equal across different 
samples. 

  

4.2.4. Parallel Factor Analysis 2 

If the abovementioned example with shifts in the retention time is modelled 
by PARAFAC2, the solution will most likely handle the shift as seen in Paper 
I. PARAFAC2 [55;56] is closely related to PARAFAC, which is able to e.g. 
mathematically separate overlapping peaks in a chromatogram and to handle 
batch data with differing temporal duration. Multi-way data acquired from 
e.g. GC-MS have many overlapping peaks as well as retention time shifts and 
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PARAFAC2 is therefore suitable for estimating the underlying structures of 
such data. Throughout this section PARAFAC will be denoted PARAFAC1 for 
a clearer distinction from PARAFAC2 [55].   

The extension in PARAFAC2 from PARAFAC1 lies in the second mode 
loadings, BBBB, and the PARAFAC2 model of XXXX (I × J × K) can be expressed as 

�� = �����
�	, � = 1,… , �  (4) 

As for PARAFAC1, AAAA (I × G) holds the loadings in the sample mode, BBBBk (G × 
J) holds the second mode loadings, and DDDDk (G × G) holds the information from 
the last mode loadings. The PARAFAC2 model is schematically illustrated in 
Figure 11, the only difference being the extension of the B-loading matrices. 

 

 

Figure 11. Illustration of PARAFAC2. The extension from PARAFAC1 lies in the B-loading 
matrices 

 

With the introduction of the sample specific B-loading matrices, PARAFAC2 
is then capable of handling the differences (shifts) in the second mode of the 
data [57] and fewer components are needed to describe the data. The proper 
number of components to be included in PARAFAC2 can be determined more 
or less as in PARAFAC1 evaluating for example residuals and loadings. The 
essence of Paper I is a proposal of a core consistency diagnostic to aid in the 
determination of the number of components in a similar fashion as the core 
consistency diagnostic in PARAFAC1 [58]. The paper also describes the 
difference between PARAFAC1 and PARAFAC2 and shows how, 
theoretically, a PARAFAC1 model is “fitted” inside PARAFAC2. This theory 
makes it possible to calculate a core consistency value for PARAFAC2.  

In Paper I it has been shown that core consistency can actually be used for 
determining the appropriate number of components in a PARAFAC2 model, 
but it is suggested that loadings and residuals are also inspected as for the 
original development of core consistency for PARAFAC1. The use of core 
consistency in PARAFAC2 sometimes leads to including more components 
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than first anticipated, but with the addition of detecting all chemical 
information from the data. The theory is tested on three different real 
datasets as well as a simulated dataset. One of the datasets consists of 24 
samples of red wine analysed by GC-MS. The dataset contain several peak 
regions and it is therefore necessary to divide the data into smaller parts. 
This is done manually, resulting in 50 different peak regions. In interval 31, 
retention time shifts are present as well as a low signal-to-noise ratio. These 
features make it extremely difficult to allocate the correct number of 
components. Figure 12 shows a figure from the paper depicting the raw data 
from interval 31 (Figure 12A) along with a two-component (Figure 12B) and a 
five-component (Figure 12C) PARAFAC2 model. In addition, the difference 
between the estimates of the main peak using two and five components, 
respectively, is shown (Figure 12D).  

 

 

Figure 12. A: Raw data from wine interval 31. B: Estimated retention time profiles from a 
PARAFAC2 model with two components. C: Estimated retention time profiles from a 
PARAFAC2 model with five components. D: Estimated profiles of the main peak with two 
components (green) and five components (black). The figure is from Paper I 

 

The first visual inspection of the region will most probably lead to the 
inclusion of two components. The model seems apparently over-fitted when 
more components are included. However, the core consistencies for both 
models are also presented and both values are rather high – 100 for the model 
with two components and 81 for the model with five components. This 
indicates that five components might be appropriate compared to only 
including two components. When the model with five components is inspected 
even further, it is noticed that a small peak is actually estimated by the fifth 
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component (Figure 12C, arrow). This is one of the evidences on the usefulness 
of core consistency in PARAFAC2 models. Inclusion of five components will 
give estimates of all the chemical information in the data and the estimated 
structure of the main peak is maintained as seen in Figure 12D. 

Here, the usefulness of core consistency in PARAFAC2 is illustrated using an 
example from a dataset consisting on samples of red wines. As this thesis is 
mainly focusing on data from metabolomics, it should be mentioned that 
PARAFAC2 modelling can be used on e.g. GC-MS data from blood samples as 
well. In order to estimate the profiles of metabolites in the blood, the issue of 
determining the appropriate number of components will most likely also be a 
challenge. A small feasibility study on plasma samples has been conducted 
and is described in Chapter 5. 

 

4.3. 4.3. 4.3. 4.3. Classification modelsClassification modelsClassification modelsClassification models    

In metabolomics studies the aim is oftentimes to investigate changes in the 
metabolism related to a response to a certain treatment or a certain disease. 
In classification models, the relation between the measurements of the 
metabolism and a categorical response is investigated. There are many 
different classification models and in metabolomics commonly used ones 
include PLS-DA and OPLS-DA. 

  

4.3.1. Partial Least Squares-Discriminant Analysis 

Partial Least Squares-Discriminant Analysis (PLS-DA) [59;60] is a 
classification method used for two-way data, based on the principle of the 
regression model, Partial Least Squares regression (PLS) [61-64]. To set the 
stage for PLS-DA, a brief introduction to PLS is presented.  

In PLS, two sets of variables are investigated: The (predictor) variables in XXXX 
(I × J) and the dependent variables in YYYY (I × K), and the purpose is to predict 
YYYY from XXXX. The two matrices are each decomposed into score matrices and 
loading matrices. The pairs of scores and loadings in PLS are latent variables 
termed PLS components ranging from g = 1,…G, G being the number of 
components. Formally, the decompositions can be written as 

� = ��� + �            (5) 

� = ��� + �            (6) 
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In the first equation, XXXX is decomposed into scores, TTTT    (I × G), loadings, PPPP (J × 
G) and residuals, EEEE    (I × J). In the second equation, YYYY is decomposed into the 
score and loading matrices in YYYY, UUUU    (I × G) and QQQQ (K × G), respectively, and the 
residual matrix, FFFF    (I × K). These two equations resemble two PCA models, 
but that is not quite the case. In PLS, the aim is to find a direction, tttt    (= XwXwXwXw), 
that describes XXXX and has maximum covariance with YYYY. The X-scores, tttt, are 
calculated from the residuals of XXXX, where the contributions from the previous 
components have been subtracted. The Y-scores, uuuu, are calculated in the same 
manner based on the residuals of YYYY, respectively: 

� = � !"# 				$ = � !"% 	, & = 1…' (7) 

wwwwg are the columns in WWWW (J × G). The inner relation between XXXX and YYYY in PLS 
can be expressed as 

� = �()*+,             (8) 

where RRRRdiag is a diagonal matrix holding the inner correlation coefficients 
between the X- and Y-scores for each PLS component on the diagonal. 
Estimates of the Y-values can be calculated from the mixed relation 

� = �()*+,�
� + �        (9) 

New samples can be predicted by using equation (9), which is based on the X-

scores or directly from XXXX by compiling weights and loadings into the 
regression coefficients, BBBB (J × G): 

� = 	-.��-/!"�  (10) 

BBBB is the matrix, where the columns hold the regression vector for each Y-

variable and the prediction of YYYY from new samples can be expressed as 

�012 = �012�    (11) 

YYYYnew is the predicted values from the new set of samples, XXXXnew. BBBB is the 
regression coefficient matrix from the calibration model at the selected 
number of PLS components. A schematic overview of the PLS model is seen in 
Figure 13, where the different steps are highlighted.  
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Figure 13. Schematic illustration of the relation between XXXX and YYYY in a PLS model. TTTT: Score 
matrix from XXXX with columns ttttg. PPPPT: Loading matrix from XXXX. WWWWT: X-weights. UUUU: Score matrix 
from YYYY with columns uuuug. QQQQT: Loading matrix from YYYY. r: correlation coefficients between tttt and 
uuuu. I: Number of samples. J: Number of X-variables. K: Number of Y-variables. G: Number of 
PLS components 

 

The PLS-DA model can be expressed in the same manner by the combined 
relation between XXXX and YYYY. However, for PLS-DA the dependent Y-variable is 
constructed as a dummy variable consisting of row vectors with values ones 
and zeros (or minus ones). One indicates membership of a class and zero 
indicates no membership of a class. The number of classes minus one 
determines the number of columns in YYYY. If only two classes are to be 
separated, the dependent variable can be constructed as a vector, yyyy, of zeros 
and ones. The classification part of PLS-DA is connected to Linear 
Discriminant Analysis (LDA). LDA was developed in 1936 by Fisher [65] and 
is a discrimination method, where the between-group variance is maximized. 
Barker and Rayens [59] have shown that PLS-DA can be considered as an 
inverse least-squares approach to LDA. The results are similar, but PLS-DA 
has the benefit of noise reduction, the ability of handling correlated variables 
and the reduction of variables represented as latent variables [66]. Details 
concerning the theoretical connection between PLS-DA and LDA can be found 
in [59]. 

The purpose of the PLS-DA model is assignment of class membership for a 
sample. The class membership is based on the predicted y-value (ŷŷŷŷ) and a 
specific threshold set for the PLS-DA model. A threshold value could be, but 
is not restricted to 0.5, when the dependent y-vector consists of zeros and 
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ones. If ŷŷŷŷ is larger than 0.5, the sample will be estimated as belonging to the 
class. If ŷŷŷŷ is smaller than or equal to 0.5, the sample will be estimated as not 
belonging to the class. The threshold can be adjusted depending on the 
problem, which will affect the performance values of the model. The 
performance of the PLS-DA model is described later. 

The application of the PLS-DA model can be exemplified using the 
questionnaire example with ten men and nine women used in the PCA 
analysis. If we want to make a model that can classify if the measurements 
represent a man or a woman, then yyyy is a vector of zeros and ones (men and 
women, respectively) and the data matrix XXXX will be the same as the one 
analysed by PCA. The PLS-DA model maximizes the covariance between XXXX 
and yyyy,    and hence the direction where the discrimination between men and 
women is largest is located. The predicted class membership can be seen in 
Figure 14. One sample is misclassified in a PLS-DA model with three PLS 
components. The threshold is here set to 0.62 rather than 0.50, the former 
being the value where most samples are classified correctly. 

 

 

Figure 14. Left: Prediction of class membership of men (squares) and women (triangles) 
based on questionnaire data. The threshold (grey dashed line) is 0.62, where most samples 
are classified correctly. Right: Regression coefficients for the PLS-DA model with three PLS 
components 

 

Interpretation of the model can be done by evaluation of the loadings, weights 
and regression coefficients, and Figure 14 presents the regression coefficients 
for the PLS-DA model. However, it is important to note that the variables 
important for the classification should be considered as a whole and should 
not be interpreted one by one when data are empirical. The importance of not 
selecting single variables as sole descriptors of class membership (i.e. 
male/female) is described in detail in Paper II and in Chapter 5. 
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An alternative to PLS-DA is Orthogonal PLS-DA (OPLS-DA) [67]. OPLS-DA 
is a variant of PLS-DA, where the variation in XXXX orthogonal to yyyy is removed. 
This means that all variation in XXXX not linearly related to yyyy is eliminated from 
the model. In practice, the components in OPLS-DA are divided into two 
groups: The number of predictive components and the number of orthogonal 
components. The predictive components are those related to the correlation 
between XXXX and yyyy, and the orthogonal components contain information 
orthogonal to yyyy. According to a study by Tapp and Kemsley [68], the sum of 
the variance explained by the predictive and orthogonal components of OPLS-
DA is equal to the variance explained by the components of PLS-DA. 
Additionally, the performance statistics (described later) related to the 
predictive performance are also often equal for the two models. Explicitly, 
this means that an OPLS-DA model with one predictive component and two 
orthogonal components will predict class membership equally well compared 
to a PLS-DA model with three PLS components. This means that with regard 
to prediction, OPLS-DA does not outperform PLS-DA and vice versa [68]. The 
question is then which method to apply. Given the above mentioned 
similarities between the models, it is difficult to favour one method over the 
other. It must be kept in mind though that OPLS-DA will not result in 
improved predictions compared to PLS-DA, which is unfortunately sometimes 
anticipated for or interpreted from OPLS-DA models [41;69].  

However, there is one major issue that needs to be handled carefully in order 
to obtain consistent methods and that is proper validation.  If not properly 
validated, neither PLS-DA nor OPLS-DA will give reliable results because 
there is a considerable risk of over-fit. The problem becomes even more 
pronounced, when analysing large datasets with many variables due to the 
curse of dimensionality [70], as is the case in metabolomics. Refraining from 
doing proper validation will result in spurious and misleading groupings; 
hence validation is an indispensable subject for discussion.  

 

4.3.2. Validation 

It is of utmost importance to achieve reliable and valid models, meaning that 
the model can be applied to what it was developed for. Making reasonable 
decisions is fundamental when building multivariate models and is part of 
the validation, for example choosing the optimal number of components and 
to find potential outliers. Choosing the optimal number of components is 
essential when developing classification models, in order to avoid both over-fit 
and under-fit (inclusion of too many PLS components and too few, 
respectively) and also for the development of robust models. A properly 
validated classification model should be capable of predicting class 
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membership of samples obtained from a new dataset; however, it is a 
prerequisite that there is an actual differentiation between the samples.  

There are different ways of validating multivariate models. Cross-validation 
(CV) [71] is a common approach to validate a model, and typically either the 
leave-one-out (LOO) method or subsets are applied. LOO simply means that 
one sample is left out of the analysis, the model is calculated and the sample 
left out is predicted onto the model. This is performed until all samples have 
been excluded from the analysis once. However, LOO cross-validation should 
only be carried out on small datasets with fewer than, say, 20 samples. 
Otherwise the model is very prone to over-fit, and the validation then 
becomes unreliable [72;73]. In the case of using subsets, a defined number of 
samples are left out of the analysis and predicted onto the model until all 
samples have been left out. The subsets can for example be arranged in 
contiguous blocks, blocks chosen in a system resembling “venetians blinds” 
(e.g. every fifth sample) or randomly chosen blocks with predefined block size. 
Using the latter approach, the cross-validation can be iterated a certain 
number of times to smooth out noise.  

Validation of classification models is very important [60]. For an illustrating 
purpose, a data matrix was generated with 20 × 100 random numbers. The 
first ten “samples” were assigned to a class of ones and the last ten “samples” 
were assigned to a class of zeros. A PLS-DA model will always find a 
direction, where the class membership of two random classes will be perfectly 
predicted. It is therefore important to be aware of what is plotted when 
looking at e.g. predicted class membership. Plotting the samples from the 
calibration model (Figure 15, left) can show a perfect prediction of the 
samples. However, if samples which were left out of the model building are 
predicted onto the calibration model, these will reflect the true predictive 
power and in this case the predicted class membership will be random as seen 
in Figure 15, right. The latter can only be obtained, if the model is validated. 
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Figure 15. Classification of random numbers. Perfect prediction of random numbers from the 
calibration model (left), and random prediction when new samples are inspected (right) 

 

Cross-validation is strictly an internal validation of the calibration set. In 
reality, it does not state anything about new samples measured at different 
times or using different instruments. Performing cross-validation on a 
calibration set can sometimes lead to perfect separation of groups due to 
spurious correlations. It is therefore necessary to test the performance of a 
calibration model on a test set. A test set can be obtained either by extracting 
a part of the acquired dataset – for this, a relatively large sample set is 
required – or by acquiring a new dataset with the same conditions. Obtaining 
a new dataset might not always be feasible due to limited access to sample 
material, operating expenses, etc., and therefore a test set from the original 
data is often applied. A key point in test set validation is to leave out the test 
set during preparation of the data, variable selection and when building the 
calibration model. Hence, the dataset should be divided in two parts as an 
initial step of the data analysis. One part is used to build the calibration 
model and only when the model is optimised, the remaining part can be 
applied to test the performance of the model. If the dataset is divided into a 
calibration part and a test part after building the model, the test set loses its 
function and becomes unreliable as a measure of model performance. 

An important issue in metabolomics is the presentation of PLS-DA and 
OPLS-DA score plots. It is very common to display score plots to demonstrate 
the performance of the classification [19;21;74]. This is perfectly alright if the 
model is properly validated and valid and the corresponding loadings or 
similar and performance statistics (described later) are presented. The 
problem with the score plots from PLS-DA and OPLS-DA is that neither of 
them reflects scores from new samples. Hence, the score plots look exactly the 
same whether or not the model has been cross-validated because validation 
does not change the model itself. However, considering the above mentioned 
example with the random numbers, a score plot of a test set validated model 
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with test set validated scores is reliable, as seen in Figure 16. To the left, the 
scores are from the calibration model and to the right, the scores are 
validated by predicting new score values from a random test set. 

  

 

Figure 16. PLS-DA score plots of scores from a the calibration model (left) and score values 
from samples left out of the calibration model (right) based on random numbers 

 

The essence of this is to avoid over-fit, which will occur if the calibrated scores 
are plotted, in cases where the calibrated and validated fits are widely 
different. If calibration scores are inspected and interpreted without support 
from the performance statistics, it will wrongly be concluded that the data 
can be perfectly separated. 

All regression models must be presented using the optimal number of PLS 
components. If too many components are included, the model is over-fitted, 
and noisy parts of the data will be modelled. On the other hand, including too 
few components will result in a model that does not describe all the 
systematic variation in the data, leaving out possible important structures. In 
this case, the model is under-fitted. The appropriate number of PLS 
components to include in the analysis can be found based on model 
performance (described below) after validation. For classification models as 
PLS-DA, the classification error is commonly used as an indicator of how 
many PLS components to include in the model. The classification error rate is 
the percentage of misclassifications; hence the optimal number of latent 
variables should be selected for as few misclassifications as possible. 
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4.3.3. Performance statistics of the PLS-DA model 

The aim of a PLS-DA model is correct prediction of class membership for a 
new sample. Several parameters are used in the evaluation of a PLS-DA 
model. One measure of the model performance is the receiver operating 
characteristic (ROC) curve which is based on the sensitivity and specificity 
values [75-77]. Sensitivity is the fraction of the true cases correctly identified 
by the model. Specificity is the fraction of the true controls correctly identified 
by the model. The cases are the samples with the condition of interest, 
whereas the controls are the samples without the condition of interest. In 
Paper II, the separation between women who have developed breast cancer 
from women who have not, has been investigated. The samples with breast 
cancer are the cases and the samples without cancer are the controls. If all 
samples are correctly identified, the sensitivity and specificity values are 
equal to one. The values are calculated from the confusion matrix (Table 2). 
The ROC curve is composed by plotting sensitivity against specificity, and the 
optimal set of values is chosen based on a user-defined (or software-defined) 
threshold value, depending on the purpose of the prediction model. If the 
model is used for e.g. screening of cancer, it is problematic with false positives 
[5], and therefore the threshold should be selected corresponding to a 
specificity of one. However, if the model is used to e.g. predict cancer five 
years ahead in time, both false positives and false negatives should be 
minimized. The threshold should then be set where both sensitivity and 
specificity have maximum values.  The area under the ROC curve (AUROC) 
should be equal to one for perfect separation. If the samples are randomly 
classified, the ROC curve will be a diagonal line and AUROC will be 0.5. An 
example of an ROC curve can be seen in Figure 17. 
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Figure 17. Example of the ROC curve. The light grey solid line is the calibrated ROC curve 
and the black line is the cross-validated. The dark grey circle marks the optimal model 
threshold. The dashed diagonal line represents a random classification 

 

In the present example, the ROC curves for the calibrated and cross-validated 
models are very similar. This is an evidence of a robust model which is 
required for developing meaningful and reliable prediction models. However, 
the similarity of the curves is not evidence of a good model! 

Sensitivity and specificity resembles the Type I and Type II errors (also 
known as \ and β errors) used in statistics [78]. These error measures are 
used when a hypothesis is being tested. Type I error is the risk of rejecting 
the null-hypothesis when it is actually true. This is also called a false 
positive, where the test states that e.g. a woman has breast cancer when she 
is healthy. Type II error is the risk of accepting the null-hypothesis when it is 
actually false. In this case, the test states that the woman is free of breast 
cancer, when she is sick. This is called a false negative. In addition, the power 
of the model is equal to the sensitivity. 

The relation between sensitivity and specificity and the error types can be 
illustrated schematically by a confusion matrix as in Table 2. 
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Table 2. Confusion matrix illustrating sensitivity and specificity along with the error types 

    
ConditionConditionConditionCondition    

Case Control 

Model/testModel/testModel/testModel/test 
Case True positive False positive (Type I error) 

Control 
False negative (Type II 

error) 
True negative 

 Sensitivity Specificity 

 

Besides sensitivity and specificity, other measures for the PLS-DA model 
performance should be mentioned. The number of misclassifications is simply 
the sum of false positives and false negatives. Q2 is the goodness-of-fit or 
predictive ability of the model [79;80], and recently discriminant Q2 has been 
suggested as a performance measure [81]. It has been discussed which 
parameters are most suitable in the evaluation of the PLS-DA model. A 
suggestion is that all of the above mentioned parameters are taken into 
account when testing model performance [82], but in general sensitivity and 
specificity are primarily chosen [16;19]. Evaluation of PLS-DA models 
throughout the work presented in this thesis is primarily based on sensitivity 
and specificity values and the ROC curve. 

 

4.4. 4.4. 4.4. 4.4. Reduction of redundant variables Reduction of redundant variables Reduction of redundant variables Reduction of redundant variables     

The curse of dimensionality imposes a need for reducing the number of 
redundant variables in metabolomics studies in order to decrease the data 
dimensionality. Reduction of redundant variables (denoted RRV in the 
following) should be done prior to common variable selection (described 
below), where the class membership of the samples is known, in order to 
include all biologically meaningful variables – not only those related to the 
class of interest. Doing RRV in a blindfolded way, the temptation of searching 
for biomarkers directly related to the class membership is eliminated. When 
large datasets are being analysed – especially when the sample-to-variable 
ratio is low – there is a great need for RRV. Additionally, datasets generated 
in metabolomics very often contain noisy regions with no biological 
information, which is of no interest for multivariate data analytical purposes. 
It is very common to perform some degree of RRV in one way or another. In 
NMR studies, different binning techniques are applied [2] and in GC-MS 
studies, manual inspection and selection of peaks in the chromatogram can be 
performed [54]. However, in NMR studies, binning still includes all areas of 
the NMR spectra. The data analysis is then still based on the entire dataset 
(or integrals hereof) and the models are therefore greatly prone to over-fit and 
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to false predictions. In this section, an example on performing manual RRV 
on NMR data will be presented (Paper II).  

Data from the Danish “Diet, Cancer and Health” cohort (presented in Chapter 
5) have been analysed NMR resulting in more than 56,000 variables 
(chemical shifts). The first step in performing RRV, the NMR spectra from all 
samples should be thoroughly (and manually) assessed in order to locate all 
measured peaks. This will lead to a dataset only consisting of chemical 
information leaving out pure noise. In the NMR case study described in 
Chapter 5, 189 peaks of varying sizes and intensities were selected. An 
important point when performing the inspection is to leave out information of 
class membership of the samples i.e. cancer status to avoid inclusion and 
exclusion of assumed cancer and non-cancer related variables. When the 
selection is completed, all peaks should be properly integrated using for 
example the area of the peak, peak height or MCR. Area and MCR scores 
estimate the chemical concentration of a peak. Peak height is not a common 
integration technique, but provides a reasonable estimate of concentration 
(up to a scaling) when the line shapes of the peak in different samples are 
similar. Peak height can be used for integrating when e.g. baseline resolution 
is difficult to achieve, which is the case for many peaks in NMR. Integrating 
peaks will lead to one value instead of a line shape for each peak. In the case 
study, the integration resulted in 189 discrete values, each representing the 
concentration of a peak. The result of RRV is in this specific case a reduction 
of 56,000 continuous variables to 189 discrete variables, which minimizes the 
curse of dimensionality and eliminates redundant variables. Since the 
location of peaks and decisions on the integration approach for each peak are 
subjective, the result will most likely be different results each time the 
variable reduction is performed. Hence, the process needs to be repeated in 
order to obtain a consistent result. RRV is therefore very time consuming, but 
it handles the problems stated above, and the outcome is worth the effort.  

 

4.5. 4.5. 4.5. 4.5. Variable selectionVariable selectionVariable selectionVariable selection    

After RRV, one of the most important steps in the development of reliable and 
robust prediction models is variable selection. The main difference between 
RRV and variable selection is that the class status is – or should be – 
unknown in the former and is used as a selection guideline in the latter. The 
main reason for performing variable selection after RRV is that much of the 
chemical information present in the measured metabolic profiles is irrelevant 
for the prediction of a specific outcome – many variables are redundant. A 
more parsimonious representation of data, where redundant variables have 
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been excluded will aid the variable selection. If there are too many variables 
compared to samples, the variable selection will be flawed and in the worst 
case be meaningless.  

There are numerous ways to perform variable selection in chemometrics, for 
example variable influence on projection [83], regression coefficients [84], 
selectivity ratio [85;86] and Interval PLS (iPLS) [87]. iPLS is the sole applied 
variable selection technique applied in Paper II and is described in some 
detail below. 

iPLS was developed for PLS models to extract relevant spectral regions for a 
given outcome. The idea is only to include intervals of variables relevant for 
the prediction of the outcome or to exclude intervals not relevant. There are 
two forms of iPLS; forward selection and reverse selection. In forward 
selection, one interval is included at a time meaning that a model is built on 
this specific interval and the error is calculated. Then iPLS includes an 
additional interval and a model is built on the two selected intervals. This 
procedure is continued until the model performance drops, hence only the 
intervals performing best are included in the model. In reverse selection, all 
variable intervals are included to begin with and then one interval is 
excluded at a time. Model performance is tested every time an interval has 
been excluded. In metabolomics, biomarkers are measured and after 
performing RRV and proper integration, each biomarker is represented by 
one variable. The intervals used for iPLS will therefore only include one 
variable contrary to spectral data, where spectral regions are binned in 
intervals. 

It is important to note that during variable selection the models must be 
validated. Otherwise, there is a risk of achieving a dataset with unreliable 
variables leading to over-optimistic results. This leads back to the section 
suggesting the inherence of using test set validation and a model based on 
erratic variables will be found useless and proper action can be taken. 

 

4.6. 4.6. 4.6. 4.6. Data FusionData FusionData FusionData Fusion    

In metabolomics, it is common to acquire information from many different 
sources. Already mentioned acquisition techniques such as NMR, GC-MS and 
fluorescence all complement each other, and additional data from 
questionnaires and anthropometrics provide even more knowledge of 
samples. Data fusion, where data from different platforms are jointed, has 
been known for long [88-90], and a common strategy is concatenation in 
different levels [2;91;92]. A prerequisite is that the samples measured at the 
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different platforms are identical, and it is then possible to fuse or concatenate 
the data. All types of data can be fused, and in Paper II, data from NMR and 
data from two questionnaires with information mainly concerning 
anthropometrics, life style habits such as smoking, alcohol intake and dietary 
habits have been fused. The data fusion leads to improved prediction models 
and known biomarkers can be confirmed. A recent study by Bro et al. [93] has 
also shown that traditional biomarkers could significantly benefit from the 
synergy of being fused with new chemical profiles from NMR and 
fluorescence. 
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Chapter 5 

Case StudiesCase StudiesCase StudiesCase Studies    

Throughout the work of this thesis, three metabolomics case studies have 
been conducted. The first one is an application of NMR spectroscopy on 
plasma samples from healthy females, where half of them have developed 
breast cancer later in life. This application is very interesting with respect to 
the prediction of the development of breast cancer later in life. Additionally, 
many of the obstacles encountered when analysing a complex metabolomic 
dataset are discussed (Paper II). The second application concerns analysis of 
plasma samples by fluorescence spectroscopy from people with symptoms of 
colorectal cancer. This study leans towards an early detection of cancer in the 
sense that none of the subjects were diagnosed with colorectal cancer at the 
time of blood withdraws (Paper III). The last application is a small feasibility 
study, where standard plasma samples were analysed using GC-MS. The 
focus in this application was the development of proper extraction and 
derivatization methods, which are challenging disciplines in GC-MS-based 
metabolomics. 

 

5.1. 5.1. 5.1. 5.1. Forecasting breast cancer by NMRForecasting breast cancer by NMRForecasting breast cancer by NMRForecasting breast cancer by NMR    

Forecasting breast cancer status from healthy individuals is a new subject in 
metabolomics. In order to develop meaningful and not least useful prediction 
models, a large sample set is needed. For this application, samples from the 
Danish “Diet, Cancer and Health” cohort have been analysed by NMR 
spectroscopy. In this section, a more thorough description of the data pre-

processing and how the results from Paper II were obtained is presented. 

 

5.1.1. The Danish “Diet, Cancer and Health” Cohort 

The Danish “Diet, Cancer and Health” (DCH) cohort [94] is part of a major 
study called the “European Prospective Investigation into Cancer and 
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Nutrition” (EPIC) conducted by the Imperial College in London [95] including 
participation from ten European countries. The DCH cohort was established 
between 1993 and 1997 where 57,053 men and women were enrolled. In order 
to be included in the cohort, the following criteria should be met: Age between 
50 and 64 years, born in Denmark and no previous cancer diagnosis 
registered in the Danish Cancer Registry. Hence, all participants were free of 
cancer and were considered to be healthy. A detailed food frequency 
questionnaire and a lifestyle questionnaire were filled in by each participant. 
Additionally, 99% of the participants in the cohort gave biological material at 
the time of enrolment. In the present case study, plasma samples have been 
analysed and 47 selected variables from the two questionnaires were included 
in the final data analysis by data fusion. The 47 questionnaire variables are 
described in the supplementary material in Paper II. 

A subset of 3,510 samples from the DCH cohort selected by the Danish 
Cancer Society was analysed by NMR spectroscopy. Due to insufficient 
sample volumes or low data quality, the total study population was reduced to 
3,419 samples. Out of these, some were diagnosed with breast cancer, 
colorectal cancer and/or cardio vascular disease between enrolment and 31 
December, 2000 (breast cancer (N = 419), colorectal cancer (N = 414), and/or 
cardiovascular disease (N = 1,106)1). The remaining samples are a randomly 
selected cohort subsample (N = 1,493) not diagnosed with any of the diseases. 
Out of the 1,493 subsamples, 747 were women.  

 

5.1.2. Data pre-processing 

CPMG and NOESY spectra were recorded for all the 3,419 plasma samples 
(referred to as CPMG and NOESY in the following). The water signal was 
suppressed in both experiments due to the large amount of water in plasma, 
and for the CPMG experiment large molecules such as the proteins were 
suppressed as well. More details concerning the data acquisition can be found 
in Paper II.  

Prior to any pre-treatment of data, the residue of the water peak was 
eliminated from the profiles. Additionally, the citrate peak was eliminated 
due to the use of citrate coated tubes as anti-coagulant when storing the 
plasma. The spectra were normalized by second order normalization.  

Given the large number of variables in each set (approximately 56,000 in 
both), RRV was carried out to eliminate redundant variables. Since CPMG 

                                            
1  Three of the 419 breast cancer cases and ten of the 414 colorectal cancer cases had 
additionally developed cardiovascular disease 
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and NOESY complement each other, both spectra were manually inspected. 
Every little peak in the spectra was located resulting in two datasets only 
containing chemical information and leaving out pure noise. Despite the fact 
that CPMG and NOESY supplement each other, many identical compounds 
were measured in both methods with identical chemical shifts. In each of 
these cases, the most well-defined peak containing least baseline was 
included in the final data analysis meaning that each compound was only 
represented once by either CPMG or NOESY. This major data reduction 
resulted in a dataset with 189 peaks. The majority of the peaks were selected 
from CPMG, since this experiment generally contain a more flat baseline 
than NOESY. Eight peaks were selected in NOESY and 181 peaks were 
selected in CPMG. Figure 18 shows two selected peaks from CPMG. The left 
side of the figure is identified as \-glucose, whereas the peak to the right has 
hitherto not been identified. 

 

 

Figure 18. Two peaks selected from CPMG (only every 100th sample is shown). The peak to 
the left is \-glucose, whereas the peak to the right has not been identified 

 

5.1.2.1. 5.1.2.1. 5.1.2.1. 5.1.2.1. Baseline correctionBaseline correctionBaseline correctionBaseline correction    
Unfortunately, the NMR equipment broke down after measuring half of the 
plasma samples. This was visible in the first component in a PCA model with 
a clear separation between samples measured before and after the breakdown 
as seen in Figure 19. The problem may arise from minimal differences 
between the experimental settings or instrumental instability, but this was 
not investigated further. 
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Figure 19. PCA scores from one NMR interval with 3419 samples. There is a clear jump in 
the score values after the equipment broke down. The two measurement periods are 
August/September and November 

 

Besides the visible jump in the score values, the two measurement periods 
were also visible in the baseline for many peak intervals. An example is 
shown in Figure 20 (left), where the difference between the measurement 
periods is evident. Baseline correction was carried out in the peak intervals 
only where the shift was visible. The remaining peak intervals were left 
untouched. The baseline correction was specified for each interval to make 
sure that the polynomial used for subtraction gave the best result: 
elimination of baseline shift; no shape changes in the baseline ends of the 
interval; improvement of or retaining the peak shape. An example of an 
interval where baseline correction was needed is seen in Figure 20. There is a 
visible reduction in the baseline, the peak shape is clearer and the difference 
between the two measurement periods is reduced. 
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Figure 20. Interval before (left) and after baseline correction (right) 

 

The effect of the baseline correction was immediately observed in a PCA 
model of the interval from Figure 20. The first score in the PCA model for the 
uncorrected interval is related to the measurement days, and the first period 
(August/September) is more spread out than the second period. The variation 
is completely eliminated in the PCA model when the interval has been 
baseline corrected. It was therefore decided that baseline correction seemed to 
be a proper solution for the period problem. Using baseline correction where it 
was necessary eliminated the variation making the dataset ready for further 
analysis. 

 

 

Figure 21. PCA models of the interval from Figure 20 before (left) and after (right) baseline 
correction.  
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5.1.2.2. 5.1.2.2. 5.1.2.2. 5.1.2.2. IntegrationIntegrationIntegrationIntegration    
Prior to data analysis, each peak was integrated using either the area under 
the peak, the height of the peak or MCR concentration profiles as described 
previously. The three methods were assessed for all peaks and taking the 
quite different peak shapes in to account, the optimal integration method was 
determined for each peak. One peak was integrated with a two-component 
MCR model, 54 peaks were integrated using a one-component MCR model, 86 
peaks were integrated using the area under the curve, and 48 peaks were 
integrated using the height of the peak. 

After selection and integration, the peaks were assigned primarily according 
to the findings by Nicholson et al. [96]. Several peaks were unfortunately not 
assigned. All the assigned regions are shown in the supplementary material 
in Paper II. 

Some of the selected peaks were included as single peaks despite being part of 
a double peak (a doublet). An example is the identification of four separately 
selected peaks all originating from tyrosine – however, tyrosine is 
represented as two doublets in the NMR spectrum. A small part of the 
average CPMG spectrum of the 838 plasma samples is presented in Figure 
22, where the four peaks identified as tyrosine are highlighted. Tyrosine is 
therefore represented by four variables (integration of each peak), which is 
not necessary. 
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Figure 22. Average CPMG spectrum, where four peaks are highlighted (identified as 
tyrosine) 

 

Peaks originating from the same molecule were summed and included in the 
data analysis as one single representative of the molecule. Whether peaks – 
represented by two or more variables – originate from the same molecule was 
further supported if a correlation between the integrated peaks of the 
molecules was present. The correlation of the four integrals of tyrosine is 
shown in Figure 23. Since there is a strong correlation between the integrals, 
it was concluded that the integrals can be merged to represent tyrosine by 
one variable. 
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Figure 23. The four integrals identified as tyrosine. There is a strong correlation between all 
four integrals, and tyrosine can therefore be represented as the sum of the four integrals 

 

It should be noted that merging integrals is only possible if the corresponding 
peak is identified. Otherwise, it is impossible to evaluate the specific origin of 
the proton. After merging all identical peaks, the number of variables was 
further reduced to 129 NMR variables. 

 

5.1.3. Prediction model and bio-contours 

The focus in this NMR study was the 419 women who have developed breast 
cancer later in life. In order to obtain a balanced dataset for the data analysis, 
a random female subset of 419 samples out of the 747 control samples was 
selected. Hence, the dataset consists of 838 samples which is a very high 
number compared to other metabolomics studies [19;21;48]. The variables 
consist of the 129 NMR variables fused with the 47 additional questionnaire 
variables mentioned above and the total dataset is 838 × 176. 

Prior to any data analysis, the dataset was divided randomly into two sets – a 
calibration set and a test set. The calibration set was of size 628 × 176 and 
the test set of size 210 × 176 containing equally many cancer and control 
samples. The calibration set was used to build a classification model and the 
test set was applied to validate the performance of the classification model. 

One of the key points in Paper II is that a complex biological problem i.e. 
cancer is unlikely to be described by one or few biomarkers. A complex system 
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must be investigated by looking at the pattern of variation in the data. Two 
examples of single biomarkers as classifiers for future development of breast 
cancer can be seen in Figure 24. Hormone replacement therapy (HRT) is a 
well-known risk factor for breast cancer [97;98]. However, using HRT as a 
single variable in an LDA model gives a sensitivity of 0.29 and a specificity of 
0.85. From Figure 24 (top) it is clear that the discriminatory power is very 
limited. The best single variable for classification is the NMR variable at 3.12 
ppm. For this variable, the sensitivity and specificity values are low (0.65 and 
0.55) and as for HRT the discriminatory power is low (Figure 24 (bottom)). 

 

 

Figure 24. Examples of single biomarkers used for discrimination between cancer and non-
cancer samples. The figure is from Paper II 

 

Evidently, using single biomarkers as predictors of future cancer status is 
pointless. It is therefore important to develop models, where all variables are 
considered and irrelevant variables are carefully discarded. 

The data analysis was performed using PLS-DA and variable selection by 
means of iPLS. The final model contained 28 variables out of the 176 
variables and was built using eight PLS components with sensitivity and 
specificity values of 0.84 and 0.85, respectively. The 28 selected variables are 
predictors of future breast cancer status only when combined and all eight 
PLS components should be considered. Regarding the interpretability of the 
model, it is the pattern of the variables that reflects the biology, and picking 
out and interpreting single or few of the biomarkers found must be avoided, 
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since the study is not a design study where each variable has been varied 
independently. In Paper II, the underlying pattern is called a bio-contour, a 
term used in order to avoid the temptation of interpreting single biomarkers. 

I should be noted that the selected 28 variables are not necessarily the only 
variables representative for forecasting cancer status. In order to investigate 
the variability between selected variables, 1000 classification models were 
calculated. The variables were selected by iPLS during resampling and in 
Figure 25 it can be seen that only few of the selected 28 variables are 
represented in almost all models.  

 

Figure 25. Loading plot of the 1000 resampled classification models. Variables encircled by a 
black line are the actually chosen 28 variables in the final model. Colour intensity and size of 
the circle indicate how often a given variable is chosen during resampling of the variable 
selection. The figure is from Paper II 

 

The variables encircled by a black circle are those included in the final 
classification model with 28 variables in total. The larger the circle and the 
more intense red colour indicate that the variable has been selected in most of 
the 1000 resampled models. For example, the variable “Cholesterol_1 (NMR)” 
is selected in most models, whereas “HRT – years of use” is selected in fewer 
of the models. The variables marked by a grey dot are seldom selected in the 
models. The key point here is to understand that the selected 28 variables in 
the prediction model are not necessarily the best in the prediction of future 
breast cancer. Any combination of a selection of the variables represented in 
Figure 25 might predict cancer status equally well. The variable “HRT – 
years of use” is only included in some of the models, and this indicates that 

-0.4 -0.2 0 0.2 0.4
-0.3

-0.2

-0.1

0

0.1

0.2

Phenylalanine

Glyceryl

Ethanol
8.85 ppm

Formate
8.22 ppm8.2 ppm

7.38 ppm

7.17 ppm

7 ppm
5.71 ppm

4 ppm

Creatine

3.14 ppm

3.12 ppm

2.99 ppm 2.95 ppm

2.93 ppm

2.91 ppm

2.8 ppm
2.77 ppm

2.49 ppm 2.45 ppm

2.43 ppm

2.4 ppm

2.37 ppm

2.36 ppm
2.34 ppm

2.3 ppm

2.17 ppm
2.14 ppm

2.12 ppm

2.08 ppm

Acetate

1.67 ppm

Cholesterol_1 (NMR)

0.15 ppm

4.09 ppm

1.43 ppm

Syst. blood pressure

Serum cholesterol (ref.) HRT - years of use

Lean dairy products Cancer

PLS Component 1

P
LS

 C
om

po
ne

nt
 2

Seldom selected
In final model
Correlation >0.8



 Case Studies 
 

53 

there are other (unknown) variables present in the loading plot representing 
the same biology as “HRT – years of use”. Additionally, it is imperative to 
remember that the model is composed of eight PLS components which all 
combined form the bio-contour. In the loading plot in Figure 25, only the two 
first PLS components are depicted, but there is information related to cancer 
status in all eight components. 

Finally, the test set was used to test the performance of the classification 
model. The sensitivity and specificity values were 0.80 and 0.79, respectively, 
which is a strong indicator of a reliable model. In Figure 26, the 
discrimination between the two groups in the test set is visualized. Compared 
to the univariate models shown in Figure 24, the separation between the 
groups is much stronger. 

 

 

Figure 26. Prediction of the 210 samples in the test set. The sensitivity is 0.80 and the 
specificity is 0.79. The figure is from Paper II 

 

5.1.4. Time to tumour 

During analysis of the data, one NMR variable showed an interesting 
behaviour regarding the time from blood withdrawal to detection of a tumour 
in the individuals, who developed cancer. This timeline is here called time to 
tumour.  
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Figure 27. NMR variable "5.71 ppm" with average values of time to tumour. The cancer 
samples have been divided into six groups with respect to the time to tumour and one group 
represents the non-cancer samples. The red dotted line marks the chemical shift for the non-
cancer samples  

 

When plotting the peak, there is a slight shift towards the left side of the ppm 
values, when breast cancer is detected compared to the control samples. The 
shift is ambiguous though, since the shift seems to be minor both for the 
development of breast cancer within one year and after five years. The years 
in between are shifted more to the left. The shift indicates that there is some 
information related to the actual development of a breast cancer tumour. The 
time tendency is not directly visible in the classification model; individuals 
who are diagnosed with cancer later than others are not misclassified more 
often. The variable has a spectral range from 5.690 to 5.722 ppm, but it has 
up until now not been possible to identify the peak. Unfortunately, it has not 
been possible to even develop a slight guess of why the shifting behaviour 
between the samples is observed. 

 

5.1.5. Conclusion 

This case study is unique in the sense that the analysis has been performed 
on healthy individuals. The results indicate that there is a potential for 
forecasting breast cancer incidences years ahead in time based on a blood 
sample. The model uses a bio-contour consisting of eight dimensions, which 
should be considered as being associated with breast cancer in a combined 
manner. 
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5.2. 5.2. 5.2. 5.2. Early detection of colorectal cancer by fluorescenceEarly detection of colorectal cancer by fluorescenceEarly detection of colorectal cancer by fluorescenceEarly detection of colorectal cancer by fluorescence    

The second case study is from Paper III and concerns early detection of 
colorectal cancer (CRC) by fluorescence spectroscopy. Fluorescence 
spectroscopy is not a common data acquisition technique in metabolomics, but 
the current study is an attempt to show that the technique can be a valuable 
supplement to NMR and GC-MS. A subset of plasma samples from a multi-
centre cross sectional study conducted at six Danish hospitals [99], where 
patients with symptoms of CRC have been undergoing large bowel endoscopy 
has been analysed. Early detection lies in the fact that none of the patients 
were diagnosed with CRC at time of enrolment. In this section, the key 
results from Paper III concerning the multivariate data analysis are 
presented. 

 

5.2.1. The dataset 

The subset consists of 308 plasma samples and the sample set is designed as 
a case control study. Out of the 308 samples, 77 samples were denoted as the 
case group with verified CRC from the endoscopy. The remaining samples 
were divided into three control groups representing other findings from the 
endoscopy, each containing 77 samples: (i) healthy patients with no findings, 
(ii) patients with other non-malignant findings and (iii) subjects with 
adenomas. 

The samples were divided into smaller portions – one portion was diluted by a 
one-hundred fold and one portion was left undiluted. The diluted and 
undiluted samples were measured at excitation wavelengths ranging from 
250 to 340 nm with a five nm increment and at emission wavelengths ranging 
from 300 to 600 nm with a one nm increment. Additionally, the undiluted 
samples were also measured at 385 to 425 nm (excitation) and at 585 to 680 
nm (emission) in order to detect emission from porphyrins, which have proven 
important for the detection of CRC [100]. Additional details concerning 
sample preparation and measurements can be found in Paper III. 

 

5.2.2. Classification model 

Data from the fluorescence EEMs have a trilinear structure suitable for 
decomposition by the PARAFAC model. If the proper number of PARAFAC 
components is chosen for the decomposition, the scores and loadings will be 
estimates of the true concentrations, excitation profiles and emission profiles 
of the measured fluorophores. PARAFAC models were calculated for each of 
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the three datasets. For the undiluted samples measured at the low spectral 
area with excitation at 250 to 340 nm and emission at 300 to 600 nm, the 
PARAFAC model was calculated using ten PARAFAC components. For the 
diluted samples measured in the same spectral area, the PARAFAC model 
was calculated using six PARAFAC components. For the last dataset obtained 
from the undiluted samples in the higher spectral area, a three component 
PARAFAC model was calculated. The number of components was selected 
based on the core consistency diagnostic and inspection of the loadings. 

In order to build a classification model, the scores from the three PARAFAC 
models were concatenated into one single score matrix resulting in a data 
matrix with 19 variables. Classification models were built for all 
combinations of the case group versus the three different control groups 
including one model with cases versus all three control groups. Additionally, 
the control groups were tested against each other. For all classification 
models, validation was performed using cross-validation and test set 
validation. The performance statistics of the classification models are 
presented as a PCA model in Figure 28. The purpose of the PCA model is to 
illustrate the differences and similarities between the seven PLS-DA models 
presented in Table 1 in Paper III based on the performance statistics: cross-
validated sensitivity, cross-validated specificity, AUC, predicted sensitivity 
and predicted specificity. 

 

Figure 28. PCA model of the performance statistics of the seven classification models. The 
plot shows both scores and loadings (bi-plot), Crc = cancer, No = no findings, Onf = other non-
malignant findings, Ade = adenomas, all = all three control groups, CV = cross-validated, 
pred = predicted. The data are adapted from the values in Table 1 in Paper III 
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The sensitivity and specificity values are higher for the classification models 
(approximately 0.75 for the test set), where CRC is separated from each 
control group and from all control groups merged into one. In addition, in the 
three models where the control groups were separated from each other, the 
sensitivity and specificity values are low. These models are located in the left 
part of Figure 28. Hence, it is possible to separate cases from all types of 
controls, whereas no separation between control groups is observed. In Figure 
29, the ROC curves for the calibrated and cross-validated models for CRC 
versus other non-malignant findings are shown. The two curves are fairly 
similar indicating that the cross-validated model is robust. 

 

Figure 29. ROC curves for the calibrated (blue) and the cross-validated (green) models of 
CRC vs. other non-malignant findings 

 

In Figure 30, the results from the four-PLS component PLS-DA model of CRC 
versus other non-malignant findings are presented. In the PLS-DA score plot 
to the left, a slight separation between cases and controls are observed. The 
CRC samples are the blue triangles and are positioned more to the right in 
the score plot, whereas the controls samples (red circles) are positioned more 
to the left. Hence, the cancer direction goes towards the right-hand side in the 
plot. This separation can be explained by the corresponding loading plot 
(Figure 30, right). Here, the variables are divided in two groups illustrated by 
the dashed diagonal line in the plot. The variables on the left side of the line 
are negatively correlated to the cancer direction, and the variables on the 
right side are positively correlated to the cancer direction. The loadings can 
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also be considered as a bio-contour associated to CRC and are all equally 
important for the separation of cancer from controls. Additionally, the model 
is built using four PLS components and it is the combination of the four 
components that form the model and provide the basis of the performance 
statistics. All four components should therefore be assessed in a combined 
manner in order to acquire the whole pattern of the bio-contour.  

 

Figure 30. Four-component PLS-DA model of CRC vs. other non-malignant findings (Onf). 
Left: PLS-DA score plot shows a separation between CRC (blue triangles) and Onf (red 
circles). Right: PLS-DA loadings with 13 variables selected by forward iPLS. The figure is 
modified from Paper III 

 

5.2.3. Conclusion 

This study showed promising results for detection of CRC. The sensitivity and 
specificity values of approximately 0.75 for the test sets are very promising 
results for detection of CRC. Further studies are needed, but with the results 
obtained, fluorescence spectroscopy has considerable potential as a tool in the 
detection of CRC in blood. 

 

5.3. 5.3. 5.3. 5.3. Notes from a feasibility studyNotes from a feasibility studyNotes from a feasibility studyNotes from a feasibility study    of plasma by GCof plasma by GCof plasma by GCof plasma by GC-MSMSMSMS    

The feasibility study of plasma samples measured using GC-MS, was 
originally intended to be a supplement to the findings in Paper III. Hence, 
plasma samples from the same study were to be analysed by GC-MS in order 
to find more metabolites related to CRC and furthermore to combine GC-MS 
data and fluorescence data by data fusion. However, too many obstacles were 
hindering the data acquisition due to difficulties in finding an optimal method 
for sample preparation despite many useful publications on the subject. 
Therefore, the feasibility study was conducted on standardized pooled human 
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citrate plasma samples. Different approaches for sample preparation were 
tested and are described in the following. A future project is planned to 
analyse the samples from both the DCH cohort and the CRC plasma samples. 
The purpose is then to fuse the acquired GC-MS data with the already 
obtained NMR and fluorescence data. 

 

5.3.1. Sample preparation 

In the past few years, sample preparation in GC-MS-based metabolomics has 
gained more attention, and robust methods for preparation of plasma samples 
have been developed [101;102]. The main focus in this feasibility study 
concerns extraction and derivatization of plasma samples prior to analysis by 
GC-MS in order to detect as many metabolites as possible. 

 

5.3.1.1. 5.3.1.1. 5.3.1.1. 5.3.1.1. ExtractionExtractionExtractionExtraction    
The low molecular weight compounds which are the compounds of interest in 
metabolomics are usually non-covalently bound to proteins. It is therefore 
necessary to precipitate the proteins, commonly achieved using an organic 
solvent prior to further treatment of the samples. This procedure will extract 
the metabolites bound to the protein, and the metabolites can be treated 
further. Suggested solvents are methanol, ethanol, chloroform, acetone or 
acetonitrile, and the extraction effect of these five solvents has been tested in 
a study by A et al. in 2005 [103]. They concluded that methanol is the most 
suitable organic solvent for extraction of metabolites, as more metabolites 
were detected compared to extraction by the other solvents. Additionally, they 
suggest a methanol volume of 80% (the remaining 20% being water, sample 
material and internal standards). Internal standards can be added in order to 
keep track of the preparation procedure. 

After extraction of the metabolites, a crucial step in the sample preparation is 
to dry the samples. This is necessary in order to bring the metabolites to a 
volatile state by derivatization. If the samples are not completely dry, the 
derivatization cannot be completed, and no metabolites will be detected, 
which will be described in the following.  

 

5.3.1.2. 5.3.1.2. 5.3.1.2. 5.3.1.2. DerivatizationDerivatizationDerivatizationDerivatization    
Derivatization of the metabolites is important if the metabolites are polar, 
e.g. carbohydrates and amino acids, because these types of metabolites will 
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bind strongly to the GC column by hydrogen bonds. Lipids, on the other hand, 
are non-polar and do therefore not need to be derivatized [101]. 

Derivatization is usually carried out using a silylating agent, where the 
hydrogen atoms are replaced by the silyl group making the compound less 
prone to form hydrogen bonds. Hence, the metabolites will bind less strongly 
to the column, and the volatility is increased. The functional groups ketones 
and aldehydes are in equilibrium with their enol forms and there is a 
possibility of forming trimethylsilyl ethers during derivatization, which are 
thermally unstable. The presence of trimethylsilyl ethers will increase the 
risk of incomplete derivatization, resulting in multiple peaks of these 
compounds making quantitative interpretation a challenge. In order to 
prevent formation of trimethylsilyl ethers, methoxymation should be carried 
out in advance of derivatization. Methoxymation converts the problematic 
functional groups into oximes, which will prevent the undesired formation of 
trimethylsilyl ethers. Commonly, methoxymation is carried out using O-

methoxylamine hydrochloride in a pyridine solution. When the 
methoxymation is completed, derivatization can take place using either of the 
silylating reagents MSTFA (N-methyl-N-(trimethylsilyl) trifluoroacetamide) 
or BSTFA (N,O-bis(trimethylsilyl) trifluoroacetamide), which are most 
common. The silylation reaction can be catalysed using TMCS 
(trimethylchlorosilane) [101]. As mentioned, it is of the utmost importance 
that the sample is completely dry prior to methoxymation and derivatization. 
If there are traces of compounds with active hydrogen atoms (water, 
methanol, etc.), these will also be derivatized and will hide signals from the 
metabolites of interest. For analysis of the plasma samples in the following, 
MSTFA was selected as the derivatizing agent, which is common practice for 
derivatizing plasma samples [101-103]. 

 

5.3.1.3. 5.3.1.3. 5.3.1.3. 5.3.1.3. The protocolThe protocolThe protocolThe protocol    
One of the limitations in the feasibility study was the amount of sample 
material. Usually, the protocols suggest a sample volume of 100 µL, but for 
the original purpose of the present study only 50 µL of plasma was available. 
The following protocol in Table 3 was therefore developed with inspiration 
from the methods developed for pre-treatment of plasma samples, but with 
reduced sample material of 50 µL [101-103].  

After evaluating several pre-studies, the following protocol in Table 3 was 
developed with three different concentrations of the methanol volume (50%, 
65% and 80%), in order to find the optimal methanol/water/sample ratio. 
Additionally, samples with the highest and the lowest methanol 
concentrations were re-dissolved in the corresponding methanol 
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concentrations in an attempt to extract more metabolites. All samples were 
prepared in triplets resulting in a total of 15 prepared plasma samples. 

 

Table 3. Protocol for pre-treatment of plasma samples prior to injection to the GC-MS. Steps 
1-16 were carried out manually whereas steps 17-21 were carried out by the autosampler 
from the GC-MS equipment 

PrePrePrePre-treatment of plasma samplestreatment of plasma samplestreatment of plasma samplestreatment of plasma samples    

1. Incubate the plasma samples at 37°C for 15 min to thaw them 

2. 1. 150 µL methanol to 10 µL MQ water and 50 µL plasma to Eppendorf tubes (50% 
methanol) (AAAA) 

2. 195 µL methanol to 10 µL MQ water and 50 µL plasma to Eppendorf tubes (65% 
methanol) (BBBB) 

3. 240 µL methanol to 10 µL MQ water and 50 µL plasma to Eppendorf tubes (80% 
methanol) (CCCC) 

3. Vortex the samples for 10 sec  

4. Put the samples on ice for 10 min  

5. Vortex the samples (hard!) for 2 min 

6. Put the samples on ice for 2 hours 

7. Centrifuge the samples at 19600g for 13 min at 4 °C 

8. For half of the samples: 

Transfer 100 µL supernatant to GC-vial-insets 

9. For the other half of the samples: 

Transfer 250 µL supernatant to Eppendorf tubes 

10. Dry the samples in a speed-vacuum centrifuge – they MUST be completely dry (app. 
2 hours)! 

11. Cap the three samples in GC-vials with nitrogen, close the lid hard and cover with 
parafilm. Store in fridge (+5°C) 

12. Re-dissolve samples AAAA and CCCC (those in the Eppendorf tubes): 

(AAAA): 60 µL methanol and 60 µL MQ water (A1A1A1A1) 

(CCCC): 96 µL methanol and 24 µL MQ water (C1C1C1C1) 

13. Vortex each sample to dissolve the pellet 

14. Transfer 100 µL supernatant to GC-vial-insets 

15. Dry the samples in a speed-vacuum centrifuge – they MUST be completely dry (app. 
2 hours)! 
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PrePrePrePre-treatment of plasma samplestreatment of plasma samplestreatment of plasma samplestreatment of plasma samples    (continued)(continued)(continued)(continued) 

16. Cap the three samples in GC-vials with nitrogen, close the lid hard and put parafilm 
on. Store in fridge (+5°C) 

 The following is carried out by the autosampler 

17. Add 30 µL methoxyamine hydrochloride in pyridine* (15 mg/mL)  

18. Shake the samples for 90 min at 30°C 

19. Add 30 µL MSTFA 

20. Shake the samples for 30 min at 37°C 

21. Inject to GC-MS 

* Methoxyamine hydrochloride in pyridine was freshly prepared prior to the experiments 
 

5.3.2. Data acquisition 

In Table 4, an overview of the GC-MS settings is presented. The parameters 
have not been fully optimized, as the initial experiments focused on the 
samples preparation. The GC-MS instrument is an Agilent Technologies 
7890A GC System with autosampler coupled to a 5975C inert XL MSD with 
Triple-Axis Detector (quadrupole). 

 

Table 4. Settings for injection, the chromatograph and the mass spectrometer. The settings 
are not optimized 

GCGCGCGC-MS settingsMS settingsMS settingsMS settings    

Injection settings Inject 1 µL sample cold in splitless mode with H2 as carrier 
gas flow rate at 3 mL/min  

Chromatography settings Column: HP-5MS 5% Phenyl Methyl Silox 

Temperature program: Isothermal for 2 min at 80ºC, then 
ramped with 5ºC/min until 320ºC is reached; 5 min 
isothermal. Cooling for 10 min  

Mass spectrometer settings The ion source (EI) is set to 230ºC. The mass range is set to 
40 to 500 Da with a scan rate of 3.15 pr. sec. 

 
 

5.3.2.1. 5.3.2.1. 5.3.2.1. 5.3.2.1. Preliminary chromatogramPreliminary chromatogramPreliminary chromatogramPreliminary chromatogram    
Only 14 out of 15 samples were acquired, and in Figure 31 the total ion 
chromatogram (TIC) is presented.  
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Figure 31. TIC of the 14 plasma samples 

 

Many of the measured metabolites have a low signal-to-noise ratio and 
unfortunately some of the peaks were found to be column material. The low 
signal-to-noise ratio can probably be overcome by analysing larger amounts of 
sample material and more samples need to be analysed to find the optimal 
methanol volume. The presence of column material indicates that the settings 
of the GC-MS need to be adjusted or that the choice of column is not optimal. 
The proposed column in other protocols is a 35% phenyl methyl silox column 
[101;102], whereas the one in the present study is a 5% phenyl methyl silox 
column. 

When a chromatogram is obtained, the metabolites can be identified using 
different databases such as the Wiley library [104] and NIST [105]. These are 
very useful also as initial indicators of whether the measurements are 
biologically meaningful and to locate column material. For the final analysis 
of cancer samples, the identification of metabolites from databases will aid in 
the determination of which biomarkers are associated with cancer. For the 
current state of the optimization of the analyses, little attempt has been made 
to identify the measured metabolites. However, one metabolite was identified 
as cholesterol, which is the one presented in Figure 3 in Chapter 3. This 
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specific metabolite has been modelled by PARAFAC2 in the following in order 
to briefly investigate the potential of the PARAFAC2 model in metabolomics. 

 

5.3.2.2. 5.3.2.2. 5.3.2.2. 5.3.2.2. PARAFAC2 modelsPARAFAC2 modelsPARAFAC2 modelsPARAFAC2 models    
This feasibility study is only preliminary and many optimization steps are 
required. However, some metabolites are real and modelling these will give 
an indication of whether it is possible to estimate the elution time and mass 
spectral profiles. Therefore, PARAFAC2 models on one selected interval 
(identified as cholesterol) have been calculated due to shifts in this specific 
peak. 

Prior to the modelling of cholesterol, it was anticipated that only one 
component was necessary in order to estimate the true retention time 
profiles. After modelling the peak by PARAFAC2, it seems that three 
components are more appropriate than one, which is supported by the core 
consistency values presented in Table 5. 

 

Table 5. Overview of the PARAFAC2 models of cholesterol. Four models have been calculated 
with one to four components, and from the core consistency values three components seem 
appropriate 

ModelModelModelModel    # of components# of components# of components# of components    Explained variance Explained variance Explained variance Explained variance 
(%)(%)(%)(%)    

Core consistencyCore consistencyCore consistencyCore consistency    

PARAFAC2 1 87.00 100 

2 96.69 100 

3 99.26 98 

4 99.47 <0 

 

The estimated retention time profiles of the three-component PARAFAC2 
model are shown in Figure 32. The profiles look reasonable and all of the 
components seem to describe the biological variation in the peak. 
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Figure 32. Estimated PARAFAC2 loadings of the retention time for cholesterol. Three 
components are used to model the peak 

 

The biological interpretation of the three-component model will not be 
considered in detail, but the result may not be surprising since cholesterol is 
present in different forms in blood. Therefore, more than one component 
makes immediate sense biologically. The result suggests that PARAFAC2 can 
be used to extract the biological information from the chromatogram, and this 
information could form the basis of a classification model to separate cancer 
from controls – which was the initial purpose of the feasibility study. 

 

5.3.3. Conclusion and perspectives 

The outcome of this feasibility study shows that it is of the utmost importance 
to carefully prepare samples prior to data acquisition by GC-MS, and also to 
find the proper settings and equipment for the chromatograph and mass 
detector. Therefore, more thorough studies focusing of both the sample 
preparation step and the GC-MS should be carried out, preferably on a larger 
volume of sample material. However, there is considerable potential for using 
the GC-MS in a metabolomics context, and the perspective for this feasibility 
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study is especially the possibility of data fusion with measurements from 
fluorescence which was the original aim. Furthermore, data fusion with 
measurements from the NMR study on healthy individuals will most likely 
aid in better understanding the etiology of cancer at early stages. 
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Chapter 6 

ConclusionConclusionConclusionConclusion    

The work presented in this thesis is a clear indicator of the usefulness of 
multivariate models in different metabolomics studies. With three case 
studies, the use and importance of properly validated models have been 
demonstrated. 

One of the main conclusions is the need for proper variable reduction in 
metabolomics datasets. Variable reduction, such as RRV, will exclude 
redundant variables and the risk of spurious groupings in a classification or 
prediction model is greatly reduced. Additionally, it has been shown that 
suitable validation of especially classification models is of the utmost 
importance. Models such as PLS-DA and OPLS-DA are prone to over-fit and 
the lack of appropriate validation will most likely result in separation of 
samples by chance – even if RRV has been performed in advance of modelling. 

Proper use of multivariate modelling has been shown in three case studies. 
The first case study (Paper II) was a unique example of the development of a 
prediction model capable of forecasting future breast cancer status in healthy 
plasma samples from 838 women. The model was based on data from NMR 
concatenated with known risk markers from questionnaire data. The results 
from the study also showed that even though a model is based on carefully 
selected variables, these variables might not be the sole solution – other 
variables could have been used in the modelling with the same predictive 
power as the originally selected ones. The prediction model obtained consisted 
of eight PLS components and it is imperative to understand that all eight 
components must be assessed in a combined manner in order to understand 
the connection to the prediction of cancer status. Combining the components 
and the selected variables was introduced as being a bio-contour, which is a 
term introduced to avoid the temptation of picking out single variables 
positively correlated to cancer status in one of the eight components. 

The second case study concerned the detection of colorectal cancer by 
fluorescence spectroscopy (Paper III). Here, plasma samples from patients 
with verified colorectal cancer were separated from three different types of 
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control samples with sensitivity and specificity values of approximately 0.75. 
The results open for a new avenue with fluorescence spectroscopy as a 
potential tool for detection of colorectal cancer. 

The last case study (unpublished results) was a feasibility study where GC-

MS was used to analyse standard plasma samples. The original aim was also 
to analyse the same plasma samples as those in the fluorescence study, but 
due to issues concerning sample preparation, only 14 standard samples were 
analysed. One peak was extracted and modelled by a three-component 
PARAFAC2 model. The core consistency (presented for PARAFAC2 models in 
Paper I) supported the choice of three components. The retention time profiles 
were estimated and the result points towards the applicability of PARAFAC2 
modelling in GC-MS-based metabolomics. 

Overall, the work presented throughout this thesis has proven the immense 
need for multivariate data analysis in metabolomics. If done properly, solid 
and reliable models can be built making room for increased understanding of 
the human metabolism. The examples have focussed on early prediction and 
detection of cancer, but the methods are applicable for all areas of 
metabolomics.     
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Chapter 7 

PerspectivesPerspectivesPerspectivesPerspectives    

The work and the conclusions presented in this thesis show that there are 
several perspectives for future work. As already mentioned, a future project 
has been planned for GC-MS analyses on the data from the DCH cohort 
analysed by NMR and from the multi-centre cross sectional study analysed by 
fluorescence. Additionally, data acquisition by LC-MS could also be of 
considerable interest. Acquisition of these data provides the foundation of 
multivariate data analysis based on data fusion, which will inevitably 
increase the understanding of the underlying etiology of cancer. Focus in this 
thesis has been on breast cancer and colorectal cancer, but it would be of 
great interest to extend the research to cover other types of cancer and other 
diseases in general.  

The long-term perspective of this project is that cancer screening can be 
performed using a blood sample which will spare the patient (unpleasant) 
physical examinations. It will also be possible to detect a possible progress of 
cancer at an early stage or even anticipate the risk of cancer before the 
tumour is clinically detectable, which will most likely increase the five-year 
survival rates for different types of cancer. The current sample sets are 
collected from Danish individuals only, but a global perspective could be the 
collection of data from different parts of the world to establish a valid global 
prediction model. A starting point could be some of the other sample sets from 
the EPIC (see Chapter 5) cohort from other European countries. 

The possibility of screening a blood sample for the risk of developing cancer 
leads to questions concerning the ethical aspects. Does the individual want to 
know whether there is a risk of developing cancer later in life? Will it affect 
the well-being and life quality of the individual if being told that there is a 
risk of developing cancer, which is one of the current issues in mammography 
screening? And finally, what about the individuals who were screened and 
told that the risk of developing cancer later in life was minimal, and then 
develops cancer? Of course questions like these will always arise when 
dealing with diseases where the worst case scenario is death. 
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On the other hand, the possibility of early screening creates room for the 
unique possibility of detecting the progress of cancer at a very early stage and 
before the cancer starts spreading to other vital parts of the body. But before 
this can become some sort of reality, it is essential that the prediction models 
developed for the purpose of detection or forecasting cancer are extremely 
reliable. I believe that this thesis is a step towards such a realization. 
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Core consistency diagnostic in PARAFAC2
Maja H. Kamstrup-Nielsena, Lea G. Johnsena,b and Rasmus Broa*

PARAFAC2 is applied in multiple research areas, for example, where data containing shifts are analysed, but it is a
challenge to determine the appropriate number of components in the model. In this paper, it is hypothesized that
the core consistency diagnostic, which is currently applied in, for example, PARAFAC1 can be used to determine
model complexity in PARAFAC2. Theoretically, a PARAFAC1 model is fitted ‘inside’ the PARAFAC2 algorithm, and
it should therefore be possible to apply the core consistency diagnostic from PARAFAC1 in PARAFAC2. To support
this hypothesis, three different datasets, as well as simulated datasets, have been evaluated by means of PARAFAC2,
and the core consistencies have been investigated. There is a general trend that if the core consistency is low, the
model is overfitted as in PARAFAC1. Also, core consistency captures the true variation in the data, whereas small
peaks are easily overlooked by visual inspection of noisy models. However, for determining the number of compo-
nents in a PARAFAC2 model, we suggest usage of the core consistency in combination with other model parameters
such as residuals, loadings, and split-half analysis. Copyright © 2013 John Wiley & Sons, Ltd.
Supporting information may be found in the online version of this paper

Keywords: core consistency; PARAFAC2; number of components; model complexity

1. INTRODUCTION

PARAFAC2 [1,2] has been applied in many different areas [3–5]
and has for example proven to be useful for mathematical sepa-
ration of overlapping chromatograms and for overcoming issues
in batch data with different temporal duration and dynamics.
The main reason for applying PARAFAC2 is that it can sometimes
model data containing shifts and related shape changes, for
example, chromatograms with shifts in retention time.
PARAFAC2 is closely related to PARAFAC. In this paper, the

PARAFAC model will be denoted PARAFAC1 to distinguish it
from PARAFAC2 [1]. PARAFAC1 decomposes three-way data with
a low-rank trilinear structure into loading matrices that provide
mostly unique estimates of the underlying variations in data. In
PARAFAC2, data do not have to be low-rank trilinear—one of
the directions in the data array can deviate in certain ways and
still be meaningfully modelled by PARAFAC2 [2,6]. Despite the
deviation from low-rank trilinearity, PARAFAC2 still provides
unique estimates of the underlying latent variables under fairly
mild conditions [7].
What remains a challenge in using the PARAFAC2 model is to

determine the appropriate number of components. Harshman
and De Sarbo [8] have proposed to use split-half analysis to de-
termine the right number of factors. Split-half analysis can be
considered as a type of resampling approach where PARAFAC2
is applied on different subsets of data. If the right number of fac-
tors is used, the result should be similar for all subsets. However,
there are a number of drawbacks for split-half analysis. First of all,
the subsets must be carefully selected. For instance, all com-
pounds must be present in all subsets for the resulting models
to be similar. Another inconvenience is that the computation
time increases when using split-half analysis.
For the PARAFAC1 model, the core consistency diagnostic is

useful when determining the number of components. The core
consistency diagnostic has been described by Bro and Kiers [9].
So far, research has dealt with the determination of model com-
plexity in PARAFAC1 by means of core consistency, but the core

consistency has never been incorporated in a PARAFAC2 setting,
and no similar alternative approaches to determination of model
complexity have been suggested.

The objective of this paper is to develop an approach for cal-
culating a model diagnostic similar to core consistency but for
PARAFAC2 models. We will show that with some manipulations,
we can define a core consistency value for a PARAFAC2 model.
We will also investigate if this diagnostic can be applied to deter-
mine the number of components in PARAFAC2 models. First, the
theory behind the structure of PARAFAC1 and PARAFAC2 will be
outlined. Second, the theory behind and the relevance of the
core consistency will be presented. Three examples on different
datasets are given where core consistency is used to evaluate
the model complexity. In addition, the use of core consistency
in PARAFAC2 is validated using simulated data.

2. THEORY

PARAFAC1 is a multiway method used to handle three-way
(or multiway in general) arrays, and the principle is outlined, for
example, by Harshman [10] and Bro [11].

Let Xk be an I� J matrix with k=1, . . ., K as the kth slab of
an I� J� K three-way array X. I is the number of observations
(samples) in the first mode, J the number of variables in the sec-
ond mode, and K the number of variables in the third mode [2].
With this terminology and noise disregarded for simplicity, the
PARAFAC1 model has the following structure
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Xk ¼ ADkBT ; k ¼ 1; . . . ; K (1)

Here, A typically denotes the score matrix, and B is the loading
matrix for the second mode, which can be considered to corre-
spond to the loading matrix in principal component analysis
(PCA). The extension from PCA then lies in the Dk matrix, which
is a diagonal matrix of dimension R� R, where R is the number
of components. This matrix contains parameters from the load-
ings from the third mode. The loading matrix of the third mode
is usually termed C (K� R) and Dk holds the kth row of C on its
diagonal. In a multiway data analysis, the component matrices
A, B, and C are oftentimes all called loading matrices. The term
score matrix can then be introduced specifically for the loadings
in the sample mode.

Unlike a bilinear model, PARAFAC1 provides unique estimates
of its parameters A, B, and D1, . . ., DK under certain conditions
without additional abstract constraints such as orthogonality,
which is used in PCA. The bilinear representation ABT has rota-
tional freedom, and PCA is only uniquely identified because of
the additional constraints that are imposed on the parameters.

To set the stage for PARAFAC2, the PARAFAC1 model is illus-
trated in the following by means of a small part of gas chroma-
tography (GC)–mass spectrometry (MS) chromatographic data
from Amigo et al. [3]. Instead of having samples in the first mode,
as is common, these will be in the third mode for convenience of
introducing PARAFAC2 subsequently. K chromatographic sam-
ples with I mass channels and J retention times have been
modelled using a PARAFAC1 model. In this example, there is only
one analyte present in the K samples, which is illustrated as the
single peak in the second mode in Figure 1. However, in the
kth sample, the retention time for this analyte is different from
that of the first sample, which can also be seen in the second
mode (Jth direction) in the figure. The second mode loading
matrix, B, for a two-component PARAFAC1 model is supposed
to contain estimates of the retention time profiles. Two compo-
nents seem appropriate for this model, as each component in
the second mode estimates the retention time profile in each
sample. Hence, two components are necessary to extract the
shifting information of the samples and thereby reveal the reten-
tion times of the analyte.

In PARAFAC1, it is assumed that the loading matrix B is repre-
sentative of the underlying variation in all frontal slabs, that is,
that all slabs, Xk, can be described in the row space using the
same B (ADkB

T). This means that for chromatographic data, the
underlying retention time profiles of each analyte have to have
identical shapes for each sample. This is not the case in the pres-
ent example, where the samples as mentioned have shifting re-
tention times, as illustrated in the second mode in the figure.
Using PARAFAC1 on such data will typically lead to including
more components than underlying chemical variations as seen
in the example. These subsequent components can be difficult
or impossible to interpret. Using the PARAFAC2 model is one
way to circumvent such problems. The PARAFAC2 model can
be written as

Xk ¼ ADkBT
k ; k ¼ 1; . . . ; K (2)

The parameters are almost identical to those of PARAFAC1.
The only difference between Equations (1) and (2) is the second
mode loading matrix B. In PARAFAC2, Bk is specific for every slab,
k, in the third mode, whereas B is equal for all slabs in PARAFAC1.
Note that residuals are not included in Equation (2) for simplicity.
In Figure 2, it is illustrated how the use of a sample-specific Bk

matrix can help provide a more meaningful model of the shifting
chromatographic data in Figure 1.
In a PARAFAC2 model of these data, each sample will have its

own retention time loading matrix Bk, and a one-component
model is then sufficient to estimate the underlying retention
time profile for the analyte present in the two samples regardless
of the shift in retention time. All the information concerning the
shift is extracted by this component, and the shift is modelled by
the K different B loadings.
However, the parameter estimates in PARAFAC2 would not

immediately be unique if the model was only defined through
Equation (2). An additional constraint is also part of the model.
The cross-product of Bk (BT

kBk ) is required to be constant across
k, and it can be shown that this constraint leads to the unique-
ness of the model under mild conditions [7]. Constant cross-
product across k is obtained by defining Bk as

Bk ¼ PkH; k ¼ 1; . . . ; K (3)

where PT
kPk ¼ I; hence, Pk is orthogonal. The matrix Pk handles

what is unique for each sample in the shifting mode, and H

Figure 1. Chromatographic example to illustrate PARAFAC1. The data
matrix Xk is decomposed into estimates of the parameters A, B, and Dk

using two components.
Figure 2. Same chromatographic example as illustrated in Figure 1. Here,
a PARAFAC2 model is fitted to data. Only one component is necessary.
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handles what is related between samples [12]. With this defini-
tion, the cross-product for Bk will be constant because with an
orthogonal Pk it holds that

BT
kBk ¼ HTPT

kPkH ¼ HTH (4)

If we substitute Bk in Equation (2) with Equation (3), we can
rearrange the PARAFAC2 model in the following way:

Xk ¼ ADk PkHð ÞT ,
XkPk ¼ ADkHTPT

kPk ,
Yk ¼ ADkHT ; k ¼ 1; . . . ; K

(5)

Equation (5) points to an interesting approach for understand-
ing PARAFAC2. When the orthogonal Pk matrices are known, we
can rephrase the PARAFAC2 model as a PARAFAC1 model in
terms of frontal slabs of data ‘compressed’ with their own spe-
cific Pk matrix; hence, a PARAFAC1 model can be fitted on a data
array of Yk slabs. This is interesting in understanding how
PARAFAC2 handles changes such as retention time shifts in the
second mode, and it is also useful for the purpose of developing
a core consistency measure for PARAFAC2 models in this paper.
The number of components to use in a PARAFAC1 model can

be estimated by means of the core consistency diagnostic [9].
PARAFAC1 can be considered as a constrained Tucker3 model
[13] but where the core array has been fixed to a superdiagonal
array of ones. The idea behind the core consistency diagnostic is
to estimate what the core would actually have been if it was not
constrained. This is estimated using the PARAFAC1 loadings as
fixed loadings in a Tucker3 model, hence only estimating the
core array. If this estimated core array is close to a superdiagonal
of 1s, we say that the core consistency is high and that the
variation described by the PARAFAC1 model is indeed low-rank
trilinear. If the core is very different, for example, has high off-
diagonal elements, then the core consistency is low, and this
indicates that the PARAFAC1 model, which presumably should
be modelling low-rank trilinear variation, is really modelling
other things as well. This indicates that this particular model is
not suitable.
As mentioned previously, the PARAFAC2 model can be consid-

ered a PARAFAC1 model on ‘de-shifted’ data with slabs Yk. We
hypothesize that the number of components can be equally well
assessed from this PARAFAC1 model and that we can therefore
use the straightforward core consistency of the PARAFAC1
model ‘inside’ PARAFAC2 as a tool for determining model com-
plexity. To investigate the hypothesis, obtained core consisten-
cies have been evaluated for the three different datasets and
the simulated data.

3. MATERIALS AND METHODS

All models and calculations were performed in MATLAB 2012a
(MathWorks, Inc., Natick, MA, USA). PARAFAC2 models were
calculated with the algorithm from the N-way toolbox (available
from www.models.life.ku.dk, July 2012).

3.1. Fluorescence amino acid data

The first dataset consists of five samples, each containing tyro-
sine, tryptophan, and phenylalanine in different amounts. Each
sample has been measured on a PE LS50B spectrofluorometer

(excitation 240–300 nm, emission 250–450 nm). The dimensions
of the dataset are 5 (samples)� 201 (emission)� 61 (excitation).

3.2. Chromatographic wine and apple data

The second dataset consists of 36 apples ripened for 5, 8, and
15days, and the samples are analysed using headspace GC–MS.
The details concerning the analysis can be found in [14]. The
dataset has the dimensions 154 (masses)� 5033 (retention times)
36 (samples).
The last dataset consists of 24 samples of red wine. The aroma

profiles of the samples were measured using dynamic headspace
GC–MS. Details concerning the measurements can be found
in the original papers [3,15]. The dimensions of the dataset are
200 (masses)� 6000 (retention times)� 69 (samples).

4. RESULTS

The use of core consistency in PARAFAC2 has been tested using
three different datasets: fluorescence amino acid data [11], chro-
matographic apple data [14], and finally chromatographic wine
data [15]. In addition, the core consistency has been tested on
simulated data.

4.1. Fluorescence

In this dataset, there are no shifts, so the result from PARAFAC2
should be similar to that of PARAFAC1. This enables us to com-
pare the core consistencies obtained from the two methods.

4.1.1. Results and discussion

The models have been calculated without any constraints and
with the samples in the last mode. The core consistencies and
the explained variances of the models are seen in Table I.

The core consistencies for the models from the PARAFAC1 al-
gorithm indicate that four factors are appropriate for the dataset.
Because the data are obtained from simple samples only
containing three different amino acids, it would be expected that
three factors would be appropriate. A visual inspection of the
model (Figure 3) shows that the emission and excitation profiles
for the fourth factor have some negative values. In addition, the
profile for this compound seems rather noisy also, indicating that

Table I. Overview of the core consistencies and the
explained variances for PARAFAC1 and PARAFAC2 models
with one to five factors in the fluorescence amino acid data
without shifts

Model No. of factors Core consistency % fit

PARAFAC1 1 100.00 64.39
2 100.00 86.77
3 99.87 99.94
4 92.49 99.95
5 <0.00 99.96

PARAFAC2 1 100.00 67.03
2 100.00 92.94
3 100.00 99.96
4 <0.00 99.97
5 <0.00 99.98
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this model is overfitted. It is likely that the fourth component is
related to the small amount of Rayleigh scattering that is present
in the data. In any case, for both the three-component and four-
component models, the three main components come out sim-
ilarly. The fourth extra component is of such a small magnitude
that is does not affect the modelling of the three main
components.

The core consistencies for the PARAFAC2 models indicate that
three factors are appropriate for this dataset, and the visual ap-
pearance of this three-component model is also appropriate
(not shown). Hence, core consistency seems to be useful for
assessing the number of components for this dataset. The fact
that normal PARAFAC1 and PARAFAC2 do not have the same be-
haviour with respect to the small and somewhat spurious fourth
component is not surprising. The Rayleigh scattering that leads
to the fourth PARAFAC1 component is not low-rank trilinear
and hence is not expected to affect PARAFAC1 and PARAFAC2
models in a similar fashion.

Be aware that models that have not converged or have con-
verged in a local minimum can result in a core consistency that
is artificially low, and it is therefore very important to make sure
that the model has converged and has reached the global mini-
mum when core consistency is used in the evaluation of model
quality. A simple ad hoc approach to this is to repeat the
PARAFAC2 algorithm a number of times and make sure that
the best-fitting model is obtained several times.

4.2. Chromatography

4.2.1. Results and discussion

The apple and wine datasets are very large and consist of several
peak regions. Each dataset is divided into smaller parts, and
PARAFAC2 models are fitted on these subsets individually. The
apple data are divided manually into 26 intervals and the wine
data into 50 intervals. The intervals chosen reflect a wide range
of different features: overloaded peaks (e.g. wine interval 2),
low signal-to-noise levels (e.g. wine intervals 31 and 32), minimal
shifts in retention time (e.g. wine intervals 25 and 31), severe shifts
in retention time (e.g. wine interval 42 and apple interval 3), and
very complex intervals including several peaks (e.g. apple intervals
1 and 22). Intervals representing the different features are shown
in Figure 4. To illustrate the features of core consistency, intervals
31 and 32 from the wine data and interval 1 from the apple data
are illustrated in some detail in the following.
Core consistency was calculated for models with one to seven

factors for all the 76 intervals, and all of the intervals were manually
inspected to find the models with the optimal number of factors.
Parts of the obtained core consistencies are shown in Figure 5.
Models were evaluated on the basis of residual analysis, as well as
inspection of elution profiles and spectra obtained from themodels.
In agreement with the publication by Amigo et al. [14], we

found that interval 1 in the apple dataset is best described with
five factors (elution profiles not shown). As shown in Figure 5,

Figure 3. Illustration of the obtained PARAFAC1 model with four factors. Both the emission and excitation loadings for the fourth factor are rather
noisy and have negative values, indicating that the model is overfitted.

Figure 4. Examples showing a selection of the 76 intervals. The intervals cover peaks with both low and high signal-to-noise ratios, different degrees
of shift, and different degrees of complexity.
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the core consistencies are high for the models with one to five
factors and low for the models with six and seven factors. So,
for this interval, it seems like the core consistency is a useful tool
in the determination of the model complexity.
A manual inspection of the models calculated on interval 31

from the wine dataset suggests that a PARAFAC2 model with
two factors is optimal (see elution profiles in Figure 6B). How-
ever, core consistency indicates that five factors are optimal even
though the five-factor model is apparently overfitted (see elution
profiles in Figure 6C). Please note that the component that does
not describe a peak in the two-factor model does not indicate
overfit but merely describes the baseline, which in this case is
rather high compared with the height of the peak.
Figure 6D shows the estimated main peak from the two models

illustrated in Figure 6B, C. Clearly, the two-factor and the five-factor
models capture the same elution profile. The spectral profiles as
well as the concentration profiles (plots not shown) support that
it is the same chemical variation described by the twomodels. This
tendency is also seen for other seemingly overfitted models. In the
five-factor model describing interval 31, the three ‘additional’

components simply describe baseline. The last component seems
to describe a small peak, which is only detected in the five-factor
model. The same behaviour with high core consistency is observed
in the models calculated on interval 32 from the wine data. The
elution profiles from the models of this interval with one to six
factors are shown in Figure 7.

The inspection of the seemingly overfitted models from inter-
vals 31 and 32 with high core consistencies shows that in both
models an additional factor actually appears, but it is very small
and therefore difficult to locate (Figure 6C, arrow, and Figure 7,
arrow). In these cases, it seems like the data contain noise and
artefacts, which contribute more to the variation than the lastly de-
scribed small peaks. The presence of these additional compounds
is supported when the mass channels in the raw data are
inspected (not shown). Nothing indicates that these peaks are
not chemical compounds present in the samples, and therefore,
it would be appropriate to use five factors in both intervals.

The results support that core consistency actually captures the
true variation in the data, whereas a visual inspection might put
too much emphasis on the noise. Thereby, small but potentially

Figure 5. Examples showing a selection of the obtained core consistencies, the remaining can be found in the supplementary material. The circles
indicate models with the optimal number of factors as initially decided by the authors. The line indicates the core consistency of each interval with
the number of factors included in the model going from one to seven.

Figure 6. (A) Raw data from wine, interval 31. Elution profiles obtained with two-factor (B) and five-factor (C) PARAFAC2 models. The arrow indicates a
compound that only appears in the five-factor model. (D) Illustration of the similarity between the estimated main peaks described by the models with
two and five factors.
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important peaks may be overlooked. When analysing all the
intervals with low signal-to-noise ratios, the same conclusion
can be made; hence, more factors than initially determined need
to be included if all chemical variations are to be captured as
suggested by core consistency.

4.3. Simulated data

When models on real data are calculated, it can be difficult to de-
termine the true rank of the data. Therefore, we have included
results from PARAFAC2 models of simulated data as well.

In the original paper concerning core consistency in PARAFAC1 [9],
calculations on simulated data were also included. The authors
showed that core consistency does not work very well on perfect
data, meaning data that follow the PARAFAC1 model and only
has additional random identically distributed Gaussian noise. It
was argued that this problem was of limited consequence as per-
fect data are simple to model in any case and it is very rare that
such data are met in practice. This was also supported by the fact
that the problems observed with ideal data were not observed for
any of the quite diverse example datasets.

To assess core consistency in the original publication, a certain
amount of model error was introduced in the simulated data to
more adequately simulate real data. The model error introduces
variance resulting in data that are not truly trilinear.

A similar approach is adopted here. Data with different ranks
(three and five) and different congruence values [16] (0, 0.20,
0.50, and 0.90) were generated, to cover varying types of data,
by creating a Y array according to Equation (5). The components
in these data were drawn from a Gaussian distribution, and in
addition, independent and identically distributed noise was
added to the Y array in ‘low’ and high levels (15% and 40%, re-
spectively). Then, three levels of model errors were introduced
(5%, 10%, and 15%) to affect the trilinearity of the data. Subse-
quently, each slab of Y was multiplied by an orthogonal Pk
matrix to simulate PARAFAC2 data. This resulted in data arrays
of size 10� 15� 30. One hundred datasets were created for
each combination of rank, Gaussian noise, model error, and

congruence values. For the rank 3 data, PARAFAC2 models with
one to five factors were calculated, and for each model, the core
consistency was determined. Similarly, for the rank 5 data,
PARAFAC2 models with one to seven factors were calculated.
Upon inspection of the obtained models, it was found that

models with congruence values of 0, 0.20, and 0.50 in general
fit the raw data quite accurately. However, this was, in most
cases, not the case for models calculated on data with high con-
gruence (0.90)—this was also reflected in the core consistencies.
For these models, the core consistencies are in general very low
for models with too few factors included (some core consisten-
cies are below 0), regardless of the different model errors and
noise levels introduced. Real data are oftentimes correlated,
but a congruence value of 0.90 is quite high, and the problem
has not been observed when calculating the core consistency
in the three real datasets. The high-congruence data are not con-
sidered further here but may point to a limited usefulness of core
consistency with highly correlated data.
The models based on the remaining data (congruence values of

0, 0.20, and 0.50) are summarized according to the core consistency
in Table II. Because 100 models have been calculated for each
combination of rank, congruence, noise, and model error, the core
consistencies are presented as averages calculated on core consis-
tencies where all negative values are set to 0. Otherwise, core con-
sistencies with very high negative values would dominate the
obtained mean value. Positive core consistencies are included as is.
The averaged core consistencies in the table show that there is

a significant drop in core consistency when the number of
factors exceeds the rank of the raw data, suggesting that core
consistency indeed can be used as an indication of overfit. How-
ever, the core consistencies rarely approach 0, and in some
cases, the starting point is quite low for the core consistency,
that is for rank 5 data with high noise and high model error.
Nevertheless, there is still a drop in the average core consistency
when the number of factors included exceeds the true rank of
the data.
The aforementioned observations indicate that core consis-

tency can be used to find the true rank of data with high and

Figure 7. Interval 32, wine: elution profiles of models with one to six factors. The core consistencies (Cc) are high with the exception of the last model
with six factors. Notice that in the model with five factors, an additional small peak appears (indicated with the arrow).
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low signal-to-noise ratios and different levels of correlations
within the data. When compared with the simulation results in
the original publication, the results also indicate that core consis-
tency under certain circumstances may be less effective when
used for model selection with PARAFAC2 than with PARAFAC1.

5. CONCLUSION

After evaluating the suggested core consistency diagnostic on
several PARAFAC2 models from different real as well as simu-
lated datasets, we concluded that core consistency is a helpful
parameter in the evaluation of PARAFAC2 models. In some cases,
usage of core consistency provides a better estimation of the
underlying features than solely visual inspection. However, core
consistency should not be used as the only measure of model
complexity. It should be combined with additional measures or
parameters such as investigation of residuals and loadings.
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Table II. Summary of averaged core consistencies from simulated models with different properties

Congruence Factors Noise level

Low High

Model error

Low Medium High Low Medium High

Rank 3 0.00 2 100 100 100 100 100 100
3 100 100 100 100 100 100
4 73 36 64 80 71 78

0.20 2 100 100 100 98 100 96
3 100 100 100 100 100 100
4 43 36 40 70 64 66

0.50 2 79 97 76 70 100 69
3 78 91 74 78 96 75
4 35 13 31 65 43 61

Rank 5 0.00 4 100 100 100 97 98 97
5 100 100 100 99 99 99
6 72 71 64 72 76 78

0.20 4 99 99 100 94 93 90
5 99 99 99 72 96 96
6 9 7 6 43 47 47

0.50 4 51 50 61 41 44 42
5 58 48 58 41 49 55
6 12 13 7 22 27 19

The bolded values mark overfitted models.
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Background 

Breast cancer is a major cause of death for women. To improve treatment, current oncology research 

focuses on discovering and validating new biomarkers for early detection of cancer, so far with limited 

success.  

Methods 

Blood plasma samples were taken from 419 women diagnosed with breast cancer up to seven years after 

the sample was taken. A comparative set of 419 samples of women without this diagnosis was used as 

control. Nuclear magnetic resonance spectroscopy measured the relative concentration of 129 plasma 

metabolites. Using data fusion, these metabolite concentrations were combined with 47 additional 

variables reflecting auxiliary information on anthropometrics, life style factors, etc.  Multivariate 

chemometric classification models were used to build a model for discriminating the two groups. 

Results 

This study shows that by combining information from metabolomic measurements of plasma samples and 

classical risk markers from questionnaire data, it is possible to create a bio-contour, which we define as a 

complex pattern of biological and habitudial information that can be used for reliably forecasting the risk 

of getting breast cancer years ahead in time. While single markers have close to no predictive value, the 

bio-contour provides a sensitivity of 0.84 and a specificity of 0.85. This forecast is on par with how well 

most current biomarkers can diagnose current cancer. It is further shown that causal interpretations are 

not immediately possible from such models regardless of the validity of the model.  

Conclusion 

Metabolic forecasting of cancer by bio-contours opens new possibilities for early cancer prediction and 

cancer screening. 

 



Breast cancer is the major cause of death for women in the first decade after menopause. Despite insight 

in to several disease risk factors, these explain only a minor fraction of the incident cases. Continuous 

improvements in sensitivity, resolution and precision of modern explorative technologies like 

metabolomics have the potential to identify additional risk factors. More importantly, they also form a 

basis for prediction modeling at the individual level, i.e. individual prediction of disease risk. This 

translational aspect has not been exploited to any large extent until now, primarily due to the inherent 

difficulties associated with the technology. Omics-based biomarker profiling is a complex and truly multi-

disciplinary subject.  

Proliferation of the tumor at time of diagnosis is probably the factor with the greatest effect on survival 

rates among cancer patients. Consequently, an important focus in cancer research is to improve our ability 

to detect malignancy prior to the stage where the tumor has evolved into a clinically detectable disease. 

Breast cancer is the most common type of cancer diagnosed among women in the Western part of the 

world. In Europe, 425,417 women were diagnosed with breast cancer in 2008 and 128,737 women died. 

Worldwide, close to 1.4 million women are diagnosed with breast cancer each year and approximately 

450,000 die from breast cancer. To facilitate detection of breast cancer prior to the occurrence of clinical 

symptoms, many Western countries have introduced mammography screening programs that are broadly 

aimed at middle-aged women. The risk of too many false positives in mammography screening, that is, 

detection of tumors that never progress to a stage that will affect the wellbeing of the patient has, 

however, been heavily discussed 1. A method of early breast cancer detection will have substantial 

implications.  

 

 



METHODS 

Cancer cohort 

In the current project, a subset of 838 women from the Danish Diet, Cancer and Health (DCH) cohort have 

been analyzed. The cohort was established in 1993-1997 and consists of a total of 57,053 men and women 

free of cancer at the time of recruitment 2. The DCH cohort is part of the European Prospective 

Investigation into Cancer and Nutrition (EPIC) study including cohort participants from ten European 

countries. In the part of the cohort investigated here, 419 women were diagnosed with breast cancer 

between time of enrolment and the chosen follow-up date (December 31, 2000). For the current study, an 

equal number of randomly selected women (419) free of cancer during the same timespan, were selected 

as controls in an evenly balanced dataset. Several baseline characteristics were recorded for all 

individuals and a standardized questionnaire was used to collect subjective information on life style 

factors, including dietary habits, smoking, alcohol intake, etc.2. A total of 99 percent of the participants in 

the DCH cohort gave biological material at their time of recruitment, and for this project, plasma samples 

were used. All blood samples were withdrawn in a non-fasting state, and citrate was used as 

anticoagulant. The samples were stored at -150/-80 degrees until analysis. Further description of the 

study subjects can be found in the supplementary material. 

Metabolomic data 

The 838 plasma samples were analyzed by proton Nuclear Magnetic Resonance (1H NMR). The 1H NMR 

analytical platform3 has several advantages compared to other common metabolomics analytical 

platforms. In particular, it is inherently quantitative and provides an unbiased and highly reproducible 

simultaneous observation of many metabolites. The so-called ‘curse of dimensionality’4 poses a practical 

hindrance for how much information can be obtained when few samples and many variables are 



measured. In the 1H NMR data, there are resonances from each hydrogen atom in hundreds of molecules 

sampled in several thousand variables. The high number of variables increases the risk of spurious 

correlations and this is a fundamental problem in non-targeted and comprehensive analyses5. A way to 

counter the curse of dimensionality is to have a sufficient number of samples compared to the number of 

variables and to avoid inflating the number of variables if possible. In this case, the NMR spectra of 838 

subjects’ blood samples were transformed into a less redundant representation by using integrals of 189 

identified spectral regions. These peak regions were further reduced to 129 variables as some regions 

contained resonances from the same chemical compounds (see Supplementary Appendix). Each 

individual region was carefully selected and assessed and, in order to avoid selection bias, the best 

approach for integrating was decided in a blinded way, i.e. without any knowledge of the outcome (cancer 

status). 

In addition to the NMR data, 47 variables were included which contain information about the lifestyle and 

phenotype of the subjects, resulting in a final dataset of 176 variables. A complete list of these additional 

parameters, which mainly relate to anthropometrics, life style habits such as smoking, alcohol intake and 

dietary habits, can be found in the Supplementary Appendix.  

 

RESULTS 

Forecasting cancer status 

Prior to data analysis, the samples were randomly split into two groups – one group containing 628 

samples and another group containing 210 samples. Each group contained equally many controls and 

future breast cancer patients. The larger group – the calibration set – was used for building a prediction 



model. The smaller set was only used subsequently as a test set, to validate the predictive quality of the 

resulting model.  

A complex biological problem such as future cancer development is unlikely to be well described by a 

single or a few biomarkers. It is necessary to investigate the multivariate complex pattern of variation in 

the current data in order to extract all the relevant information.  

This is also evident when examining the performance of individual variables for the given data. The best 

single variable for classification was identified as an NMR spectral region ranging from 3.116 to 3.132 

ppm (called “3.12 ppm” in the following). Using this single variable in linear discriminant analysis, yields a 

fairly low sensitivity of 0.65 and a specificity of 0.55 on the test set (Figure 1 bottom shows “3.12 ppm” for 

calibration). As another example of a univariate approach, consider the number of years using hormone 

replacement therapy (variable “HRT – years of use”). This is an established risk factor for breast cancer6. A 

linear discriminant analysis using just hormone replacement therapy yields a specificity of 0.85 but a 

sensitivity of 0.29 and a plot of this variable (Figure 1 top) clearly shows the limited discriminatory power 

of this risk marker. The present dataset is rather high in the number of samples and therefore also in 

statistical power. Null hypothesis testing of “HRT – years of use” and “3.12 ppm” reveals apparent strong 

results (pHRT – years of use = 0.00001 and p3.12 ppm = 0.0000001). Although these results suggest real differences 

between cases and controls on the population level, it is clear from Figure 1 that these variables offer 

close to no power in terms of predicting the status of an individual. 



 

Figure 1. (Top) Years of hormone replacement therapy for the 628 persons in the calibration set. It is clear that there is little 

discriminatory power in this measure. Using it for classifying, the test set will yield a classification error of approximately forty 

percent. (Bottom) Similar plot of the best discriminatory variable (3.12 ppm).  

Rather than using single variables, it is imperative to use a sufficient number of relevant variables to 

reflect the biological patterns that relate to the given endpoint. The chemometric classification model 

Partial Least Squares Discriminant Analysis (PLS-DA)7, 8 allows building multivariate classification models 

with correlated variables. Thereby data fusion of the NMR and additional variables is possible9. By using 

cross-validated variable selection10, 11, a classification model was determined using 28 of the original 

variables. The model provides a hitherto unseen effective means for forecasting breast cancer and is 

visualized in Figure 2. The model is built using eight PLS components, only two of which are depicted in 

the figure. Variables close to the position of ‘Cancer’ are positively correlated to cancer incidence and 

those opposite to cancer are negatively correlated within these PLS components. Note, that variables may 

be positively correlated in one dimension but negatively correlated in others. 
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Figure 2. Loadings of a PLS-DA model. Variables in the direction of Cancer are positively related to cancer incidence whereas 

variables in the opposite direction are negatively related within the two components. Note, that the plot only shows two of a total of 

eight PLS components that are used in the PLS-DA model.  

Validation is of utmost importance, especially when the variable to sample ratio is high and the relevant 

signals are deeply buried in the data. Oftentimes, the so-called score plot is used as an indication of group 

separation, but this can easily lead to overly optimistic interpretations5. The situation can become even 

more misleading when orthogonal signal correction is used as the model quality remains the same, while 

possible score plots will show even better apparent separation regardless that the actual classification 

ability has not improved. Instead of relying on score plots, the classification power must be assessed using 

independent samples. In the present study, the high number of samples, the reduction in number of 

variables and the high-quality experimental data lead to a robust model as evidenced by the similarity of 

the receiver operating characteristic (ROC) curves 12 from the calibration model, the cross-validated 

model and even from the test set (Figure 3).  
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Figure 3. Receiver operating characteristic curves for the PLS-DA model of 28 selected variables during calibration (blue), cross-

validation (green) and test set (red). 

The sensitivity/specificity obtained is 0.84/0.85 for the calibration set, 0.82/0.83 for cross-validation and 

0.80/0.79 for the 210 samples in the test set that have not taken part in the model building. The predicted 

cancer class membership of the test set samples is seen in Figure 4. In comparison to the univariate 

relations shown in Figure 1, it is clear that the multivariate discriminatory power is much stronger. 

 



 

Figure 4. Cancer model based on 28 selected variables. Prediction of cancer status of test set. Horizontal line is the selected threshold 

for assigning a sample to either class.  

 

DISCUSSION 

Understanding the classification model 

While variable selection can lead to improved predictions10, this must not be confused with subsequent 

interpretations of how variables are causally related to cancer development. The classification model is 

based on an eight component PLS-DA model. This means that there are eight underlying ‘variations’ – an 

eight-dimensional subspace – that, when combined, can predict cancer status. The 28 selected variables 

shown in Figure 2 are merely indicators of this eight-dimensional subspace. It is important to note that 

other variables could have been selected and serve as a probe of the subspace as well.  

With respect to interpretation, all variables that are correlated must be assessed in a combined manner. It 

is the pattern of variables rather than the individual variables that is biologically meaningful for 
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interpretations. We call the underlying pattern reflected by the relevant variables a bio-contour. We use 

this term deliberately to enforce an understanding that the temptation to pick out individual biomarkers 

and elevate these to be causal markers for explaining this complex biological phenomenon is a misleading 

avenue and has, in fact, led to very little progress so far13, 14.  

For example, a statistically significant predictive variable may be years of HRT use. However, this variable 

may merely be indirectly correlated because it is associated with the actual causal factor, in this case 

possibly the activation of cell division by estrogen signaling. Selection of significant variables has at best 

only some indirect relation to causality. This is especially true for untargeted analyses. 

 

Figure 5. All variables relevant for predicting cancer status. Variables encircled by a black line are the actually chosen variables in the 

final model and color intensity and size of the circle indicate how often a given variable is chosen during resampling 

(bootstrapping15) of the variable selection. This allows assessing how unique a certain selection is. The plot is similar to Figure 2 but 

now represents the complete bio-contour projected onto the two-dimensional space. Note that the known marker hormone 

replacement therapy (“HRT – years of use”) is not selected as often as for example, the variable “3.12 ppm” (lower middle plot), 

representing a ‘preventive’ factor related to the second disease component.  

 

-0.4 -0.2 0 0.2 0.4
-0.3

-0.2

-0.1

0

0.1

0.2

Phenylalanine

Glyceryl

Ethanol
8.85 ppm

Formate
8.22 ppm8.2 ppm

7.38 ppm

7.17 ppm

7 ppm
5.71 ppm

4 ppm

Creatine

3.14 ppm

3.12 ppm

2.99 ppm 2.95 ppm

2.93 ppm

2.91 ppm

2.8 ppm
2.77 ppm

2.49 ppm 2.45 ppm

2.43 ppm

2.4 ppm

2.37 ppm

2.36 ppm
2.34 ppm

2.3 ppm

2.17 ppm
2.14 ppm

2.12 ppm

2.08 ppm

Acetate

1.67 ppm

Cholesterol_1 (NMR)

0.15 ppm

4.09 ppm

1.43 ppm

Syst. blood pressure

Serum cholesterol (ref.) HRT - years of use

Lean dairy products Cancer

PLS Component 1

P
LS

 C
om

po
ne

nt
 2

Seldom selected
In final model
Correlation >0.8



The shape of the bio-contour is indicated in Figure 5, where it is illustrated how the eight-dimensional 

space is related to all the measured variables shown for the two first dimensions of the model. Each 

dimension of the bio-contour may be interpreted as representative of a ‘pseudo-etiology’ containing 

complex biological information associated with – but not representing – causality. The link to causality 

will, in most cases, not be direct, and causal claims will necessarily have to come from other theories than 

the empirically observed correlations.  

Cholesterol is seen in the plot as a variable that is often selected and which is in a ‘protective’ position in 

the first component of the biocontour but neutral in the second component. In the remaining components, 

cholesterol has opposing effects and overall only a moderate but positive total effect on the prediction of 

cancer. Note, though, that observed correlations and effects in a biocontour can even be opposite to the 

actual biological effect. This can happen e.g. if cholesterol is also affected by other aspects that has an 

opposing effect on cancer. This can be termed a luring correlation. Cholesterol is well known to have a 

complex relationship with breast cancer, which is supported by the observations here16. 

It needs to be considered that the model forecasts diagnosis of breast cancer and not necessarily 

aggressively progressing disease. Some of the women diagnosed with breast cancer may have a slow 

growing tumor that would never have affected lifespan if not discovered; on the other hand, some of the 

included controls may have an undiagnosed tumor.   

In this study, we have described a bio-contour that can forecast diagnosis of breast cancer several years 

ahead. It has been exposed to strong internal validation, but its applicability for other populations of 

women with other diets, lifestyles, medications and habits remains unproven. The global validity of the 

bio-contour needs to be tested on future datasets. In addition, the method should be tested against 

traditional screening tools. 



The perspectives in early detection of cancer by use of bio-contours from blood samples and life style 

factors from apparently healthy persons are of worldwide importance. We advocate that bio-contours get 

a much more prominent role in cancer prediction and disease diagnostics. At the same time, it is stressed 

that predictive models from empirical data can never form the actual basis of a causal interpretation. 

Empirically observed correlations or effects can be misleading because they are spurious, indirect or 

luring (affected by other variations that also have an effect). These different problems all lead to different 

limitations that must be considered when interpreting models. Observed model parameters, though, may 

be used as a lead for generation of new hypotheses in an exploratory fashion.  
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Supplementary Appendix 
 

Study population 

The present study is based on data from the prospective Danish Diet, Cancer and Health (DCH) cohort 

study. A total of 57,053 men and women were enrolled into the cohort in 1993-1997 and were included if 

they fulfilled the following criteria: age between 50-64 years, born in Denmark and no previous cancer 

diagnosis in the Danish Cancer Registry. A detailed food frequency questionnaire (FFQ) and lifestyle 

questionnaire were filled in by each participant. Development and validation of the FFQ is described 

elsewhere. The FFQ contained questions regarding 192 food and beverage items and was developed to 

obtain information on the participants’ habitual diet during the preceding year. Biological and 

anthropometric measurements were taken including height (m) and weight (kg), from which body mass 

index (BMI) was calculated (kg/m2) as well as a non-fasting 30 mL blood sample. Citrate was used as the 

anticoagulant. The blood samples were spun and divided into fractions of citrate plasma, serum, red blood 

cells, and buffy coat and stored in 1 mL tubes. All samples were processed and frozen within two hours at 

-20°C and were ultimately transferred to liquid nitrogen vapor (max. -150°C). Shortly before NMR 

analysis, samples were retrieved from the bio-bank and stored at -80°C. For the current project, the 

plasma fraction was used. A thorough description of data collection has been published elsewhere 2.  

 

From the DCH cohort, a combined study population of 3510 persons was created, consisting of three case 

groups: breast cancer (433), colon cancer (428) and coronary heart disease (1149) as well as a sub-cohort 

(1500 persons) to be used as a reference group for all. After exclusions due to insufficient sample volume 

or low data quality, the total study population consisted of 3,419 persons, of which 419 were breast 

cancer cases. As only the breast cancer case group was used for this project, no further mention will be 

made of the two remaining case groups. The sub-cohort consists of 1500 persons (750 men, 750 women) 



who were chosen randomly in the DCH cohort, and only the women in the sub-cohort were used in this 

investigation.  

 

Follow-up and ascertainment of cases 

Information on breast cancer incidence was obtained by linkage of the personal identification number of 

each participant to the Danish Cancer Registry, and follow-up was nearly complete (99.8%). All cohort 

members were followed up for primary breast cancer diagnosis from the date of their visit to the study 

clinic until the date of diagnosis of any cancer (except for non-melanoma skin cancer), date of death or 

emigration, or December 31, 2000, whichever came first. Furthermore, the Danish Breast Cancer Co-

operative Group (DBCG) has information on estrogen receptor (ER) status (ER+ or ER-) for approximately 

90% of all Danish breast cancer cases, and ER status was available for 384 of the 419 breast cancer cases 

in this study. 

 

NMR analysis 

The plasma samples were measured using 1H CPMG-presat and 1H NOESY-presat NMR spectra according 

to a standardized and highly automated procedure for sample preparation, handling and analysis on the 

basis of the guidelines introduced by Bechonert et al 3. In the NOESY-presat data, the water-resonance is 

suppressed, but otherwise all components are observed in a quantitative manner. In the CPMG-presat 

data, also resonances from large molecules such as proteins are suppressed, which facilitates easier 

identification of small molecules. 

The NMR spectra have been subjectively evaluated by spectroscopists and data analysts in order to 

exclude as many noise regions from the data as possible and to include all peaks present. The 



spectroscopists and data analysts were blinded to the case/control status. Many of the peaks were present 

in both the CPMG-presat and NOESY-presat spectra and were only selected in one of these. The majority of 

the peaks were selected from CPMG-presat as there was generally a more well defined baseline in these 

spectra due to the suppression of protein resonances. In total 181 intervals from CPMG-presat and eight 

intervals from NOESY-presat were selected. The 189 intervals were individually baseline corrected and 

integrated by means of either Multivariate Curve Resolution (MCR) 17, the area under the peak or the 

height of the peak. Peak height provides a reasonable estimate of concentration (up to a scaling) when the 

line shapes of the peak in different samples are similar. Peak height has been used for integrating when 

e.g. baseline resolution was difficult to achieve. Integrating peaks leads to one value instead of a lineshape 

for each peak. For one peak, two MCR components were used instead of one. Many intervals represent the 

same compounds. For the intervals which have been assigned 18, those originating from the same molecule 

have been summed, meaning that all assigned compounds are only represented once. Consequently, the 

NMR data contribute with a total of 129 discrete integrated variables. The assigned peaks and areas in the 

NMR spectrum can be seen in Figure 6.  
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Figure 6. 1H CPMG-presat NMR spectra with annotation for selected spectral regions: a) 5.6-9.2 ppm, b) 2.7-5.6 ppm, and c) 0.3-2.7 ppm. 

In each region, the sub-spectrum is vertically scaled according to the most intense resonance. The average spectrum is shown. 

 

Additional data 

The additional variables included in the data analysis stem from the dietary and lifestyle questionnaires 

that were collected at baseline in the DCH cohort and from clinical markers obtained initially. More than 

1000 variables were potentially available; however, of these variables, some are derived directly from the 

questionnaire, while others are summed or cumulated variables. We chose the ones that were deemed 

most relevant through a careful selection process prior to the data analysis. A total of 47 dietary and 

lifestyle variables were chosen based on knowledge of factors known or speculated to be important for 

cancer or heart disease development. The additional data included in the data analysis contribute with 

additional information regarding the life styles of the persons and are shown below with a short 

description (Table 1). 

Table 1. Additional variables included in the classification model. 

Variable Explanation 

Age >35 at first birth 

or no births 

Older than 35 when having the first child OR have not 

given birth at all 

Age at birth of first 

child 

Age at first child birth 

Alcohol intake Alcohol (grams/day) 

Alcohol intake 

(cumulated) 

Cumulative alcohol, excluding pauses (units/week) 



Amount of body fat Fat weight (amount of fat mass in the body) (kg) 

BMI Body mass index (kg/m
2
) 

Carbohydrate intake Carbohydrates (grams/day) 

Coffee intake Coffee (grams/day) 

Dietary fibre intake Dietary fibre (grams/day) 

Energy intake Total energy intake, incl. alcohol (kJ/day) 

Fat intake Fat (grams/day) 

Fat pct. Fat percent in diet 

Fatty dairy products Dairy products, fatty (grams/day) 

Fruit intake (no 

juices) 

Fruits (excl. juices) (grams/day) 

Fruits (incl. juice) All fruits (incl. juices) (grams/day) 

Glycemic index 

(carbohydrates) 

Overall glycemic index (based on all carbohydrates) 

(grams/day) 

Glycemic load 

(carbohydrates) 

Overall glycemic load (based on all carbohydrates) 

(grams/day) 

Height Standing height (cm) 

High level school Highest level school education 

Hip circumference Hip circumference (cm) 

HRT – years of use Years of HRT use 

Intake of rye bread Rye bread (grams/day) 

Juice intake (fruit 

and vegs) 

Juices (fruit and vegetable) (grams/day) 



Lean dairy products Dairy products, lean (grams/day) 

Level of serum 

cholesterol 

Level of serum Cholesterol (mmol/L) 

Low level school Low level school education 

Marine omega-3 Marine fats (n-3) in diet (grams/day) 

Medium level school Medium level school education 

Mono unsaturated 

fatty acids 

Monounsaturated fat (grams/day) 

Number of births Number of births 

Poly unsaturated 

fatty acids 

Polyunsaturated fat (grams/day) 

Potato intake All potatoes (grams/day) 

Processed meat Processed meat (grams/day) 

Protein intake Protein (grams/day) 

Red meat Red meat (grams/day) 

Saturated fatty acids Saturated fat (grams/day) 

Sugar intake Total, all sugars (grams/day) 

Syst. Blood pressure Blood pressure, systolic 

Total exercise (MET 

score) 

MET-score, hours/week 

User of nsaid Current user of NSAIDS, including aspirin (self-reported) 

Vegetables (incl. 

juice) 

All vegetables (incl. juices) (grams/day) 



Water intake Water (grams/day) 

Waist circumference Waist circumference (cm) 

Waist/hip ratio Ratio of waist to hip 

Weight Weight (kg) 

Years of quitting 

smoking 

Time since smoking cessation (years) 

Years of smoking Smoking duration (years) 

 

 

Data analysis 

All data preprocessing and data analysis was carried out in MATLAB 2013A, The MathWorks Inc., Natick, 

MA, 2013 and with the chemometric toolbox PLS_Toolbox 7.0.3,  Eigenvector Research, Inc., Wenatchee, 

WA, 2013. After integration of peaks, the 129 peak variables and the 47 additional variables were kept in a 

single dataset. Before further analysis, the data was randomly split into a calibration set of 628 samples 

and a test set of 210 samples. The fraction of cancer and non-cancer diagnosed samples were kept the 

same in the two sets. The particular split size was rather arbitrarily made as a compromise of having as 

many samples as possible for building the calibration model, yet retain enough samples in the test set to 

be able to get sufficiently robust test set results. 

Variables for the calibration model were selected based on interval Partial Least Squares regression – 

iPLS19 using only the calibration data and scaling each variable to unit standard deviation within the 

cross-validation. Variables were added one by one in a forward selection as long as the model improved. 

As a criterion for selection, the cross-validated classification error was used in an automated fashion. 



Cross-validation was performed using ten randomly selected segments and this cross-validation was 

repeated ten times for each step. This quite conservative repetition of randomly selected segments 

provides a practical means for avoiding spurious correlations but has no effect on luring or indirect 

correlations. The assessment of how often each variable was selected was based on bootstrapping this 

approach 100 times. Note, that the bootstrapping has no effect on the actually selected variables and the 

quality of the model. It merely provides means for assessing the variability in the selection method. 

Upon selecting variables, a final PLS discriminant model was made on the selected variables using 

autoscaling and selecting the number of PLS components based on the same cross-validation as above and 

on minimum cross-validated classification error. This model was used for predicting the class assignments 

on the test set with the prior selected variables. 
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Abstract Fluorescence spectroscopy Excitation Emission

Matrix (EEM) measurements were applied on human blood

plasma samples from a case control study on colorectal

cancer. Samples were collected before large bowel

endoscopy and included patients with colorectal cancer or

with adenomas, and from individuals with other non

malignant findings or no findings (N = 308). The objective

of the study was to explore the possibilities for applying

fluorescence spectroscopy as a tool for detection of colo-

rectal cancer. Parallel Factor Analysis (PARAFAC) was

applied to decompose the fluorescence EEMs into esti-

mates of the underlying fluorophores in the sample. Both

the pooled score matrix from PARAFAC, holding the rel-

ative concentrations of the derived components, and the

raw unfolded spectra were used as basis for discrimination

models between cancer and the various controls. Both

methods gave test set validated sensitivity and specificity

values around 0.75 between cancer and controls, and poor

discriminations between the various controls. The PARA-

FAC solution gave better options for analyzing the

chemical mechanisms behind the discrimination, and

revealed a blue shift in tryptophan emission in the cancer

patients, a result that supports previous findings. The

present findings show how fluorescence spectroscopy and

chemometrics can help in cancer diagnostics, and with

PARAFAC fluorescence spectroscopy can be a potential

metabonomic tool.

Keywords Fluorescence spectroscopy � Colorectal

cancer � Chemometrics � PARAFAC � Metabonomics

1 Introduction

The idea of using autofluorescence measurements of blood

to discriminate people with cancer from non-cancer was

first presented by Leiner, Wolbeis and co-workers in the

1980s. They considered the fluorescence excitation emis-

sion matrix (EEM) of a diluted blood serum sample as a

base for pattern recognition to monitor the health status of

a person. The hypothesis was that, due to the high sensi-

tivity of fluorescence spectroscopy, it would be possible

to observe even small deviations in the fluorescence spec-

trum from ‘‘normal’’ healthy subjects to diseased subjects

(Leiner et al. 1983, 1986; Wolfbeis and Leiner 1985). This

hypothesis actually fits well into the present theories of

metabonomic based diagnostics. Metabonomic based

diagnostics explores metabolites in a biological system and

its response to a stress situation such as disease. Metabo-

nomics is often based on non-targeted quantitative and

qualitative measurements using nuclear magnetic reso-

nance spectroscopy (NMR) or chromatography [liquid

(LC) or gas (GC)] combined with mass spectroscopy (MS)

(Nordström and Lewensohn 2010; Zhang et al. 2007).

In the present study we explore the possibilities for
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introducing fluorescence spectroscopy of blood plasma

samples as an alternative metabonomic tool for detection

of cancer.

Other publications have followed up on the work from

Leiner and co-workers or applied other strategies in using

autofluorescence on blood to detect cancer (Hubmann et al.

1990; Kalaivani et al. 2008; Leineret al. 1986; Madhuri

et al. 1997, 1999, 2003; Masilamani et al. 2004; Nørgaard

et al. 2007; Uppal et al. 2005; Xu et al. 1988). Different

approaches have been used; some use extracts or controlled

fractions of the plasma, whereas others use the plasma

or serum merely diluted or with no sample treatment at

all. The studies by Madhuri et al. (1999, 2003) and by

Masilamani et al. (2004) use an acetone extract of blood

plasma in order to reduce spectral interference in their

attempt to measure emission from porphyrins. The results

from these studies show elevated levels of porphyrins in

cancer patients compared to healthy patients. In the present

study we will therefore also have a focus on emission from

porphyrins.

Common for almost all of the previous studies was the

use of only few or single specific wavelength pairs as

opposed to the whole spectral approach combined with

chemometrics used in the present study. Only the study

from Nørgaard et al. (2007) applied chemometrics in their

data analysis, and they got promising results on serum

samples from breast cancer patients. The use of chemo-

metrics allows us to use the whole spectrum instead of

focusing on single wavelength pairs. Multivariate data

analysis/chemometrics is a cornerstone in metabonomics

used to extract important information from the complex

data output, and hereby hopefully identify specific metabo-

lites with discriminatory or predictive ability (biomarkers)

that can be used e.g. for a diagnostic purpose (Ragazzi

et al. 2006; Ward et al. 2006). The lack of methods to

extract the useful information from the EEMs was exactly a

problem for Leiner and co-workers and hence, despite the

rather complex EEM measurements, the outcome of their

analysis was a simple ratio between two wavelength pairs.

In the present study, we apply chemometrics on the fluo-

rescence spectra to discriminate between blood plasma

samples from colorectal cancer (CRC) patients and healthy

individuals. We apply two different methods of data

analysis; one which has been applied previously using the

raw spectra as input to the classification model, and one

where we extract underlying chemical information from

the spectra by Parallel Factor Analysis (PARAFAC) (see

materials and methods for a description of PARAFAC).

The combination of fluorescence spectroscopy and

PARAFAC has not previously been applied in a diagnostic

test approach. The combination of PARAFAC and three-

way fluorescence data (the EEMs) is especially fruitful, as

the parameters of the PARAFAC model can be seen as

estimates of the relative concentrations (scores) and the

emission and excitation spectra (loadings) of the fluoro-

phores in the sample (Andersen and Bro 2003; Bro 1997).

As for conventional NMR and LC–MS this chemical

identification opens for fluorescence spectroscopy as a

metabonomic tool.

Fluorescence spectroscopy is widely applied in bio-

marker research though almost solely in the field of labeled

fluorescence, where designed fluorescence probes are used

to detect the presence of specific biomarkers (Hamdan

2007). In autofluorescence or intrinsic fluorescence, natu-

rally occurring fluorophores are measured with or without

minimal sample preparation (Lakowicz 2006). The number

of fluorophores in a blood sample is limited compared to

the number of compounds detectable by MS and NMR,

though among the fluorophores, biologically important

compounds are found. In blood for example, the amino

acids tryptophan, tyrosine and phenylalanine and also some

cofactors and flavonoids NAP, NAD(P)H, FAD are among

the fluorophores (Wolfbeis and Leiner 1985). Compared to

MS and NMR, fluorescence spectroscopy is highly sensi-

tive and can thus measure concentrations down to parts per

billion (Lakowicz 2006). The fluorescent signal from a

fluorophore is dependent on the surrounding environment.

For example, tryptophan groups in different proteins or on

different positions in the same protein can have different

excitation and emission maxima, and can thus be distin-

guished from each other (Abugo et al. 2000). In fact Leiner

et al. (1986) showed a difference in the fluorescence from

the amino acid tryptophan in human serum from healthy

individuals and patients with gynaecological malignancies.

In the practical data acquisition, fluorescence spectros-

copy has some advantages compared to both traditional

metabonomic techniques. Sample preparation is limited to

a minimum of only diluting the sample, and the time of

acquisition can be down to few minutes, depending on the

spectral area covered and the integration time. A spectro-

fluorometer can be small and compact compared to MS and

NMR, and the price is often much lower. Compared to

standard diagnostic tools such as X-ray, MR and CT

scanning, fluorescence spectroscopy is very cheap, but at

the present stage not a viable alternative. Compared to

targeted methods for single biomarkers based on immuno-

chemical tests the onetime investment in fluorescence

spectroscopy is, like in MS and NMR, relatively high, but

the running costs are much lower, and fluorescence spec-

troscopy is faster and easy to use.

Some drawbacks of fluorescence spectroscopy are the

instrument dependent results that call for spectral correction

before they are globally comparable (DeRose and Resch-

Genger 2010). The fluorescence intensity is also highly

dependent on the overall absorbance of the sample. At low

concentrations of fluorophores (and/or low absorbance), the
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linear relation between concentration and intensity known

from Lambert-Beers law is also valid in fluorescence

spectroscopy. At higher concentrations/high absorbance

this relation is broken. This phenomenon is called concen-

tration quenching or the inner filter effect (Lakowicz 2006).

Blood plasma is highly absorbent, and thus precautions

must be taken to avoid or reduce inner filter effects. In the

present study the samples are both diluted and undiluted.

For the undiluted samples the pathway of the exciting light

is reduced to reduce absorbance.

Colorectal cancer is one of the most frequent malignant

diseases for both women and men in the western world. In

Denmark in 2008, 4194 cases of CRC were diagnosed, which

accounted for more than 12% of all malignant diseases (The

Danish Cancer Society 2010; The Danish National Board of

Health 2010). The 5-year survival rate of CRC patients is

approximately 50%, only ovarian, lung, and pancreas can-

cers have lower rates (UK, national statistics, 2010). The low

rate is primarily due to high recurrence frequencies in some

patients undergoing intended curative resection and dis-

seminated disease at the time of diagnosis in other patients.

At present fecal occult blood test (FOBT) combined with

subsequent colonoscopy in those with positive tests is the

method of choice for early detection of colorectal cancer. In

recent years national screening programs based on FOBT

have been introduced in several countries. The FOBT has

been criticized for limited compliance rates, which reduce

the advantage of the test, and therefore new, improved

screening modalities with high compliance rates are urgently

needed (Jenkinson and Steele 2010). The only accepted

serum biomarker for CRC is carcinoembryonic antigen

(CEA), but with sensitivity and specificity values of 0.34/

0.93, this is only accepted for prognosis after detection.

Other biomarkers have been suggested with similar or better

performance, for example free DNA (Flamini et al. 2006)

and plasma lysophosphatidylcholine levels (Zhao et al.

2007). None of these biomarkers have yet been clinically

accepted. In search for alternative methods with improved

detection rates, and/or better compliance rates in screening

for CRC, a metabonomic approach with broad unbiased

search for changes in the metabolic profile is a possible

solution. Interesting results have been published by Ward

et al. (2006) by use of MALDI MS. The present paper will

explore whether a solution with fluorescence spectroscopy

could be an interesting approach.

2 Materials and methods

2.1 Samples

Human plasma samples (sodium citrate anticoagulant)

from 308 individuals were used for the experiment. The

samples are a part of a larger sample set from a multi-

centre cross sectional study conducted at six Danish hos-

pitals of patients undergoing large bowel endoscopy due to

symptoms associated with CRC (Nielsen et al. 2008). The

present sample set is designed as a case control study with

one case group (verified CRC) and three different control

groups. The three control groups are (1) healthy subjects

with no findings at endoscopy, (2) subjects with other, non

malignant findings and (3) subjects with pathologically

verified adenomas (Lomholt et al. 2009). Each of the groups,

case and controls, consisted of samples from 77 individuals.

Additional control samples, standardized pooled human

citrate plasma, were purchased from 3H-Biomedical AB,

Sweden.

2.2 Sample handling and data acquisition

Before measurements, the samples were defrosted on wet

ice (0�C) for app. one hour, or until thawed, and each

sample was divided in four aliquots of 200 lL to 1 mL for

different analytical methods. The divided samples were

immediately refrozen at -80�C. The standardized plasma

samples were received in 50 mL aliquots, and stored at

-80�C. Before use they were thawed at 0�C and divided

into aliquots of 300 lL, and refrozen at -80�C. For fluo-

rescence measurements, the samples were defrosted on wet

ice (0�C) for app. 40 min.

The samples were measured both undiluted and in a

hundred fold dilution in Phosphate Buffered Saline (PBS)

(pH 7.4). The diluted samples were prepared immediately

after the samples were thawed, and then stored on wet ice

(0�C) until measured (app. 20 min). The non diluted frac-

tions of the samples were measured as fast as possible after

thawing. Fluorescence spectra were acquired on an FS920

spectrometer (Edinburgh Instruments) with double mono-

chromators and a red sensitive photomultiplier (R928P,

Hamamatsu) in a cooled detector house. The EEMs were

acquired for the samples using the following settings.

Diluted and undiluted samples were measured with exci-

tation from 250 to 450 nm with a 5 nm increment, and

emission from 300 to 600 nm with a 1 nm increment.

Integration time was 0.05 s. This spectral area consists of

light in both the ultra violet and visual area. The ultra violet

area is dominated by excitation and emission from the

aromatic aminoacids tyrosine and tryptophan hence the

fluorescence from proteins. The visual area covers among

other things excitation and emission from vitamins and

cofactors (for example riboflavin and NAD(P)H) (Wolfbeis

and Leiner 1985). In an attempt to capture emission from

porphyrins, additional EEMs were acquired from the

undiluted samples with excitation wavelengths from 385 to

425 nm with a 5 nm increment and emission wavelengths

from 585 to 680 nm with a 1 nm increment, and an
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integration time of 0.2 s. Every day a spectrum of the PBS

used for dilution was measured with the same settings as

the diluted samples. Excitation and emission slit widths

were set at 4 nm for all measurements. The fluorescence

data were corrected for the wavelength dependent excita-

tion intensity by an internal reference detector in the

spectrometer. Likewise the spectra were corrected for

instrument dependent emission spectral biases by a cor-

rection factor supplied with the instrument. Total time

spent for measuring all three EEMs was app. 40 min.

Diluted samples were measured in a 10 9 10 mm

quartz cuvette. To reduce inner filter effect in the undiluted

samples, these were measured in a 2 9 10 mm quartz

cuvette with the 2 mm in the emission direction.

An external cooling system was mounted on the spec-

trometer keeping the measurement temperature constant at

15�C. To monitor the performance of the fluorescence

instrument, a standard plasma sample was measured every

day. All spectra were saved as ASCII and exported to

Matlab� by an in-house routine. The raw spectra are

available for download at http://www.models.life.ku.dk/.

2.3 Data analysis

Some samples were discarded due to either obviously

erroneous measurements, or too little sample material.

From the three different EEMs acquired, the numbers of

samples ready for data analysis were then 301, 295 and 300

from low wavelength undiluted, high wavelength undiluted

and diluted, respectively. Before the actual data analysis,

the data were subjected to certain signal processing steps

meant to appropriately handle and minimize the influence

from non-relevant artifacts. When measuring fluorescence

EEMs, non-chemical phenomena such as Rayleigh scatter

and second order fluorescence may be present (Lakowicz

2006). These were removed and replaced with missing data

and zeros using in-house software (Andersen and Bro

2003). For the diluted samples, a background spectrum of

the solute PBS, measured the same day as the sample, was

subtracted from each sample in order to remove possible

Raman scatter (McKnight et al. 2001). All samples were

intensity calibrated by normalizing to the integrated area of

the water Raman peak of a sealed water sample measured

each day prior to the measurements. This converts the scale

into Raman units and allows comparison of intensity of

samples measured on other fluorescence spectrometers

(Lawaetz and Stedmon 2009).

A data reduction/decomposition of the fluorescence

EEMs to less complex features was performed using the

multi-way decomposition method called PARAFAC. A set

of fluorescence EEMs can be seen as a three-way data array

(I 9 J 9 K), where I is the number of samples measured

(objects), J the number of emission wavelengths, and K the

number of excitation wavelengths. Just as PCA is decom-

posing a two-way data matrix, a three-way data structure

can be decomposed by PARAFAC into a number of latent

PARAFAC components, by minimizing the sum of squared

residuals e in the PARAFAC model (equation below).

Xijk ¼
XF

f¼1

aif bjf ckf þ eijk

aif is the ith element of the score vector, bjf the jth element

of the loading vector of the emission mode and ckf the kth

element of the loading vector for the excitation mode, for

the fth PARAFAC component. If the correct number of

PARAFAC components is used to decompose data with an

approximately true trilinear structure and an appropriate

signal to noise value, the solution from the PARAFAC

model will give estimates of the true underlying profiles of

the variables. This makes PARAFAC perfect for fluores-

cence spectroscopy when applied on EEMs. The loadings

and scores can be treated as estimates of the excitation and

emission spectra, and relative concentrations of the fluo-

rophores in the samples respectively (Andersen and Bro

2003; Bro 1997).

PARAFAC models were fitted applying nonnegativity

constraints on all parameters in the model (Andersen and

Bro 2003); hence the estimated parameters were found in

such a way that they would not be negative. Models were

validated by split-half analysis (Harshman and DeSarbo

1984) combined with trained judgment of the loadings.

PARAFAC models were fitted separately to each of the

three sets of EEMs. The score matrices from the PARA-

FAC analyses were pooled to one matrix with 19 variables,

which were subjected to further data analysis. PCA was

fitted to get a preliminary overview of the data. Classifi-

cation models were built using PLS-DA, a PLS regression

with the pooled PARAFAC scores as independent X vari-

ables and a dummy matrix as the dependent Y variable

with ones for samples belonging to the class, and zeros for

samples not belonging to the class (Wold et al. 2001).

Forward selection was applied for variable selection. For

all classifications, the data sets were divided into training

and test sets (10–30% in test set). The training sets were

used for model building, and the test samples were used for

validating the models. During model building of the

training sets, the models were cross validated with 10% of

the samples randomly removed in each segment and

averaging over ten repetitions for each cross-validation run.

The test sets for subsequent model validation were ran-

domly selected from the data with the same relative

number of samples removed from each class.

As an alternative to building classification models on the

three combined PARAFAC score matrices, classification

was tried directly with the raw spectra as the independent
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variables. Variable selection was applied using Interval

PLS (iPLS) (Nørgaard et al. 2000). Before the direct

classification the three-way array of EEMs were unfolded

to a two-way matrix.

All data analyses were performed in Matlab R2010�

(The Mathworks Inc.) and chemometric analyses were

performed in PLS_Toolbox v.5.8.2 (Eigenvector Research,

Inc).

3 Results and discussion

Spectra from the three setups are seen in Fig. 1. Comparing

the spectra from one undiluted sample and a sample diluted

100 times (leftmost and rightmost spectra respectively in

the figure) the effect of dilution is clear. In both the raw

undiluted sample and in the diluted, the major peak is in the

region with fluorescence from the aromatic amino acids

tryptophan and tyrosine (phenylalanine is also among the

fluorescing amino acids, but it has excitation/emission

maximum outside the measured area). For the undiluted

sample there are two distinct peaks in that area, whereas in

the diluted sample there is only one distinct peak. Fur-

thermore in the undiluted sample a distinct peak is seen

with emission maximum at a higher wavelength. The

complex peak structure indicates that it is a mixture of

several peaks, which could reflect analytes such as

NAD(P)H, FAD, Riboflavin etc. (Wolfbeis and Leiner

1985). This peak structure is not apparently visible in the

diluted sample.

It is also worth noticing that the intensity of the diluted

sample is higher than the raw. This shows that even though

the raw sample is measured in a micro cuvette, it still

suffers from inner filter effect. Though it was also observed

that the dilution in PBS buffer had an effect besides the

reduced inner filter effect, a slight blue shift was observed

in emission following excitation at 295 nm in the diluted

samples. This might be explained by a slight change in the

configuration of the proteins, which can change the emis-

sion profile.

The high wavelength area of the undiluted samples was

measured separately in order to capture possible fluores-

cence from porphyrins. In the diluted samples this area

gave no signal and was therefore not measured. In Fig. 1,

middle plot, the high wavelength area primarily shows the

descending tail of a peak with maximum outside the

measured area, but a closer inspection of the EEM reveals a

little bump at app. 405/610 nm which is in accordance with

literature values of porphyrin fluorescence (Madhuri et al.

2003).

In order to monitor the performance of the fluorescence

spectrometer, a standard plasma sample was measured

every day. The standard deviation among these standard

samples was up to five times lower than the standard

deviation for the real samples, indicating good performance

of the instrument and consistent sample handling, and at

the same time revealing a large biological variation among

the real samples.

On each of the three measured areas, a PARAFAC

model was fitted. Due to the high complexity of the plasma

matrix and the large biological variation in the samples, a

large number of PARAFAC components was expected,

which makes modelling more challenging. For the undi-

luted samples in the main spectral area (excitation from

250 to 450 nm, emission from 300 to 600 nm), ten

PARAFAC components were chosen. To the spectra from

the diluted samples, a model of six PARAFAC components

was fitted. Only a reduced area of the spectra from the

diluted samples was used, as the highest emission and

excitation wavelengths did not contribute positively to the

model. To the last selected area, the high wavelength area

of the undiluted samples, a three component PARAFAC

model was fitted. The number of PARAFAC components

reflects the chemical rank of the system. For each com-

ponent we get a set of loadings and scores, which are

estimates of the excitation and emission profiles for the

underlying chemical compounds. The excitation and

emission loadings for the three models are seen in Fig. 2.

Many of the components can be identified chemically but

some are more difficult and even impossible to assign to

specific chemical analytes. Despite the large number of

PARAFAC components it is possible that some of these

peaks reflect more than one chemical compound and the

non-Gaussian peak shape of some of the loadings supports

this.

In case of ‘‘just’’ making a model to discriminate

between cancer and non cancer the issue would be to;

objectively and in an unsupervised manner reflect the

underlying variation, and then chemical assignment is of

secondary concern. On the other hand if we at the same

time want to gain knowledge about the reason for the

discrimination and hereby move fluorescence spectroscopy

into the world of metabonomics, chemical identification is

an important parameter. A perfect PARAFAC model will

give loadings which are estimates of the underlying exci-

tation and emission spectra, and therefore we expected

more unambiguous loadings with better options for

chemical assignment. The reason for such non-ideal

behaviour can be a low signal of some analytes, correlation

between different compounds or non-linear behaviour due

to quenching and similar phenomena. Given the relatively

low number of samples and that some of the samples are

not diluted, it is actually impressive that the PARAFAC

models come out as chemically interpretable as they do.

Still, we anticipate that the interpretability would be pos-

sible to improve if many more samples were included in
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the model and possibly also by using targeted standard

addition of hypothesized analytes in the modelling phase.

Qualified presumptions on the chemical origin of some

of the loadings are made. In both the undiluted and the

diluted samples, several loadings are seen with excitation

maximum from 250 to 305 nm, and emission maximum

from app. 330 to 350 nm. In this region, fluorescence from

protein-bound tryptophan is strong. The emission from

Fig. 1 Different EEMs

recorded on one sample. Left:
undiluted sample in main

spectral area. Middle: undiluted

sample in high wavelength area

(notice the axes are different

from the two other). Right:
sample diluted 100 times in PBS

Fig. 2 PARAFAC excitation

and emission loadings from the

three datasets. Upper: undiluted

main area. Middle: undiluted

high wavelength area. Lower:

diluted main area
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tryptophan can shift when the polarity of the microenvi-

ronment changes, hence tryptophan which is bound to

different proteins, or at the internal or external parts of a

protein, can give rise to different emission maxima. In fact,

literature values are reported for tryptophan emissions from

307 to 355 nm (Vivian and Callis 2001). This can explain

the numerous peaks for tryptophan emission. Some of the

excitation loadings fit well with excitation of tyrosine (app.

265 nm) whereas there is no emission loading supporting

the presence of tyrosine emission (app. 300 nm). Energy

transfer from excited state tyrosine to tryptophan is a

known phenomenon and a reasonable explanation of the

absent emission from tyrosine (Lakowicz 2006).

The peaks with maximum at higher wavelengths in both

the undiluted and diluted samples can possibly be assigned

to compounds such as NAD(P)H, FAD and FMN. In the

model from the high wavelength region, it is worth notic-

ing that the little, hardly visible ‘‘bump’’ in the pure spectra

gives a clear component with excitation/emission maxi-

mum at 400/620 which is in agreement with literature

values for porphyrins. There are two other components in

this model. One has excitation maximum at 420 nm, but

emission maximum outside the measured area, and the

other has both excitation and emission maxima outside the

measured area. The loadings are in agreement with some of

the peaks in the undiluted ‘‘main’’ area (two rightmost

peaks in Fig. 2 upper right), and could be tentatively

assigned to compounds such as NADH or flavins.

The score matrices from the three PARAFAC models

are ‘‘pooled’’ into one common score matrix. This matrix

now contains all the quantitative information extracted

from the fluorescence measurements. Thus we have

reduced the complex spectra with several thousand vari-

ables to a matrix with 19 variables consisting of estimated

relative concentrations of the underlying chemical com-

pounds of the plasma samples. This matrix is now the input

to a classification analysis. Note that absolutely no infor-

mation about the health status of the patients has been used

for building the PARAFAC models. This is important from

a validation point of view, as it ensures that the matrix is

simply an unbiased representation of the raw data.

3.1 Classification

The combined score matrix is used for building classifi-

cation models. An initial exploratory PCA analysis of the

score matrix explains 52% of the variation in the first three

components and needs more than 12 components to explain

95% of the variation. The somewhat low explained varia-

tion is most likely due to the biological variation in the data

and shows that the 19 PARAFAC scores are not overly

redundant. No clear separation of cancer and control

samples is found by the PCA analysis. There is thus no

unsupervised direction in the variable space directly sepa-

rating cancer from controls and hence the major part of the

variation in the data is not related to the cancer/non cancer

issue at all. Supplementary information such as age, gen-

der, smoking habits, and co-morbidity could not explain

further of this variation either. It is most likely just indi-

vidual differences.

The score matrix with 19 variables was used as input to

a PLS-DA classification model. During model building,

some samples were removed as outliers based on evalua-

tion of residuals and Hotellings T2 (Jackson 1991). Clas-

sification models were built for all combinations of cancer

and control and also control/control. Models are cross

validated and the models are tested on a set of samples left

out during model building. The huge biological variation

from the raw data is still reflected in the extracted 19

variables in the score matrix. Therefore it makes sense to

apply variable selection to select those variables of the 19

that reflect the variation relevant for discriminating cancer

and non-cancer. We applied forward selection on the cali-

bration data to find the optimal variables for classification.

In the different models the number of variables was

reduced from 19 variables to between five and 15 variables.

Results from the different models with sensitivity and

specificity values for the cross validated and the tested

models as well as area under the receiver operating char-

acteristic (ROC) curve are seen in Table 1. A PLS-DA

model with all the three control groups pooled to a com-

mon control versus the cancer patients gives an area under

the ROC curve of 0.69 with optimal sensitivity and spec-

ificity values of 0.70 in the cross validated model, and

similar values of 0.73 and 0.77 validated on new samples.

Similar values are obtained on models with cancer vs.

controls from the group of healthy individuals with no

findings, and cancer vs. other non malignant findings.

These models give areas under the ROC curves of 0.75 and

0.77, and sensitivity and specificity values between 0.73

and 0.80. In the models of cancer vs. adenomas, the area

under the curve, sensitivity and specificity values are at the

same level as the model with all controls. The results are to

some extent surprising as one would expect it to be easier

to discriminate between individuals with no findings and

cancer, than between individuals with adenomas and can-

cer. Models of the different controls against each other give

poor models with area under the curve values of 0.5–0.6.

Even though they have different imbalances (adenomas or

other non malignant findings), the controls are thus not

much different from a fluorescence point of view. This

result is important for future work of building better

diagnosis models, as it underlines that the essential dif-

ferences found in this study are related to cancer, non-

cancer. In a different study on the same samples searching

for differences in plasma levels of soluble urokinase
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plasminogen activator receptor (suPAR), the level of dis-

crimination between cancer and other non malignant find-

ings was better than between cancer and no findings. The

discrimination between cancer and adenomas was less

significant in this study (Lomholt et al. 2009).

The sensitivity and specificity values in Table 1 are

found as the optimal value (maximizing the sum of the

two). In diagnostic models, a high specificity value is often

preferred as this reduces the number of false positives. For

the models cancer vs. other non malignant findings and

cancer vs. no findings we get sensitivity values of 0.48 and

0.43 at specificity values of 0.9. The result achieved by use

of fluorescence spectroscopy and PARAFAC is thus com-

parable to the performance of the known biomarkers for

CRC; CEA that has sensitivity and specificity values of

0.34 and 0.93.

The table above shows the results of the different clas-

sification models. The different models are based on dif-

ferent data, and thus use different variables for

classification. A score and a loading plot for the classifi-

cation model of cancer vs. other non malignant findings

based on the PARAFAC scores are seen in Fig. 3. As

expected from the sensitivity and specificity values, there is

not a perfect separation between the two classes. However,

there is a tendency towards separation along the diagonal

from the second to forth quadrant in the score plot of the

first vs. third PLS-DA component. From the loading plot

we can see which variables are important for this separa-

tion. The loadings are likewise separated along a diagonal,

with samples that are positively correlated to the ‘‘cancer

direction’’ and samples negatively correlated to the ‘‘cancer

direction’’ or positively correlated to the control samples;

in this case the samples with other non malignant findings.

A similar exercise can be done for all models.

Common for the models with cancer vs. one or all

groups of controls is that the variables 1, 2, 8, 16 and 19 for

several of the models are negatively correlated to the

cancer direction, and likewise variables 6, 7 and 10 are

positively correlated to the cancer direction. These vari-

ables are thus important in the discrimination between

cancer and controls, though a model based on only those

variables does not perform as well as models with more

variables. The excitation and emission loadings from

components seven and 10 which are positively correlated

to cancer and likewise from components eight and 17

which are positively correlated to the controls are shown in

Fig. 3 (lower plot). From the excitation and emission

loadings these variables can most likely be assigned to

tryptophan (variables 7 and 17) or tyrosine, with energy

transfer to tryptophan (variables 1 and 4). They have pair

wise similar excitation loadings, but the tryptophan emis-

sions in the ‘‘cancer variables’’ are all shifted to shorter

wavelengths (blue shift) compared to the ‘‘control vari-

ables’’. This confirms the findings from Leiner et al. (1986)

who also experienced a blue shift in tryptophan emission in

blood from cancer patients.

As opposed to what was expected, variable 3 (excita-

tion/emission at 400/620), which corresponds to porphyrin,

was not correlated to cancer. Several studies have shown

elevated porphyrin levels in the blood from cancer patients

(Madhuri et al. 2003; Masilamani et al. 2004; Xu et al.

1988). In this study all the subjects were included due to

symptoms associated with CRC, and thus, even though

three of four do not have cancer, some cellular biochemical

imbalance might be expected, and therefore elevated levels

could be expected in some of these controls. Additionally,

the studies showing porphyrin to be important used acetone

extracts of either blood plasma or cells, and not pure blood

plasma as in the present study.

In the above models, PARAFAC scores were included

from measurements on both diluted and undiluted samples,

and as explained earlier there are some important effects of

dilution. Fluorescence measurements on the undiluted

samples may suffer from inner filter effect due to the high

absorbance from the plasma samples. Diluting the samples

induce physical/chemical changes in the plasma causing

blue shift in the spectra. We found that variables from both

the diluted and undiluted measurements were important for

detecting cancer. Modelling only on scores from the diluted

or undiluted samples gave similar but slightly worse

Table 1 PLS-DA models for classification of different classes based on the PARAFAC scores

Groups Sensitivity CV Specificity CV AUC CV Sensitivity predict Specificity predict

Crc vs. no 0.68 0.84 0.75 0.73 0.77

Crc vs. onf 0.79 0.73 0.76 0.79 0.73

Crc vs. ade 0.73 0.74 0.77 0.92 0.63

Ade vs. no 0.57 0.55 0.50 0.45 0.43

Ade vs. onf 0.47 0.75 0.57 0.47 0.47

Onf vs. no 0.63 0.58 0.59 0.53 0.40

Crc vs. all controls 0.70 0.70 0.69 0.74 0.71

Crc cancer, No no findings, Onf other non malignant findings, Ade adenomas, All all three control groups, CV cross validated
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models compared to the combination of scores from the

diluted and undiluted samples, thus predictive power is

gained by including both. From an analytical point of view,

measuring only on the undiluted samples would be pre-

ferred as it makes the measurements faster and simpler to

perform. Additionally there is a risk that the changes in

sample matrix due to dilution could break some of the

cancer specific correlations/interactions and thus make

discrimination more difficult. A more thorough study

addressing this could be interesting. In fact in analysis of

the raw spectra (see below) better models were obtained

using only the undiluted samples.

3.2 Classification on the raw data

A study similar to this on breast cancer by Nørgaard et al.

(2007) applied discrimination only on the raw spectra. The

authors did recommend applying more advanced tech-

niques such as PARAFAC on the spectra but did not pursue

this. Recall that we have used PARAFAC here, in order to

provide more direct chemical information on how a pos-

sible classification can come about. Nevertheless, it is

interesting to see whether we have gained anything from a

quantitative point of view by applying PARAFAC on the

data. Hence, classification models were built directly on the

raw spectra as well. We have analyzed both diluted and

undiluted samples individually and combined, and

achieved similar results. However, the results from the

undiluted measurements were slightly better than the

alternative results, and are thus the only ones presented

below. In Table 2 the results from the classifications based

on the raw spectra are shown. Compared to the results

based on the PARAFAC scores, these classification models

perform equally well and these results are thus also com-

parable to the performance of CEA. Again the models on

control vs. control perform worse than the cancer vs.

control models. As for the models based on the PARAFAC

scores we have applied variable selection on the models.

Different variables are used for the models, but some of the

same areas are represented in all four models.

Although it is possible to trace the original wavelengths

behind the variables, these do not give the same intuitive

information compared to the PARAFAC loadings. The

scores and loadings for the model classifying cancer and

other non malignant findings (Fig. 4) show a fairly good

separation between the two groups in the first and fifth

components. The loadings can be traced back to wave-

lengths around maxima for tryptophan, and the loading for

the fifth component has a second derivative-like shape,

which can be connected to the shift in the spectra from

control to cancer that was shown above in the models based

on PARAFAC scores. The results are thus similar, which

was expected as it is originally the same data. Still, the

extracted features by PARAFAC make the interpretation

more straight forward and more comprehensive.

4 Conclusion

We have introduced excitation emission matrix fluorescence

measurements on human blood plasma combined with

multivariate data analysis as a potential alternative method

to discriminate CRC patients from healthy controls, and

controls with other cellular imbalances than cancer. With

Fig. 3 Upper left: PLS-DA

score plot of the first vs. third

PLS-DA component from the

model cancer vs. other non

malignant findings on

PARAFAC loadings. Triangles
are cancers and circles are

controls. Upper right:
corresponding loading plot.

Lower: selected PARAFAC

excitation (left) and emission

(right) loadings. Dark gray line
(loading #7) and dark grey with

asterisk (loading #10) are

correlated with cancer, light
gray (#8) and light gray with

asterisk (#17) are correlated

with control samples
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sensitivity and specificity values of app 0.75 on a test set,

the results are comparable to the known biomarker CEA.

Previous studies with fluorescence spectroscopy have

obtained similar results on other types of cancer but with a

smaller number of samples. We obtained similar results in

regards to discrimination whether we applied classification

directly on the raw unfolded spectra or extracted estimates

of the underlying fluorophores by use of PARAFAC. By

the latter method, however, we obtained better conditions

for a chemical interpretation/understanding of the results.

We could see a blue shift in the tryptophan emission from

cancer patients as one of the reasons for discrimination, a

phenomenon described earlier in the literature. The use of

PARAFAC on the fluorescence data to extract qualitative

and quantitative chemical information from the human

blood plasma samples, and base classification on this

information is an example on how fluorescence spectros-

copy can be used as a tool for metabonomic research.

Compared to biomarker tests, fluorescence spectroscopy is

an inexpensive alternative, and with minor sample prep-

aration it is easy to perform the analysis. Further research

is needed but we believe that there is room for fluores-

cence spectroscopy as metabonomic tool in cancer

research.
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Table 2 Results from the PLS-DA on the raw unfolded spectra

Groups Sensitivity CV Specificity CV AUC CV Sensitivity predict Specificity predict

Crc vs. no 0.64 0.79 0.73 0.73 0.67

Crc vs. onf 0.73 0.79 0.75 0.73 0.73

Crc vs. ade 0.78 0.71 0.74 0.64 0.87

Ade vs. no 0.68 0.61 0.63 0.33 0.63

Ade vs. onf 0.84 0.34 0.55 0.70 0.33

Onf vs. no 0.45 0.82 0.62 0.20 0.82

Crc vs. all controls 0.69 0.7 0.73 0.67 0.83

Crc cancer, No no findings, Onf other non malignant findings, Ade adenomas, All all three control groups

Fig. 4 Left: score plot of the

first component vs. the fifth

component for the PLS-DA

model on cancer (triangles) vs.

other non malignant findings

(circles) on the raw spectra.

Right: loadings from the first

component (dark gray) and the

fifth component (light gray)
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The original version of this article unfortunately contained

a mistake. In the Materials and methods section the number

of samples ready for data analysis is incorrectly given as

301, 295 and 300 for the three groups. The correct numbers

are 299, 299 and 289. The incorrect numbers come from an

intermediate step in the analysis where some irrelevant

standard samples were included. Similar quality of results

was obtained on datasets of the size incorrectly given in the

paper. The data from the paper can be downloaded from

our homepage. http://www.models.life.ku.dk/datasets.

The online version of the original article can be found under

doi:10.1007/s11306-011-0310-7.
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